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* Counterintuitive outcome for mp with membaxr [Alglave et al. ASPLOS19] - No eager invalidation of sharers, but self-invalidate on L1 miss invalidated data is issued when that instr. is oldest load or store in
- If load-load fence does not ensure InvCache ordering, no cycle  InvCache edges model self-invalidate and complete cycle for mp program order [Sorin et al. primer]
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verification is a first step in this direction

« CCICheck uses phb graphs and exhaustive enumeration of all
possible litmus test executions to verify a microarchitecture
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Enum. Satisfaction Checking) enumeration, and intelligent pruning allow comprehensive yet
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 Inputs are parch spec. and litmus test(s) « CCICheck can handle partial incoherence, lazy coherence, and a

. 2 high-level enumeration steps: Path Enumeration & Constraint « Geomean test case execution time < 10 seconds on all architectures variety of coherence protocol transitions
Satisfaction « Subsequent research used SMT solver-based methods to run most tests « CCICheck is open-source and publicly available at
In just a few seconds! [ASPLOS 2016] github.com/ymanerka/ccicheck

* Intelligent pruning and unsatisfiable constraint detection keep runtimes
scalable




