CCICheck: Using phb Graphs to Verify the Coherence-Consistency Interface

PRINCETON

Yatin A. Manerkar, Daniel Lustig, Michael Pellauer (NVIDIA), Margaret Martonosi
UNIVERSITY

Nominated for Best Paper!

The Need for CCI Verification CCI Mismatch Example (“Peekaboo”) | [Coherence-Consistency Interface (CCI)
/ * Prefetch + Livelock Avoidance Mechanism + CCl = guarantees that coherence protocol provides to
Consistency Inv Before Use = Consistency Violation! rest of microarchitecture + memory ordering
Verifiers mp Litmus Test guarantees that rest of microarchitecture expects from
Core 0 Core 1
Assume abstract QY9N (D) St] < 1 | (i3) Ld 1l «— [y] coherence protocol
coherence Level (i2) St [y] <= 1 | (i4) Ld 12 « [x] CCl Match - Consistency Maintained!
. Under TSO: Forbid r1=1, r2=0
instead of
: +
prOtOCOI 1 USE! X: Prefetch miss; issue GetS request -

A
-

X: Downgrade to S, send [x = 0] to core 1
X: Issue GetM p—
X: Receive and note Inv, send Inv-Ack

Ha rch. (before data has arrived)
Level

X: Receive Inv-Ack, perform store x = 1

CCl Mismatch - Consistency Violation!

y. Perform storey =1

\ 4 y: Load miss; issue GetS request +
« Coherence: propagate writes to other cores A BSHIEIER DD S, SR 7 5 2 L0 CRIE
. C i t _ d i | f d / t ! blt y: Performloady = 1
OnSIS enCy' Or erlng ru eS Or r " er e VISI I I y X: Load miss; wait fpr (now_stale) data Orderings
* Independent verification of coherence and currently in transit = Not
. e . X: Receive data [x = 0]; perform load f d!
consistency leaves verification gap at CCI! X =0 Enforced:
ViCL (Value in Cache Lifetime) Microarchitectural happens-before Constraint-Based Enumeration
(uhb) graphs with VICLs . W
" * Multiple solns — po po _
 Models cache occupancy and coh. transitions . Executions modelled by phb graphs each further Fetehstage (-me>(y-->CY CONStraint:
. Formlially:da Vcllcill' S a ill-tuple l S - Node — microarchitectural event or pipeline stage enumerated proissine Q@@ Load I3
(cache_id, address, data_value, generation_id) » Edge — local happens-before relation between nodes independently Brecwestoge Q- >(Qr--> ()] requires
* Maps onto period of time (relative to a single cache) . No solns —s Memorystoe - (- (-~ source L1
over which cache line corresponding to cache_id and uhb graph for co-mp - lid . | WiitebackStage Q -->Q)| VICL with
om id b e invalid scenario
generation_id holds value data_value for address .y . Cyclic graphs —| S=® same
FetchStage ([)reeeeeee >
address. Cyclic e 8)8 Acyclic oruned (can't Completed () address
T d . | h . graphs — ExecuteStage -—-—) graphS — beCOme aCyCIIC) T e @ and data
Traditional Cache Line States for co-mp forbidden by @ 7 allowed by e s ())
ol Ser R b Sl parch || Mot Q@) parch
CE?%O —)\ M S |—) WritebackStage Q—- -->Q
Shared S\|—|/] g — V|CL Create StoreBuffer === Use Of
1.2$ _ .7 :
o / \ : — and Exp”'e Completed g' O VICL Value
_ () V) R (F)
L18 Lond 5(?;3 ﬁgjﬁ (time) madp o L1 ViCL Create oDupy by load - ! N ’ N ;
GetS Hit Hit noaes L1 ViCL Expire O’S‘\\ Transfer Of etchStage Q Q Q
J L SW edge .2 ViCL Create SourcedFrom data DecodeStage 8--->Q—--—>Q TWO Solutlons
| . ExecuteStage . _
ViCLs for co-mp, including requests and downgrades > SWMR 2 T e Q between MemoryStage Q- to constraint:
MR nvariant Sl . 4 et o
L1s /.\ QOTR e CAOX2T) E e} co-mp Litmus Test s1ll Litmus Test StoreBuffor I O I
Shared 0x29) \/ Core 0O Core 1 Thread ° Ll VlCL Of |2
L.2% (1.x,0,0) (1.x,2,1) _) : Completed
o GD) St [x] « 1 | (13) Ld 1l « [X] Eg% St 1
o (12) St [J « 2 | (4) Ld 12 ¢ [x) Tdra e || | s
Req./ Load Req./ In TSO: r1=2, r2=2 Allowed Allowed: t1=1, r2=1 L1 ViCL Expire

Partial Incoherence (GPU) Case Study | | Lazy Coherence Case Study (TSO-CC) | Peekaboo Case Study (mp Litmus Test)

(i1) merbar (i2) (i3) Hembar (i4) (il) (12) (i3) (i4) (i1) (i2) (i3) (i4)

O 0 0
FetchStage ([Yoot Fevvwweeed(C) (e ([poeeereenne FetchStage FetchStage
DDGDdDStHgD DecadeStage Dec@deStage
ExecuteStage ExecuteStage ExecuteStage
MemoryStage , _
MemoryStage MemoryStage
WritebackStage .
4 WritebackStage WritebackStage
StoreBuffer & -
StoreBuffer
Completed
Completed
L1 ViCL Create

L1 ViCL Expire L1 ViCL Create

StoreBuffer
Completed
L1 ViCL Request

L1 ViCL Create

SourcedFrom

L2 ViCL Create L1 ViCL Downgrade

L2 ViCL Expire L1 ViCL Expire

L1 ViCL Invalidate

SourcedBefore

Y InvSharers

L1 ViCL Expire O O O O

L2 ViCL Create

InvSharers

o InvSharers,NoDups L2 ViCL Expire « Peekaboo solution: ensure that coherence request for instr. that uses
* Counterintuitive outcome for mp with membaxr [Alglave et al. ASPLOS19] - No eager invalidation of sharers, but self-invalidate on L1 miss invalidated data is issued when that instr. is oldest load or store in
- If load-load fence does not ensure InvCache ordering, no cycle InvCache edges model self-invalidate and complete cycle for mp program order [Sorin et al. primer]
CCICheck Toolflow Results Conclusions
(" CCICheck parch specification i ey e SOPR G s . f « CCl verification is critical to the correct operation of large or complex
1. Instruction Paths Litmus “ . parallel systems
2. Per-Stage Orderings Test » CClICheck’s static CCl-aware microarchitectural consistency

k3- Constraints for Instr. Paths)

verification is a first step in this direction

« CCICheck uses phb graphs and exhaustive enumeration of all
possible litmus test executions to verify a microarchitecture

Pruning

Path Cohstraint (Cycle Pass/Fail S - The Value in Cache Lifetime (ViCL) abstraction, constraint-based
Enum. Satisfaction Checking) enumeration, and intelligent pruning allow comprehensive yet
« CCICheck was run on a variety of microarchitectures and coherence tractable analysis

protocols across 85 litmus tests

 Inputs are parch spec. and litmus test(s) « CCICheck can handle partial incoherence, lazy coherence, and a

. 2 high-level enumeration steps: Path Enumeration & Constraint « Geomean test case execution time < 10 seconds on all architectures variety of coherence protocol transitions
Satisfaction « Subsequent research used SMT solver-based methods to run most tests « CCICheck is open-source and publicly available at
In just a few seconds! [ASPLOS 2016] github.com/ymanerka/ccicheck

* Intelligent pruning and unsatisfiable constraint detection keep runtimes
scalable

