Tiny but Mighty: Designing and
Realizing Scalable Latency
Tolerance for Manycore SoCs

Marcelo Orenes-Vera, Aninda Manocha,

Jonathan Balkind, Fei Gao, Juan L. Aragdn,
David Wentzlaff and Margaret Martonosi

PRINCETON UC SANTA BARBARA UNIVERSIDAD DE
UNIVERSITY MOREIA

Problem: Memory bottlenecks

* Modern system designs employ hardware
accelerators, heterogeneity, and parallelism

 Significantly benefits compute-bound workloads

* Applications that are memory-bound due to

irregular memory access patterns do not
scale well with the number of cores

e Sparse neural networks, as a result of network
pruning to reduce model storage

* Graph algorithms, recommendation systems, etc. Image European Bioinformatics Institute

Opportunity: Mitigating the latency of Indirect
Memory Accesses (IMAs)

B MAs [Other Accesses I Compute

1

[
o
<

* Their data footprint is constantly
increasing, putting more pressure
in the memory system.

O N 00 O
e
T 11

* IMAs arise from pointer

Percentage of Total Runtime
Ul
<

. . . . 40+
indirection, e.g. A[BJi]] |
* Since array A is often very big (e.g., >0l
millions of edge/nodes in graph analytics)
and accesses are unpredictable 10+
IMAs often incur in poor cache locality 0-
and their latency dominates the runtime SDHP GP BFS sSSP PR

1 Runtimes measured on a simulated in-order core.

Challenge A: Mitigate IMAs in Manycores

1.

Manycores often have slim cores
without 00O structures

A prefetcher in each core would cause
significant per-core overhead

Heterogeneous tiles (e.g. accelerators)
might need memory tolerance too.

Prefetching in the LLC require changes
specific to mem hierarchy

=

-

Tile

[P K]

HE

10 | 0]

L P

[

ULJW

Image Credit: Openpiton

Challenge B: Easy hardware integration

1. Deep microarchitecture changes
are difficult to incorporate due to
the verification burden

2. Faster path to SoC silicon by
integrating off-the-shelf IP blocks o

3. Easier adoption when not
modifying the memory hierarchy
not existing IP blocks

Rapid Prototyping
via SoC Integration

Third-Party
Accelerator
IP

Third-Party | :
Processor

IP

In-House
Hardware
Block

Challenge C: Memory-access specialization
without adding new instructions

1. Not modifying the cores IP means Sparse Matrix-Vector multiplication (SPMV) code
no new instructions (no ISA for (i=0;1i<N;i++)
modifications) for (k=ptr[i];k<ptr[i+i];k++)

result[i] += wval[k] * A[B[k]];
}

2. lIt'sideal to bring to L1 the cache-
friendly accesses and bypass the

cache-averse ones l Mitigating the IMA

for (i=0;1i<N;i++) {
3. Provide HW advantages but with specialized prefetch(A,B,ptrli+l]);
the illusion of only using SW for (k=ptr[i];k<ptr[i+i];k++){

e . 1t[1i] += val[k] * .
optimizations with an API } result[1] val[k] * consume ()

Our Approach: Out-of-core mem. latency tolerance

* Mitigating the latency of IMAs without

modifying cores or mem. hierarchy Off-the-shelf cores using MAPLE
* Ease to integrate via the NOC Core 2] —
Consume

e ISA-agnostic \ Consume
ProduceE ‘—-—\

. . Core 1 MAPLE Core 3 nOLUE

* Provides memory-level parallelism to T e

. Fetch
the thin cores of a manycore | /01 r _______ | camm
Last Level Cache (LLC)

* Enables decoupling and prefetching SW e L i

optimizations via an API that only uses | Main Memory (DRAM) :
existing memory instructions

Contributions

 RTL implementation taped-out into silicon

* Reusable open-source hardware block Off-the-shelf cores using MAPLE

* Real area numbers

* Extensive testing using formal verification Core 2)) —_—
* Scalable Latency tolerance \

* Multiple instances — 3 MAPLE &MAPLE

 Instances shared across cores, protected access Core 1 T Core 3 — —
* Real-world OS and compiler support | 'g) | b .

« MAPLE’s API supports virtual memory S Lo LG CREULE)

* Programmed from SMP Linux T

Main Memory (DRAM)

* Open-source compiler pass targets MAPLE’s API

g Background

Outline)

Decoupling for Latency Tolerance

At DAE [Smith ‘82] (Decoupled Access Vemory |—
Execute) ideally the Access runs ahead of Hierarchy —
the Execute

* The Access core issues memory requests
early and the the return data is enqueued

Access
° The Execute consumes data from the ...

queue and handles complex value Execute nnnnnﬂ
computation . >

TIME

Some applications may involve long- Access

latency loads, where the Execute waits
for their data to be ready

Execute

10

Layers that Prior Work Modifies

Application

0S, Compiler, DSL (Domain
Specific Language) backend

Architecture (ISA)

Processor Core
Microarchitecture

RTL (e.g. Verilog)

>

DeSC [Ham MICRO’15]

. Compiler targeting new ISA inst.

DAE [Smith ISCA ‘82]
pnarch changes visible with new ISA inst.

11

Layers in which Prior Work Operates

Application

0S, Compiler, DSL (Domain
Specific Language) backend

Architecture (ISA)

Processor Core
Microarchitecture

RTL (e.g. Verilog)

>

Software Prefetching for IMAs [Ainsworth CGO’18]
Clairvoyance [Tran CGO’17]

Compiler-only approach

Programmable Prefetching [Ainsworth ASPLOS 18]
DeSC [Ham MICRO’15]

. Compiler targeting new ISA inst.

DAE [Smith ISCA ‘82], Pipette [Nguyen MICRO’20]
pnarch changes visible with new ISA inst.

J

DROPLET [Basak HPCA ‘19], IMP [Yu MICRO’15]
Use predictors to trigger prefetches
Slipstream [Sundaramoorthy ASPLOS ‘00]

J Use predictors to orchestrate streams

12

Layers in which Prior Work Operates

Our Approach

Application

Provides an APl that can

be targeted by Compiler
or DSL backend

APl operations use existing
memory instructions, so it is
ISA-agnostic

0S, Compiler, DSL (Domain
Specific Language) backend

Architecture (ISA)

Our hardware
approach doesn’t
modify the Core

Processor Core
Microarchitecture

RTL (e.g. Verilog)

Prior Work

Software Prefetching for IMAs [Ainsworth CGO’18]
Clairvoyance [Tran CGO’17]
Compiler-only approach

Programmable Prefetching [Ainsworth ASPLOS’18]
DeSC [Ham MICRO’15]

Compiler targeting new ISA inst.

DAE [Smith ISCA ‘82], Pipette [Nguyen MICRO’20]
uarch changes visible with new ISA inst.

J

DROPLET [Basak HPCA ‘19], IMP [Yu MICRO’15]
Use predictors to trigger prefetches

> Slipstream [Sundaramoorthy ASPLOS ‘00]

Use predictors to orchestrate streams

13

Layers in which MAPLE Operates

Our Approach

Application

Provides an APl that can

be targeted by Compiler 0S, Compiler, DSL (Domain

or DSL backend Specific Language) backend
APl operations use existing

memory instructions, so it is
ISA-agnostic Architecture (ISA)

*
Our hardware

approach doesn’t Processor Core
modify the Core Microarchitecture

RTL (e.g. Verilog)

14

Outline

MAPLE

15

Software AP| for Decoupling with MAPLE

Access thread

for (i=0; i<N; i++) Compiler pass for decoupling (e.g. similar to DeSC)
produce(&A[BI[i]]) divides the program into Access and Execute threads
and targets MAPLE’s API for Produce/Consume
Execute thread * Decoupling by itself doesn’t give latency tolerance
for (i=0; i<N; i++) * Need Memory-Level Parallelism

data = consume()
res[1] = data * 42

* Targeting MAPLE’s hardware achieves better
. ﬁ performance due to its memory-parallelism
Original program

for (1=0; i<N; 1++)
data = A[BJi]]
res[1] = data = 42

16

Decoupling with MAPLE

Produce path (steps 1-6)

Core 2 Zooming into MAPLE
STORE[T |
e ?,{;I;E LOAD Z 5 Core 1 (behaving as the
i) Access core) will supply
REQUEST RESPONSE REQUEST | ' RESPONSE data to Corez (ExeCUte)
Core 1 <' Producel)DE(?ODER ENCO%R ENgoDER DECODER
_____ ll ‘Access’ or ‘Execute’ are
: Last Level Cache (LLC) i roles taken by software
B ! &) threads rather than a
core-type (as in prior art)
Main Memory (DRAM) :

17

Decoupling with MAPLE

Core 2 =— Zooming into MAPLE
A @ ww | | mapL STORECTTI®B),) o
"sammmam : engine LOADEDj:] *U
il i [
S LI ©v v
Core 1 .) REQUEST RESPONSE REQUEST ' ' RESPONSE

DECODER | | ENCODER ENCODER ' | DECODER

R

Last Level Cache (LLC)

Consume path (A-C)

Core 1 (behaving as the
Access core) will supply
data to Core2 (Execute)

‘Access’ or ‘Execute’ are
roles taken by software
threads rather than a
core-type (as in prior art)

18

MAPLE Hardware Design EnD:
7 respons

CONSUME(| READ || DATA

r’ PIPE || QUEUE || REPLY ”RESE E:C QUEUE
A.Read Queue Head -\ CNTRL | o | oad Pipeline: Consume data
a REQ ConﬁgQueueSlze) —
START: RE —|—> CONFIG || ACK TO 3 , , _
Incomin " PIPE CORE § ° Conf/gurat/on PIpEZ Manage
.g config = .
Operation LIMA | ¢ | Q gueues, config MMU, debug
LOGIC Get Next Entry Queue ID E
pointer
PRODUCE (| RESERVE||WDATA OR|| ACK - “A A * Store Pipe: Push data and
—» PIPE FIFO ASYNC TO Write pointers (to fetch)
BUFFER SLOT LOAD CORE Queue
Ent
VA-PA =
Translafign. MMU |Fetch PT ent I;RII::IS RII)EES:g
(PTW/TLB) | page Fault -

T “Memory" A 50

Prefetching Loops of IMAs: LIMA

LIMA(A,B, 0, 9)

Fetch Chunk

e

-

Array B 5

Array A 42|

Fetch Word

Loading A[BJi]] for a range

* Base address of arrays A and B
are configured

* Fetches B in chunks, which are
then accessed word by word to
calculate the index to array A.

Prefetching with MAPLE

e Prefetch IMAs in tight inner loops with a
single instruction and then consume from

MAPLE

The LIMA subunit prefetches Loops of IMAs
* Can also do individual prefetching

* Advantages over the hardware and software
state of the art (see full-paper)

Original SPMV code Snippet

for (i=0;i<N;i++) {
for (k=ptr[i];k<ptr[i+i];k++) {
y += vall[k]*A[B[k]]; //IMA
}

result[i]=y;

Prefetching version with MAPLE

LIMA(A,B,ptr[i],ptr[i+l];

for (i=0;i<N;i++) {
for (k=ptr[i];k<ptr[i+i];k++) {
y += val[k] *CONSUME () ;
}
result[i]=y;
LIMA(A,B,ptr[i+1l],ptr[i+2];

OS support

* MAPLE can be instantiated many times, e.g., in a
tiled architecture.

* Each unit is addressed as a separate memory-
mapped page (protected access)

* A process can map multiple MAPLE units

* The APl implementation hides the management of
physical MAPLE units

* The software interface only deals with the
abstract concept of queues

Processor Tiles
MAPLE Tiles

23

Outline

Evaluation & Results

24

Hardware Integration with OpenPiton

We integrated MAPLE into the
open-source OpenPiton [Balkind
ASPLOS’16] manycore, on its own tile

We use in-order, OS-capable RISC-V
cores: Ariane

* Using the API, loads/stores are
routed to MAPLE via the NoC

* Mem-mapped address range

<€«—»L1.5 private
KB MAPLE
Ariane e ¢ ¢ LLC
Core slice slice
routers y» routers
ARIANE CORE TILE X TILE X+1
1 cycle 2 cycles deycles | |
q ? I I q 3 cycles
LSU L1 rr | LS NoC | | MAPLE
— &l E e
4 cycles 3 cycles
1 cycles 2cycles || | 7T | T 5 cycles

25

Evaluating MAPLE full-system on FPGA

Experimental setup: SoC prototype on FPGA VC707 composed of 2 Ariane Core
and 1 MAPLE Tile. We evaluate applications full-stack on top of Linux v5.6-rc4

. — 0000 copying boot image

Awage
A 3B of I276R Blocks (99 %y

copying block 65500 of 65536 blocks (99 %)
done!

OpenSBI v@.8-6-geclabf6

/3 SRS REe\ S|
SEDEpE= [= [); bl
AR N | e L]

=)R (|)] | R]

Platform Name : OPENPITON RISC-V
Platform Features : timer,mfdeleg
Platform HART Count : 3

Boot HART ID : 0

Boot HART ISA : rve4imafdcsu

BOOT HART Features : scounteren,mcounteren
BOOT HART PMP Count : @

Firmware Base : 0x80000000

Firmware Size : 92 KB

Runtime SBI Version : 0.2

MAPLE for decoupling

mDoall mSW-Decoupling m MAPLE-Decoupling

o
'§ 1.5x 2.3x
& }
2
ll lll l l- ll
SPMV SPMM SDHP GEOMEAN

MAPLE decoupling provides 2.3x speedup over SW-only decoupling, and
outperforms traditional parallelism across the board, 1.5x over 2-cores do-all

27

MAPLE for programmable prefetching

Speedup

100
90
80
70
60
50
40
30
20
10

Avg. Load Latency (cycles)

(=]

m No prefetching m SW-Prefetching = MAPLE-Prefetching

GEOMEAN

m No Prefetching mSW-Prefetching = MAPLE Prefetching

GEOMEAN

Geomean speedup 1.7x

over no prefetching
» Up to 2.4x for SPMV

Decreases the average load
latency by 1.9x

28

Scaling core counts sharing a MAPLE unit

Speedup
O B N W b U1 O N O VO

EDoall-2 =MAPLE-2 ®&Doall-4

% MAPLE-4

W Doall-§ WMAPLE-8

-e
'
-

GEOMEAN

Evaluating 8 cores sharing
the same MAPLE instance

* 4 decoupling queues
* (Can handle twice that
* Area-efficient

29

Outline

Conclusions, contact, and open-source repo

30

Conclusions

MAPLE enables prefetching and decoupling SW
optimizations with specialized HW to make it
effective even with slim, in-order cores.

v’ Can be used on a SoC generator framework,
as a plug-n-play latency tolerance mechanism

Full-stack SoC prototype evaluation shows
geomean speedups of 2.3x over software-only
decoupling and prefetching

Our HW-SW co-design benefits from program
knowledge and hardware specialization.

31

_

e Marcelo Orenes-Vera, movera@princeton.edu
e https://decades.cs.princeton.edu/

Contributions

* RTL implementation taped-out into silicon g "roject Repositories

* Reusable open-source hardware block e github.com/PrincetonUniversity/maple

: Esta;:;i?a:::;:erjsin tormal verification e github.com/PrincetonUniversity/openpiton
& & e github.com/PrincetonUniversity/DecadesCompiler

* Scalable Latency tolerance

* Multiple instances VABIE G e
* Instances shared across cores, protected access €mos on

* Real-world OS and compiler support e Decoupling with four tiles
* MAPLE’s API supports virtual memory https://youtu.be/elkQcMFSvoo
* Programmed from SMP Linux e Decoupling and prefetching on top of Linux

* Open-source compiler pass targets MAPLE’s API https://youtu.be/YRbsjazITOM

32

https://decades.cs.princeton.edu/
https://github.com/PrincetonUniversity/maple
https://github.com/PrincetonUniversity/openpiton
http://github.com/PrincetonUniversity/DecadesCompiler
https://youtu.be/elkQcMFSvoo
https://youtu.be/YRbsjqzlTOM

