Solving Boolean Satisfiability with Dynamic
Hardware Configurations

Peixin Zhong, Margaret Martonosi, Pranav Ashar, and Sharad Malik

Dept. of Electrical Engineering
Princeton University

NEC CCRL, Princeton NJ USA

Abstract. Boolean satisfiability (SAT) is a core computer science prob-
lem with many important commercial applications. An NP-complete
problem, many different approaches for accelerating SAT either in hard-
ware or software have been proposed. In particular, our prior work stud-
ied mechanisms for accelerating SAT using configurable hardware to im-
plement formula-specific solver circuits. In spite of this progress, SAT
solver runtimes still show room for further improvement.

In this paper, we discuss further improvements to configurable-hard ware-
based SAT solvers. We discuss how dynamic techniques can be used to
add the new solver circuitry to the hardware during run-time. By exam-
ining the basic solver structure, we explore how it can be best designed
to support such dynamic reconfiguration techniques. These approaches
lead to several hundred times speedups for many problems. Overall, this
work offers a concrete example of how aggressively employing on-the-fly
reconfigurability can enable runtime learning processes in hardware. As
such, this work opens new opportunities for high performance computing
using dynamically reconfigurable hardware.

1 Introduction

Boolean satisfiability (SAT) is a core computer science problem with important
applications in CAD, Al and other fields. Because it is an NP-complete problem,
it can be very time-consuming to solve. The problem’s importance and compu-
tational difficulty have attracted considerable research attention, and this prior
research has included several recent attempts using configurable hardware to
accelerate SAT solvers [9, 1, 10, 11].

In earlier work, we presented a novel approach to solving the SAT problem
in which formula-specific hardware was compiled specially for each problem to
be solved [11]. Implications are computed via Boolean logic customized to the
formula at hand. Each variable in the formula was given a small state machine
that dictated when new values should be tried for this variable. Control passed
back and forth between different variables in this distributed, linearly-connected,
set of state machines.

The advantages of our formula-specific approach are that the interconnect
between clauses and variables are tightly specialized to the problem at hand.
This leads to very low I/O and memory requirements. It also allows implica-
tion processing to be much faster compared to some previous approaches. As a
result, we achieved order-of-magnitude speedups on many large SAT problems.



Our formula-specific approach, however, has two main disadvantages. First, the
FPGA compile-time is on the critical path of the problem solution. This means
that only long-running problems can garner speedups once compile-time is taken
into account. A second problem is that the global interconnect and long compile-
times make it inefficient to insert any on-the-fly changes to the SAT-solver cir-
cuit.

The second problem is particularly vexing because it precludes a key strategy
employed by current software SAT solvers such as GRASP [7]: dynamic clause
addition. In software solvers, as the problem is worked on, additional information
about the formula is distilled into extra Boolean clauses which are added into the
Boolean formula that defines the problem. These additional clauses allow one
to more efficiently prune the search space, and they led to sizable performance
improvements in the GRASP software SAT solver.

The work we describe here evaluates new designs for solving SAT in con-
figurable hardware that use novel architectures and dynamic reconfiguration to
allow us to circumvent the problems raised by our previous design. First, in-
stead of an irregular global interconnect, a regular ring-based interconnect is
used. This avoids the compile-time limitations of our prior approach. Second, by
including generalized “spare” clause hardware in the design, we can add extra
clauses as the solution progresses, which gives our approach the same advantages
as GRASP’s added clauses technique.

The remainder of this paper is structured as follows. In Section 2, we de-
scribe the SAT problem in more detail. Section 3 discusses design alternatives
for solving it in configurable hardware, and then Section 4 proposes a particu-
lar hardware mapping that we evaluate further. Section 5 gives an overview of
related work and Section 6 offers our conclusions.

2 The SAT algorithm

The Boolean satisfiability (SAT) problem is a well-known constraint satisfaction
problem with many practical applications. Given a Boolean formula, the goal is
either to find an assignment of 0-1 values to the variables so that the formula
evaluates to 1, or to establish that no such assignment exists.

The Boolean formulais typically expressed in conjunctive normal form (CNF),
also called product-of-sums form. Each sum term (clause) in the CNF is a sum
of single literals, where a literal is a variable or its negation. In order for the
entire formula to evaluate to 1, each clause must be satisfied, i.e., at least one
of its literals should be 1.

An assignment of 0-1 values to a subset of variables (called a partial as-
signment) might satisfy some clauses and leave the others undetermined. If an
undetermined clause has only one unassigned literal in it, that literal must eval-
uate to 1 in order to satisfy the clause. In such a case, the corresponding variable
is said to be implied to that value. A variable is considered free if neither as-
signed nor implied. A conflict arises if the same variable is implied to be different
values. This means that the corresponding partial assignment cannot be a part
of any valid solution.

Most current SAT solvers are based on the Davis-Putnam algorithm [3]. This
is a backtrack search algorithm. The basic algorithm begins from an empty



assignment. It proceeds by assigning a 0 or 1 value to one free variable at a
time. After each assignment, the algorithm determines the direct and transitive
implications of that assignment on other variables. If no conflict is detected
after the implication procedure, the algorithm picks the next free variable, and
repeats the procedure (forward search). Otherwise, the algorithm attempts a
new partial assignment by complementing the most-recently assigned variable
(backtrack). If this also leads to conflict, this variable is reset to the free value
and the next most-recently assigned variable is complemented. The algorithm
terminates when: (i) no free variables are available and no conflicts have been
encountered (a solution has been found), or (ii) it wants to backtrack beyond
the first variable, which means all possible assignments have been exhausted and
there is no solution to the problem.

Determining implications is crucial to pruning the search space since it allows
the algorithm to skip regions of the search space corresponding to invalid partial
assignments.

Recent software implementations of the SAT algorithm have enhanced it in
several ways while maintaining the same basic flow [6, 2, 8, 7]. The contribution
of the GRASP work [7] is notable since it applies non-chronological backtrack-
ing and dynamic clause addition to prune the search space further. Significant
improvements in run time are reported.

2.1 Conflict Analysis

Much of the performance improvement reported by GRASP comes from their
implementation of conflict analysis. When the basic Davis-Putnam algorithm
observes a conflict, it backtracks to change the partial assignment. It does not,
however, analyze which variable is the true reason for the observed conflict.
The backtrack process may complement variables irrelevant to the conflict and
repeatedly explore related dead ends. More sophisticated conflict analysis works
to identify the variable assignments that lead to the conflict. Acting as a reverse
implication procedure, conflict analysis identifies the transitive predecessors of
the implied literals leading to the conflict.
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Fig. 1. Example of implication graphs. (a) Conflict after assignment v[8]=1. (b) Con-
flict after altered assignment v[8]=0.

Consider, for example, the partial formula (91 + vs + v9)(92 + vs + U9)(71 +
Ug + v10) (U3 + s + U10)- If v1,v2 ... and vy are previously assigned to 1 and then



vg is assigned 1, the resulting implication graph is shown in Fig. 1(a). A conflict
is raised on wvig. The predecessors for the conflict are v;, vs and vg. Similarly,
when vg is changed to 0 (Fig. 1b), it generates a conflict in vg. The causes are vy,
vg and Ug. At this point, we know either value of vg will lead to a conflict. The
basic algorithm would change the value of v7 to 0 and try again. It is, however,
v1, v2 and vz that are actually responsible. Therefore, we can directly backtrack
to the most recently assigned variable causing the dual conflict, i.e. v3.

2.2 Dynamic Clause Addition

In the previous example, we showed how conflict analysis can deduce after the
fact that if v1, v2 and v3 are all 1, the formula can not be satisfied. This piece of
information is not obvious, however, when these variables are assigned. To add
such learned information into the solver’s knowledge base, we can add a new
clause (91 + U2 + 73) to the Boolean formula being solved. Adding this clause to
the formula allows the solver to detect this conflict earlier and avoid exploring
the same space in the future.

Conflict analysis and clause addition are relative easy to implement in soft-
ware. When a new value is implied, it is added to a data structure summarizing
the implication graph. When a conflict occurs, traversing the graph backwards
identifies predecessors of the conflict. In the next section, we will show this can
also be implemented in configurable hardware.

3 Design Alternatives

In designing configurable hardware to solve SAT, a number of design issues arise.
Overall, the key is determining what functions are implemented on hardware and
how they are implemented. Design decisions should be made on these questions:

How do we choose which variable to assign next?

— How are logical implications computed?

— How are new implications sent to other units?

How do we detect conflicts and backtrack?

What further mechanisms do we harness for pruning the search space?

Our previous design compiles the problem formula and the solver into one
custom circuit [11]. Covering the above design decisions, we note that this ap-
proach uses a statically-determined variable ordering based on how frequently
each variable appears in the formula. The clauses are translated into logic gates
to generate implications. All clauses are evaluated in parallel. Implications are
communicated using hardwired connections. There is no analysis when a conflict
is raised, and backtracking simply reverses the order of variable assignment.

Because so much of the formula is hardwired into the design, its run-time
flexibility is limited. Here we discuss different alternatives for making dynamic
modifications in SAT solver circuits. We identify the ability to dynamically add
new clauses as the major objective in our new design. We have evaluated the
following alternatives.



3.1 Supporting Dynamic Changes through Configuration Overlays

One way to achieve dynamic hardware modification is by implementing multiple
configurations of each FPGA as overlays. An initial circuit is generated according
to some static strategy. As this solver runs, new information is obtained and a
better circuit can be designed and compiled. When the new circuit is available,
the problem is then switched to run using it. This approach is very general for
applications involving run-time hardware learning, and can clearly be applied to
SAT clause addition. By adding conflict analysis to the hardware, it can direct
new clauses to be added, and initiate new compiles of the improved designs.
These compiles occur in parallel with further solutions using the current design.

This approach is particularly attractive with a system with multiple con-
figuration capabilities and the ability to switch quickly between them. Extra
memory can be used as configuration cache. While the solver is running, the
cache is updated with a new design, and then we can quickly switch to the
updated configurations. There are several drawbacks however. First, few com-
mercial products currently support multiple configuration contexts, and those
that do will inevitably pay a price in decreased logic density. This approach also
requires very fast FPGA compilation; if the compilation is too slow, the newer
circuit may be of little value by the time it is actually compiled.

3.2 Supporting Dynamic Changes through Partial Reconfiguration

Because of the difficulties inherent in approaches relying on configuration over-
lays, we chose to explore alternative techniques in which we redesign our base
circuit to make it more amenable to partial configuration. In essence, we want
to be able to modify only a small portion of the circuit and achieve the same
performance goal as with full overlays.

Focusing on dynamic clause addition, we note that it would be natural to
design each clause as a module. In this way, when a new clause is generated, a
new module is simply added to the circuit. In our current design, this is difficult
because we have implemented a variable-oriented, rather than clause-oriented,
design. Section 4 discusses a mechanism for using partial reconfiguration by
leaving “spare” clause templates in the solver and then customizing them into
a specific added clause during runtime. A key aspect of using partial reconfigu-
ration is implementing communication using a regular communication network;
this ensures that no random global routing will be needed when a new clause is
added.

4 Configurable Hardware Mapping

This section describes a hardware organization based on the partial reconfigu-
ration approach from the previous section and evaluates a SAT solver algorithm
based on it. We envision this hardware being implemented on an array of FPGA
chips, because one FPGA does not provide the capacity necessary for interesting
(i.e., large) SAT problems.
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Fig. 2. Global topology of the SAT solver circuit

4.1 Hardware organization

Global topology: The circuit topology is based on a regular ring structure
as shown in Fig. 2. The ring is a pipelined communication network and the
processing elements (PEs) are distributed along the ring. Each PE contains
multiple modules with each module representing a clause. This regular, modular
design allows for the easy addition of clauses during runtime. There is also a
main control unit to maintain multiple control functions.

The communication network is used to send the updated variables to other
units. Previously, we used direct wire connection between different variables.
This direct approach has better performance for implication passing, but lacks
the modularity needed to allow dynamic circuit changes.

The bus is 40 bits wide, so the FPGA chip will use 40 I/O pins for the
incoming ring signals and another 40 pins for the output to the next FPGA. The
bus consists of 32 data wires and 8 control bits. Signals are pipelined through
a series of D-flipflops. All the variable data bits pass through the bus in a fixed
order, with a synchronizing signal at the beginning.

In our design, the variable values are all rotating on the bus. Since each
variable requires two bits (‘00’ denotes unassigned, ‘10’ denotes a 1, and ‘01’
denotes a zero) each stage can contain 16 variables.

Main control: The main control maintains the global state and monitors
the ring for value changes and conflicts. When a variable changes from unassigned
to either 1 or 0, the ordering of such changes must be recorded so that we know
in what order to backtrack. These orderings are encoded in memory at the main
control module. The main control also checks for conflicts by simply monitoring
the ring for the '11’ variable value that indicates a contradiction.

Implication Processing: Fig. 3 shown the connection between the bus
and functional modules. Between each pipeline flipflop, there are only two levels
of logic gates; this allows us to achieve a high clock rate.

Processing implications is generally compute-intensive, but as with our pre-
vious approach we employ large amounts of fine-grained parallelism. For each
clause in the formula, we implement a module called a clause cell. The clause cell
has a local counter to track which variables are currently on the bus. Each clause
cell monitors the values of variables relevant to it, and uses them to determine
when implications are needed. For an n-literal clause, if n-1 literals are set to
0, the other literal should be implied to be true, and this implied value is then
propagated around the ring.

Conflict analysis: Since conflict analysis is the inverse of implication, it
is natural to merge this function into each clause cell. When a new clause is
generated, the cell stores its implication. In conflict analysis mode (initiated by
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Fig. 3. One stage of the processing element

the main control), when the implied literal appears on the bus, it resets this
variable and puts the predecessors on the bus.

4.2 Hardware SAT Algorithm

This hardware implements a SAT algorithm similar to software approaches. The
major difference is that it tries to execute operations in parallel whenever pos-
sible. Since each clause is implemented as a separate cell in hardware, many
clauses can be evaluated in parallel.

init

fail \ succeed

no coflict

conflict

Fig. 4. Basic state diagram of the SAT solver

The basic flow diagram of the SAT solver is shown in Fig. 4. It includes four
major states: Branch, Imply, Analysis and Backtrack.

Branch: After initialization (and whenever a partial assignment has suc-
cessfully avoided a conflict), the circuit is in the branch state. The decision of



which variable to assign (i.e., branch on) next, is determined by the main con-
trol. In the simple approach we simulate here, the variable ordering is statically
determined, but more elaborate dynamic techniques are the subject of future
research. It then proceeds to the Imply state. If no more free variables exist, a
solution has been found.

Imply: This state is used to compute the logical implications of the assign-
ment. The clause cells check the values and generate implications when necessary.
The main control monitors the value changes. When implications have settled, it
will proceed to branch on a new variable. It also monitors conflicts in variables,
and initiates conflict analysis when needed.

Analysis: To indicate conflict analysis mode, both bits of the conflicted
variable are set to 1, and all other data bits are set to 0. When the clause cells
detect this mode, they generate predecessors for variables with an implied value.
When this process settles, only the assigned variables responsible for the conflict
will have a value on the bus. This list may be used by the main control to
determine when to generate a new conflict clause cell. In our work, a new clause
is generated only when both assignments for a variable end with a conflict. The
backtrack destination is chosen to be the most recently-assigned variable of the
ones responsible for the conflict. If there is no variable to backtrack to, there is
no solution to the formula because the observed conflict cannot be resolved.

Backtrack: After conflict analysis, during backtrack, the bus is reset back
to the variable values to allow further implication. Variables assigned before the
backtrack point take on those values. Variables after the backtrack point are
reset to free. When this is done, implications are tried again.

4.3 Performance results

New Design:|New Design:
Problem FCCM98 No added Added
name design clauses clauses
aim-50-1_6-no-1 37806 93396 1552
aim-50-2_0-no-1 2418518 9763745 19749
aim-50-2_0-no-4 204314 294182 3643
aim-100-1_6-yes1-1{| 3069595 2985176 14100
aim-100-3_4-yesl-4 108914 775641 205845
hole6 32419 129804 129804
jnh16 84909 778697 513495
par8-1-c 176 700 700
ssa0432-003 194344 5955665 1905633

Table 1. Configurable SAT solver run-time in cycles

In order to evaluate the performance of this design, we built a C++ simula-
tor and used DIMACS SAT problems as input [4]. Table 1 shows the number of
hardware cycles needed to solve the problems. The first column of data shows



the cycle counts for the FCCM98 formula-specific approach. The next column
shows performance data for the newer design discussed here. This column in-
cludes conflict analysis and non-chronological backtracking, but does not include
dynamic clause addition. The following column of data is the new design with
the dynamic clause addition.

Although the run-time is expressed in number of cycles in each case, the
actual cycle time is very different between the FCCM98 design and the cur-
rent one. In the old design, long wires between implication units made routing
difficult, and typical user clock rates were several hundred KHz to 2 MHz. In
the newer design, the communication is pipelined and the routing is shorter and
more regular. Initial estimates are that the clock rate should be at least 20 MHz.
Therefore, speedups occur whenever the new design requires 10X or fewer cycles
compared to the old design.

From the results, we can see the new design without clause addition has a
speedup of about 1x to 10x. Speedups occur in this case due to (1) the improved
clock rate and (2) the improved conflict analysis which leads to more direct
backtracking.

Implementing dynamic clause addition offers benefits that vary with the char-
acteristics of the problems. For some problems, there is marginal or no benefit.
For the aim problems, the speed-up ration ranges from less than 4 times to
about 500 times. The performance gain is especially significant in the unsatisfi-
able problems. In these cases, the dynamically-added clauses significantly prune
the search space allowing the circuit to rule the problem unsatisfiable much
earlier.

5 Related Work

Prior work includes several proposals for solving SAT using reconfigurable hard-
ware [9, 1]. Suyama et al. [9] have proposed their own SAT algorithm distinct
from the Davis-Putnam approach. Their algorithm is characterized by the fact
that at any point, a full (not partial) variable assignment is evaluated. While the
authors propose heuristics to prune the search space, they admit that the number
of states visited in their approach can be 8x larger than the basic Davis-Putnam
approach.

The work by Abramovici and Saab also proposed a configurable hardware
SAT solver [1]. Their approach basically amounts to an implementation of a
PODEM-based [5] algorithm in reconfigurable hardware. PODEM is typically
used to solve test generation problems. Unlike PODEM, which relies on control-
ling and observing primary inputs and outputs, Davis-Putnam’s efficient data
structures also capture relationships between internal variables in a circuit; this
reduces the state space visited and the run time significantly [6, 2, 7].

In prior work, we designed a SAT solver based on the basic Davis-Putnam
algorithm, and implemented it on an IKOS Virtualogic Emulator This work was
the first to publish results based on an actual implementation in programmable
logic. We also designed an improved algorithm that uses a modified version
of non-chronological backtracking to prune the search space [10]. This method
indirectly identifies predecessors for a conflict, but is not as efficient as the direct



conflict analysis we evaluate here. Finally, none of the prior configurable SAT
solvers have employed dynamic clause addition.

Most importantly, all the prior projects involve generating formula-specific
solver circuits. In these approaches, the compilation overhead can not be amor-
tized among many runs. While they may have benefits on some long-running
problems, the approach we describe here is much amenable to direct module
generation and avoids much of the compiler overhead of prior work. We hope
the work on fast module generation and the modular design methodology may
lead to wider application of these input-specific hardware approaches.

6 Conclusions

This paper has described a new approach that takes advantage of dynamic recon-
figuration for accelerating Boolean satisfiability solvers in configurable hardware.
The design we evaluate is highly modular and very amenable to direct module
generation. One of the key improvements of this design is its ability to dynami-
cally add clauses. Overall, the approach has potential speedups up to 500X ver-
sus our previous configurable approach without dynamic reconfiguration. More
broadly, this hardware design demonstrates the application of machine learning
techniques using dynamically reconfigurable hardware.
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