
Tiny but Mighty: Designing and
Realizing Scalable Latency

Tolerance for Manycore SoCs
Marcelo Orenes-Vera, Aninda Manocha,
Jonathan Balkind, Fei Gao, Juan L. Aragón,
David Wentzlaff and Margaret Martonosi

Problem: Memory bottlenecks

• Modern system designs employ hardware
accelerators, heterogeneity, and parallelism

• Significantly benefits compute-bound workloads

• Applications that are memory-bound due to
irregular memory access patterns do not
scale well with the number of cores

• Sparse neural networks, as a result of network
pruning to reduce model storage

• Graph algorithms, recommendation systems, etc.

2

Image European Bioinformatics Institute

• Their data footprint is constantly
increasing, putting more pressure
in the memory system.

• IMAs arise from pointer
indirection, e.g. A[B[i]]
• Since array A is often very big (e.g.,

millions of edge/nodes in graph analytics)
and accesses are unpredictable
IMAs often incur in poor cache locality
and their latency dominates the runtime

31 Runtimes measured on a simulated in-order core.

IMAs

1

Opportunity: Mitigating the latency of Indirect
Memory Accesses (IMAs)

SDHP GP BFS SSSP PR

Challenge A: Mitigate IMAs in Manycores

1. Manycores often have slim cores
without OoO structures

2. A prefetcher in each core would cause
significant per-core overhead

3. Heterogeneous tiles (e.g. accelerators)
might need memory tolerance too.

4. Prefetching in the LLC require changes
specific to mem hierarchy

4

Image Credit: Openpiton

Challenge B: Easy hardware integration

1. Deep microarchitecture changes
are difficult to incorporate due to
the verification burden

2. Faster path to SoC silicon by
integrating off-the-shelf IP blocks

3. Easier adoption when not
modifying the memory hierarchy
not existing IP blocks

5

Challenge C: Memory-access specialization
without adding new instructions

6

1. Not modifying the cores IP means
no new instructions (no ISA
modifications)

2. It’s ideal to bring to L1 the cache-
friendly accesses and bypass the
cache-averse ones

3. Provide HW advantages but with
the illusion of only using SW
optimizations with an API

for (i=0;i<N;i++){
for (k=ptr[i];k<ptr[i+i];k++){

result[i] += val[k] * A[B[k]];
}

}

Sparse Matrix-Vector multiplication (SPMV) code

for (i=0;i<N;i++){
specialized_prefetch(A,B,ptr[i+1]);
for (k=ptr[i];k<ptr[i+i];k++){

result[i] += val[k] * consume();
}

}

Mitigating the IMA

Our Approach: Out-of-core mem. latency tolerance

7

• Mitigating the latency of IMAs without
modifying cores or mem. hierarchy

• Ease to integrate via the NOC

• ISA-agnostic

• Provides memory-level parallelism to
the thin cores of a manycore

• Enables decoupling and prefetching SW
optimizations via an API that only uses
existing memory instructions

Off-the-shelf cores using MAPLE

Contributions

8

• RTL implementation taped-out into silicon
• Reusable open-source hardware block
• Real area numbers
• Extensive testing using formal verification

• Scalable Latency tolerance
• Multiple instances
• Instances shared across cores, protected access

• Real-world OS and compiler support
• MAPLE’s API supports virtual memory
• Programmed from SMP Linux
• Open-source compiler pass targets MAPLE’s API

Off-the-shelf cores using MAPLE

Outline

Motivation, challenges and contributions

Background

MAPLE

Evaluation & Results

Conclusions, contact, and open-source repo

9

Decoupling for Latency Tolerance

At DAE [Smith ‘82] (Decoupled Access
Execute) ideally the Access runs ahead of
the Execute

• The Access core issues memory requests
early and the the return data is enqueued

• The Execute consumes data from the
queue and handles complex value
computation

Some applications may involve long-
latency loads, where the Execute waits
for their data to be ready

Data Access Execute
Memory
Hierarchy

10

E

A

E E E E E

AA A AA

TIME

Access

Execute

A

E

A

E E E

A A

TIME

Execute

Access

Layers that Prior Work Modifies

11

DAE [Smith ISCA ‘82]
μarch changes visible with new ISA inst.

DeSC [Ham MICRO’15]
Compiler targeting new ISA inst.

Layers in which Prior Work Operates

12

DAE [Smith ISCA ‘82], Pipette [Nguyen MICRO’20]
μarch changes visible with new ISA inst.

Programmable Prefetching [Ainsworth ASPLOS’18]
DeSC [Ham MICRO’15]
Compiler targeting new ISA inst.

Software Prefetching for IMAs [Ainsworth CGO’18]
Clairvoyance [Tran CGO’17]
Compiler-only approach

DROPLET [Basak HPCA ‘19], IMP [Yu MICRO’15]
Use predictors to trigger prefetches
Slipstream [Sundaramoorthy ASPLOS ’00]
Use predictors to orchestrate streams

13

DAE [Smith ISCA ‘82], Pipette [Nguyen MICRO’20]
μarch changes visible with new ISA inst.

Programmable Prefetching [Ainsworth ASPLOS’18]
DeSC [Ham MICRO’15]
Compiler targeting new ISA inst.

Provides an API that can
be targeted by Compiler
or DSL backend

Our hardware
approach doesn’t
modify the Core

API operations use existing
memory instructions, so it is
ISA-agnostic

Prior WorkOur Approach
Software Prefetching for IMAs [Ainsworth CGO’18]
Clairvoyance [Tran CGO’17]
Compiler-only approach

DROPLET [Basak HPCA ‘19], IMP [Yu MICRO’15]
Use predictors to trigger prefetches
Slipstream [Sundaramoorthy ASPLOS ’00]
Use predictors to orchestrate streams

Layers in which Prior Work Operates

14

Provides an API that can
be targeted by Compiler
or DSL backend

Our hardware
approach doesn’t
modify the Core

API operations use existing
memory instructions, so it is
ISA-agnostic

Our Approach

Layers in which MAPLE Operates

Outline

Motivation, challenges and contributions

Background

MAPLE

Evaluation & Results

Conclusions, contact, and open-source repo

15

LD B[i+X]

Time (cy)

Access thread runs X
loop iterations ahead
of the Execute thread,

since MAPLE loads the data

10050 1500

CONSUME (i)

data

LD B[i]
LD A[B[i]]

200

dataDRAM latency

PRODUCE

data(i)

 for (i=0; i<N; i++)
 produce(&A[B[i]])

 for (i=0; i<N; i++)
 data = consume()
 res[i] = data * 42

Access thread

Execute thread

 ITERATION i

ITERATION i

 ITERATION i+1

PRODUCE

pointer (i+x)

CONSUME (i)Lost of runahead due to
stalled Access thread

data

CONSUME (i)
for (i=0; i<N; i++)
 data = A[B[i]]
 res[i] = data * 42

Original program

Software API for Decoupling with MAPLE

• Compiler pass for decoupling (e.g. similar to DeSC)
divides the program into Access and Execute threads
and targets MAPLE’s API for Produce/Consume
• Decoupling by itself doesn’t give latency tolerance
• Need Memory-Level Parallelism

• Targeting MAPLE’s hardware achieves better
performance due to its memory-parallelism

16

Decoupling with MAPLE

17

Produce path (steps 1-6)

Core 1 (behaving as the
Access core) will supply
data to Core2 (Execute)

‘Access’ or ‘Execute’ are
roles taken by software
threads rather than a
core-type (as in prior art)

Decoupling with MAPLE

18

Consume path (A-C)

Core 1 (behaving as the
Access core) will supply
data to Core2 (Execute)

‘Access’ or ‘Execute’ are
roles taken by software
threads rather than a
core-type (as in prior art)

Decoupling with MAPLE

19

Consume path (A-C)

Core 1 (behaving as the
Access core) will supply
data to Core2 (Execute)

‘Access’ or ‘Execute’ are
roles taken by software
threads rather than a
core-type (as in prior art)

MAPLE Hardware Design

20

• Load Pipeline: Consume data

• Configuration Pipe: manage
queues, config MMU, debug

• Store Pipe: Push data and
pointers (to fetch)

START:
Incoming
Operation

END:
Outgoing
Response

Prefetching Loops of IMAs: LIMA

21

Loading A[B[i]] for a range

• Base address of arrays A and B
are configured

• Fetches B in chunks, which are
then accessed word by word to
calculate the index to array A.

Array B

Array A

5 7 1 ...

42 ...

Fetch ChunkLIMA(A,B, 0, 9)

Fetch Word

22

for (i=0;i<N;i++){
for (k=ptr[i];k<ptr[i+i];k++){

y += val[k]*A[B[k]]; //IMA
}
result[i]=y;

}

Prefetching version with MAPLE

Original SPMV code Snippet

• Prefetch IMAs in tight inner loops with a
single instruction and then consume from
MAPLE

The LIMA subunit prefetches Loops of IMAs

• Can also do individual prefetching

• Advantages over the hardware and software
state of the art (see full-paper)

LIMA(A,B,ptr[i],ptr[i+1];

for (i=0;i<N;i++){
for (k=ptr[i];k<ptr[i+i];k++){

y += val[k]*CONSUME();
}
result[i]=y;
LIMA(A,B,ptr[i+1],ptr[i+2];

}

Prefetching with MAPLE

23

• MAPLE can be instantiated many times, e.g., in a
tiled architecture.
• Each unit is addressed as a separate memory-

mapped page (protected access)
• A process can map multiple MAPLE units

• The API implementation hides the management of
physical MAPLE units
• The software interface only deals with the

abstract concept of queues

OS support

Processor Tiles
MAPLE Tiles

Outline

Motivation, challenges and contributions

Background

MAPLE

Evaluation & Results

Conclusions, contact, and open-source repo

24

Hardware Integration with OpenPiton

LLC
slice

64KB

Ariane
Core

NoC
routers

NoC
routers

LLC
slice

64KB

MAPLE
L1.5 private

8KB

25

LSU L1 MAPLE

ARIANE CORE TILE X TILE X+1

1 cycle 2 cycles

L1.5

4 cycles

4 cycles

TRI
iface

5 cycles1 cycles 2 cycles

NoC

3 cycles

3 cycles

• We integrated MAPLE into the
open-source OpenPiton [Balkind
ASPLOS’16] manycore, on its own tile

• We use in-order, OS-capable RISC-V
cores: Ariane
• Using the API, loads/stores are

routed to MAPLE via the NoC
• Mem-mapped address range

• Experimental setup: SoC prototype on FPGA VC707 composed of 2 Ariane Core
and 1 MAPLE Tile. We evaluate applications full-stack on top of Linux v5.6-rc4

Evaluating MAPLE full-system on FPGA

26

MAPLE for decoupling

27

MAPLE decoupling provides 2.3x speedup over SW-only decoupling, and
outperforms traditional parallelism across the board, 1.5x over 2-cores do-all

2.3x1.5x

MAPLE for programmable prefetching

28

Geomean speedup 1.7×
over no prefetching
Ø Up to 2.4× for SPMV

Decreases the average load
latency by 1.9x

Scaling core counts sharing a MAPLE unit

29

Evaluating 8 cores sharing
the same MAPLE instance

• 4 decoupling queues
• Can handle twice that
• Area-efficient

Outline

Motivation, challenges and contributions

Background

MAPLE

Evaluation & Results

Conclusions, contact, and open-source repo

30

Conclusions

MAPLE enables prefetching and decoupling SW
optimizations with specialized HW to make it
effective even with slim, in-order cores.

ü Can be used on a SoC generator framework,
as a plug-n-play latency tolerance mechanism

Full-stack SoC prototype evaluation shows
geomean speedups of 2.3x over software-only
decoupling and prefetching

Our HW-SW co-design benefits from program
knowledge and hardware specialization.

31

32

• Marcelo Orenes-Vera, movera@princeton.edu
• https://decades.cs.princeton.edu/

Contact

• github.com/PrincetonUniversity/maple
• github.com/PrincetonUniversity/openpiton
• github.com/PrincetonUniversity/DecadesCompiler

Project Repositories

• Decoupling with four tiles
https://youtu.be/elkQcMFSvoo

• Decoupling and prefetching on top of Linux
https://youtu.be/YRbsjqzlTOM

MAPLE demos on FPGA

Contributions

https://decades.cs.princeton.edu/
https://github.com/PrincetonUniversity/maple
https://github.com/PrincetonUniversity/openpiton
http://github.com/PrincetonUniversity/DecadesCompiler
https://youtu.be/elkQcMFSvoo
https://youtu.be/YRbsjqzlTOM

