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Abstract

This paper describes and evaluates methods for
implementing formula-specific Boolean satisfiability
(SAT) solver circuits in configurable hardware. Start-
ing from a general template design, our approach auto-
matically generates VHDL for a circuit that is specific
to the particular Boolean formula being solved. Such
an approach tightly customizes the circuit to e par-
ticular problem instance. Thus, it represents an ideal
use for dynamically-reconfigurable hardware, since it
would be impractical to fabricate an ASIC for each
Boolean formula being solved. Our approach also takes
advantage of direct gate mappings and large degrees
of fine-grained parallelism in the algorithm’s Boolean
logic evaluations.

We compile our designs to two hardware targets:
an IKOS logic emulation system, and Digital SRC’s
Pamette configurable computing board. Performance
evaluations on the DIMACS SAT benchmark suite in-
dicate that our approach offers speedups from 17X to
more than a thousand times. Overall, this SAT solver
demonstrates promising performance speedups on an
important and complex problem with extensive appli-
cations in the CAD and AI communities.

1 Introduction

For many problems, computing machines based on
configurable hardware can provide significant perfor-
mance improvement compared to conventional micro-
processors. However, almost all of the prior work in
this area targets relatively simple kernel algorithms or
accelerates small segments of code. With the increase
of FPGA logic capacity and availability of hardware
systems with large number of FPGAs, it is now possi-
ble to map much more complicated problems to con-
figurable hardware.

This paper presents our application of configurable

computing to Boolean satisfiability (SAT). This is a
core computer science problem which has important
applications in CAD, AI and other computing sub-
fields. Since SAT is an NP-complete problem, SAT
solvers involve complicated control logic and time-
consuming computation. Our approach takes advan-
tage of FPGAs both for their configurability and their
high logic capacity, to realize SAT solvers with mas-
sive, fine-grained parallelism.

We use the SAT problem as a case study to demon-
strate a methodology to map complicated problems
to configurable computing. Our configurable com-
puting approach for SAT-solving can offer substantial
speedups over traditional software approaches. Start-
ing from a general, template design, we specialize the
accelerator design to the particular SAT formula being
solved. This allows us to even more tightly match the
configurable hardware to the specific problem instance
being solved. In our approach, the encapsulating con-
trol software creates a hardware description language
(HDL) file automatically from the input formula and
the template design. The file is then compiled to an
hardware implementation. That resulting hardware
will be used to solve the particular problem. Note
that this formula-specific approach is only possible on
reconfigurable hardware, since it would be impractical
to fabricate an ASIC for each Boolean formula being
considered.

Our project has led to a number of observations
regarding FPGA-based accelerators for CAD prob-
lems and for applications in general. Most impor-
tantly, while many configurable computing applica-
tions currently implemented have been fairly simple
data-centric systolic designs, our design helps demon-
strate the potential for complex control structures. We
have implemented a full tree search algorithm, with
complex backtracking techniques. This implementa-
tion highlights configurable computing’s potential for
impact on a much broader set of applications than are
often considered.



To demonstrate our design concretely, we com-
pile problems for execution on an IKOS logic em-
ulator [10] and Digital’s Pamette board [13]. The
IKOS system, with its large capacity and efficient
partitioning, is particularly helpful in allowing us to
compile very large, “real-life” problems. With these
widely-available systems, our approach yields signifi-
cant speedups (from 17X up to more than one thou-
sand times) against the software-only solutions run-
ning on general-purpose workstations. Since we use a
formula-specific approach, hardware compilation time
must also be a consideration; when compile time is
also taken into account, we still achieve speedups of
8X or more on difficult problems. It is crucial to note
that many current SAT problems can take days to
run in software; even with disappointing place-and-
route times for current configurable hardware, our ap-
proach holds great promise. Furthermore, our regular,
template-based design will be easily routable as faster
place-and-route techniques become more common.

The remainder of this paper is structured as fol-
lows. Section 2 describes the SAT problem and its
basic algorithm. Section 3 explains our methodology
for mapping the problem to configurable hardware.
Section 4 briefly discusses the hardware platforms we
are using. In Section 5, we talk about the setup and
the results of our experiments, including performance
comparison and hardware usage. Section 6 discusses
related work. Sections 7 offers discussion on config-
urable hardware and our future work. Finally, Section
8 gives conclusions.

2 The SAT Problem
2.1 Motivation

Increasing density in programmable logic opens up
exciting opportunities for hardware acceleration for
CAD problems. As feature sizes shrink even further,
1M gate FPGAs will be feasible by roughly the year
2001 [12]. With programmability and high integration
densities, we can create input-specific programmable
solutions with previously-infeasible complexities. Our
choice of SAT as a case study here was guided by two
main factors:

e It is a search intensive application, as opposed to
applications that compute intensively on a uni-
form data stream. Prior usage of configurable
computing has often focused on the latter; the
programmable logic frequently consists of a sys-
tolic array style or very deep pipeline data paths.

Our new case study offers insight into how config-
urable computing can be best used for algorithms
with complex control.

e The SAT solver uses a significant amount of
bit-level operations. This aspect directly ex-
ploits the bit-level logic parallelism offered by pro-
grammable logic and thus holds great promise for
computational acceleration and efficient hardware
usage.

2.2 Problem Overview

The Boolean satisfiability (SAT) problem is a well-
known subset of constraint-satisfaction problems. It is
one of the basic NP-complete problems. It has many
applications in computer-aided design of integrated
circuits, such as test generation, logic verification and
timing analysis. Given a Boolean formula, the objec-
tive is either to find an assignment of 0-1 values to the
variables so that the formula evaluates to true, or to
establish that such an assignment does not exist.

The Boolean formula is typically expressed in con-
junctive normal form (CNF), also called product-of-
sums form. Each sum term (clause) in the CNF is a
sum of single literals, where a literal is a variable or
its negation. An n-clause is a clause with n literals.
For example, (v; + 7; 4+ vg) is a 3-clause. In order for
the entire formula to evaluate to 1 each clause must
be satisfied, i.e., evaluate to 1.

An assignment of 0-1 values to a subset of vari-
ables (called a partial assignment) might satisfy some
clauses and leave the others undetermined. For exam-
ple, an assignment of v; = 1 would satisfy (v;+;4vg),
while v; = 0 leaves the clause undetermined. If an un-
determined clause has only one unassigned literal in it,
that literal must evaluate to 1 in order to satisfy the
clause. In such a case, the corresponding variable is
said to be implied to that value. For example, in the
above clause, the partial assignment v; = 0,v; = 0
implies v; must be 0. A variable that is not assigned
or implied is considered free. A conflict or contradic-
tion arises if the value implied to a variable is different
from the value previously implied or assigned to that
variable. Detection of a conflict implies that the cor-
responding partial assignment cannot be a part of any
valid solution.

Most current software SAT solvers are based on the
Davis-Putnam algorithm [5] illustrated in Figure 1.
This is a backtracking search algorithm. The basic al-
gorithm begins from an empty partial assignment. It
proceeds by assigning a 0 or 1 value to one free vari-
able at a time. After each assignment, the algorithm



determines the direct and transitive implications of
that assignment on other variables. If no contradic-
tion is detected during the implication procedure, the
algorithm picks the next free variable, and repeats
the procedure. Otherwise, the algorithm attempts a
new partial assignment by complementing the most re-
cently assigned variable for which only one value has
been tried so far. This step is called backtracking.
The algorithm terminates when: (i) no free variables
are available and no contradictions have been encoun-
tered, or (ii) all possible assignments have been ex-
hausted. Case (i) indicates a solution has been found.
Case (ii) indicates that no solution exists for this for-
mula.

Inizialize all variables to "free" value
do
Compute implications and check contradiction;

if (contradiction)
if (active_variable->assigned_value == 1)
active_variable->assigned_value = 0;

1se
backtrack();
endif
else
active_variable = next_free_variable();
active_variable->assigned_value=1;
endif
} while ()

Figure 1: Pseudo-code for basic search algorithm.

Determining implications is crucial to pruning the
search space since (1) it allows the algorithm to skip
entire regions of the search space corresponding to con-
tradictory partial assignments, and (2) every implied
variable corresponds to one less free variable on which
search must be performed. Unfortunately, detecting
implications in software is very slow since each clause
containing the newly assigned or implied variable is
scanned and updated sequentially, with the process
repeated until no new implications are detected.

Thus, configurable hardware’s speedup potential in
the SAT algorithm stems from the fact that the im-
plication procedure central to the algorithm is both
(1) highly parallelizable and (ii) easily mapped to ba-
sic logic gates. Our entire hardware architecture is
designed to take advantage of this parallelism. Sec-
tion 3 details our mapping of the Davis-Putnam al-
gorithm onto reconfigurable hardware in a formula-
specific manner.

Recent software implementations of the Davis-
Putnam algorithm have enhanced it in various ways [4,
11, 14, 15] while maintaining the same basic flow.
These enhancements may significantly improve the
performance. We have had preliminary success on im-

plementing some of these improvements [18]. Due to
space limitations, this paper will concentrate on the
methodology of configurable computing solutions for
SAT problem and we will only explain the implemen-
tation of the basic algorithm in detail.

3 Hardware Mapping of Backtracking
Search Algorithm of SAT

3.1 Hardware Organization

Analogous to software, our hardware implementa-
tion of the Davis-Putnam algorithm has two parts: (i)
the implication circuit, and (ii) state machines to man-
age the backtracking search. Given a SAT formula,
both hardware modules are generated automatically.

The speedup over software arises from our imple-
mentation of the implication circuit. Unlike soft-
ware, this circuit finds all direct implications of newly-
assigned or all newly-implied variables in a single clock
cycle. Consequently, all transitive implications of a
new variable assignment can be determined in a small
fraction of the clock cycles required by software.
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Figure 2: Circuit for implication processing and con-
flict detection.

3.1.1 The Implication Circuit

Figure 2 shows the details of a portion of the implica-
tion circuit. The state of each variable in the circuit
is encoded into two bits by the values of its literals,
(v, 7). If it has the value (1,0) or (0, 1), the variable
v is understood to have the value 1 or 0, respectively.
For the state (0,0), the variable v has no value as-
signed or implied; it is free. Finally, if (v,7) takes the
value (1, 1), we have a contradiction since the variable
v cannot take both the values 1 and 0 simultaneously.



The role of the implication circuit is to determine
the implied value of each literal and detect the con-
tradiction from an assignment. A literal evaluates to
1 if it is either implied to 1 or assigned to 1. Conse-
quently, its complement will be 0. In the circuit, the
value of each literal is, therefore, the Boolean OR of
its implied and assigned values. A contradiction arises
when both literals of any variable become 1. A global
contradiction is the sum of all the local contradictions.

In order to determine the implied value of a literal,
the circuit must encapsulate the relationships between
variables arising from the clauses in the CNF formula.
For example, given the clauses (¢ + a)(d + a)(b+c +
a)(e + @)(c + @), we can conclude that if ¢ = 1, or
ifd =1,o0rif b =1 and ¢ = 0, @ must take on the
value 1, t.e., a is implied to 1. Similarly, if e = 0 or
¢ =0, a is implied to 0. Our encoding allows efficient
implementation of implications. In this example, the
equation for the implied value of literal a would be
@imp = ¢+ d+ b, as shown in Figure 2. Similarly, the
equation for the literal a would be @;mp, = €+ ¢C.

Even the small example above has a loop in the
implication dependencies, since the values of literals @
and ¢ are dependent on each other. It will not cause os-
cillation because no inverter exists in the circuit. How-
ever, we felt this might complicate the timing analysis
because the path length can not be determined.

To avoid these problems, we propose a circuit in
which each literal is latched by a clocked D flip-flop.
During each clock cycle, the circuit determines in par-
allel the direct implications of all the variables that
were assigned or implied in the previous cycle. The
procedure completes when no new implication appears
during a clock cycle. New implications are detected
by taking the difference of the input and output of
the D flip-flop for each literal. This parallel impli-
cation is much faster than in software. Profiling one
typical problem (aim-100-6_0-yesl-1) showed an aver-
age of about 42 clauses are evaluated in one hardware
clock cycle.

3.1.2 Global Circuit Topology and the Back-
track State Machine

In addition to the implication processing, there should
be a control unit to maintain the backtrack search.
Though it is easy to design a centralized control unit
on paper, the large number of variables (more than
one hundred for interesting problems) means that such
a unit may be difficult to implement on configurable
hardware. We instead have designed a novel dis-
tributed control system for this application.

Two important features of our overall circuit orga-
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Figure 3: Global circuit topology

nization are that (i) a separate state machine is imple-
mented for each variable, and (ii) the state machines
are connected with nearest neighbors in a linear ar-
ray. The order of the variables is determined a priori.
Our circuit topology takes the form shown in Figure 3.
Each box in the figure contains the literal computation
circuit and the state machine for each variable. This
distributed topology keeps global signals to a mini-
mum and reduces hardware costs. At any instant, only
one state machine is in control. Once that state ma-
chine has finished processing, it asserts E,, to transfer
control to the state machine on the right (if searching
forward ) or it asserts E,; to pass control to the left (if
backtracking). Each state machine is aware of whether
its variable has been assigned, implied or is free.

The state machine for a single variable is shown
in Figure 4. The five states in the state machine are
encoded by three bits. Two bits correspond to the val-
ues of the positive and negative literals of its variable.
The third bit indicates whether this particular state
machine is active. The inputs to each state machine
are the Enable signals from its left and right neigh-
bors, and the global contradiction (GContra), change
(GChange) and clear (GClear) signals. State machine
outputs are the enable signals, E,; and E,, that pass
control to the left or right as described below.

Forward Computation:  After initialization, all
the state machines are in the init state. When a
state machine receives an enable signal, the current
literal values and the enable’s direction are used to
determine whether to assert a new value, and which
new value to assert. If control is transferred from the
left and the variable’s value is currently free (i.e., it is
in the init state and no value is implied), then it as-
serts the value 1 (to active 1) and determines all the
transitive implications of that assignment. While im-
plications are still settling (i.e., GChange is asserted)
and there is no contradiction, we wait by repeatedly
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Figure 4: State diagram for state machine of one vari-

able.

transitioning to the same state. If contradiction sig-
nal is raised, it will try the value 0 instead (active
0) and repeat the implication step. If the implication
settles without contradiction, it transfers control to
the state machine on its right, and it transitions to
the passive 1 state. From active 0, if a contradic-
tion is detected, it will backtrack. Its state is reset
to init and the control is passed to the left. On the
other hand, if implications settle without a contradic-
tion, then it moves from active 0 to passive 0 and
passes the control to the right for forward search.

If, as above, control is transferred to a state ma-
chine from the left, but its variable’s value has already
been implied by a previous assignment, then it merely
passes control to the state machine on its right on the
next clock cycle and remains in the init state. Its
value will be maintained by the implication.

Backtracking: If control is transferred to a state
machine from the right, then computation is back-
tracking due to a contradiction, and the goal is to
try to find a new assignment that avoids the contra-
diction. In this scenario, there are three possible re-
sponses, again depending on the current local variable
values. First, if the variable has been implied by some
previous assignment, it is in the init state now. It
simply passes control to the variable on its left.

Second, if the variable currently has the assigned
value 1 (i.e., it is in the passive 1 state), then it
instead assigns the value 0 to it (moving to active 0),
and determines the implications of that assignment. If
no contradiction is found, then the conflict has been
cleared, and computation can once again progress by
having this state machine transfer control to its right.
If, however, a contradiction is again found, then it is
reset to init and transfers control left.

The third possible scenario is that this variable al-
ready has the assigned value 0. This indicates that we

have already tried both possible values for this vari-
able; in this case, it resets to init and backtracks
further by transferring control to the left.

Finding a Solution: A solution has been found
when the rightmost state machine further attempts
to pass control to the right. On the other hand, if
the leftmost state machine attempts to backtrack by
further passing control to the left, then this indicates

that no solution to the problem exists.

4 Implementation Platform

We use Digital’s Pamette board [13] and the IKOS
VirtualLogic Emulator [10] to implement our SAT al-
gorithm on configurable hardware.

4.1 Pamette

The Pamette board is a scaled down version of
PAM [17]. It has a PCI interface and four Xilinx
XC4010E FPGAs available for user-defined functions.
It comes with a set of tools for interface and control,
and accepts VHDL designs. The tools do not perform
automatic partitioning, however, so the design must
be partitioned by the user if the problems do not fit
on one FPGA chip. Xilinx tools are used to place
and route the individual FPGAs. We have success-
fully mapped small SAT problems to a single FPGA
of the Pamette board. However the capacity is too
low to implement really interesting problems.

4.2 IKOS Emulator

We use the IKOS VirtualLogic SLI Emulator
(Fig. 5) [10] to implement our SAT solver for larger
problems where significant speedups are possible. The
emulator consists of one system control board and 1 to
6 FPGA array boards. We have used 1 FPGA board
for our work. Each FPGA board has an array of 64
Xilinx XC4013E FPGA chips. Time multiplexing us-
ing the Virtual Wires technique [3] can overcome the
pin limitations of the interconnect between chips. The
FPGAs run at an internal clock of 20MHz. Since the
interconnect is multiplexed between several signals, it
can take multiple cycles to transfer the signal between
chips. Thus the emulated clock rate is 20MHz divided
by number of internal clock cycles needs for each em-
ulated cycle. The system board connects with a host
workstation for downloading configuration and control
functions.



Figure 5: Photograph of IKOS Virtualogic SLI logic emulator.

The system accepts structural Verilog as design in-
put. The VirtualLogic compiler performs resynthe-
sis and partitioning. It automatically adds the neces-
sary logic for the interconnect multiplexing. Following
place-and-route by Xilinx tools, the generated config-
uration can be downloaded to the emulator system.
Each node in the circuit can be monitored by a logic
analyzer when the emulator is running.

5 Experimental Results

5.1 Experimental Setup

To implement the SAT solving algorithm in config-
urable hardware, we first need to translate from the
Boolean formula to a hardware description. The hard-
ware is essentially a large number of state machines,
one per variable, implication logic, and the global sig-
nals. Naturally, we use a hardware description lan-
guage (HDL) to represent the circuit for easy porta-
bility. Since we are generating the HDL file on the
per-SAT-formula basis, we have written a C program
to translate from a SAT formula to a VHDL descrip-
tion of the projected hardware to solve the problem.
This process takes a few seconds.

The VHDL can be simulated using a software sim-
ulator. Since the simulation is very slow, we have only
used the VHDL simulator on relatively small problems
to verify the correctness of the design. We have writ-
ten a faster custom simulator, in C, especially for SAT

problems. It takes the original SAT CNF formula and
runs the same algorithm as the hardware. The pro-
gram provides the actual solution after the relatively
fast simulation and the correct cycle count as if it is
running on hardware. The total running time can be
obtained by multiplying the cycle count by the clock
cycle time determined by the designer (Pamette) or
the compiler (IKOS). The VHDL file can be subse-
quently mapped to a hardware platform. We have
mapped them to both Pamette board and IKOS em-
ulator.

We are mainly targeting difficult SAT problems,
since these will have very long runtimes (hours or
days). As discussed in section 5.3, solvers for such
problems normally do not fit on on a single chip. The
IKOS logic emulator has much higher logic capacity
than Pamette, and its compiler eases the partitioning
process. For these reasons, our remaining experimen-
tal results will concentrate on the IKOS emulator.

5.2 Performance Results

In this section we compare the performance of our
hardware implementation of the basic Davis-Putnam
SAT algorithm to its implementation in GRASP [14].
We use benchmark problems from the DIMACS SAT
challenge suite [6]. As discussed earlier, our hardware
implementation currently requires that the order in
which the search algorithm considers variables be cho-
sen statically prior to the hardware compilation. The
heuristic we use here places variables earlier in the



Problem Software Emulator | Emulator | Speedup
name Runtime | Clock Rate | Runtime ratio
aim-100-6_0-yes1-1 0.57 1.67 MHz 0.0050 114
aim-200-6_0-yes1-1 128.63 0.95 MHz 1.24 104
dubois20 986.44 2.22 MHz 56.9 17.3
holel0 28859 1.82 MHz 565 51
ii8a2 117470 1.33 MHz 102 1152
ii32c1 0.01 0.77 MHz 0.00036 27.8
jnh1 0.37 0.87 MHz 0.0036 103
par8-1-c 0.02 2.00 MHz 0.00009 222
parl6-1-c 202.41 1.00 MHz 1.336 152
pret60_25 695.75 2.50 MHz 14.7 44.9
ssa0432-003 5.2 1.11 MHz 0.19 27.4

Table 1: Configurable SAT solver performance on a collection of DIMACS SAT problems.

search if they have more appearances in the formula.

Table 1 shows the performance comparison and the
hardware clock rate on a collection of benchmark prob-
lems. Since these problems have been compiled for the
IKOS system using a Virtual Wires approach, the em-
ulation clock rates differ for each problem depending
on how many signals are multiplexed on the pins in
each case. The clock rate tends to be slower for larger,
more complex problems. In general, clock rates range
from several hundred KHz to a few MHz, much slower
than the several hundred MHz of a typical micropro-
cessor. On the other hand, our approach can process
up to several hundred clauses in each cycle.

Because of the extensive parallelism in our design,
our configurable SAT-solvers are 17X to more than one
thousand times faster than a general purpose worksta-
tion (e.g. a Sun 5 with 64MB of RAM and a 110MHz
processor). This is achieved by exploiting massive,
fine-grain parallelism and by calculating an entire level
of implications in a single cycle rather than the many
instructions required in the software approach.

With faster FPGAs of higher capacity, more I/O
and routing resources, and with better placement and
routing, it is very reasonable to expect emulation clock
rates of 10 to 20MHz on future platforms.

5.3 Hardware Resources

Since we are mapping each input formula to the
hardware, the hardware usage depends on the size and
complexity of the input formula. Our template-based
design for SAT-solving requires no memory, nor any
other input data before or during problem solution.
Instead, the full problem is embedded into the FPGA
array.

Table 2 shows the hardware cost (i.e. total gate
equivalents plus flip-flop usage) reported by the IKOS
compiler when mapping to the IKOS emulator. The
total cost is the summation of the hardware cost of
each FPGA chip used to solve the problem. With
our current compilation setup, the upper cost limit
for each XC4013E chip is 5000. Therefore the upper
limit for total hardware cost on a board with 64 chips
is 320000. All the problems shown in the table can
fit on one board. Among the 240 problems in the
DIMACS suite, roughly 170 can currently be mapped
to one or two boards. The chips used in our emulator
are at the lower end of the current Xilinx product line.
Therefore it is reasonable to expect a 10-20X capacity
increase in the near future. With this scaling, almost
all of the benchmark problems would fit in a system
with e.g., less then ten boards.

5.4 Compilation issues

Depending on the problem characteristics, the con-
figurable computing implementation can clearly offer
significant speedups over a software SAT solver. In
order for the acceleration to be useful, however, it
must offer performance advantages even after hard-
ware compilation time and configuration time are con-
sidered. For this reason, we envision that the con-
figurable hardware techniques will mainly be used on
SAT problems with very long software runtimes (hours
or more).

We use holel0, one of the DIMACS benchmarks,
to illustrate the impact of compilation time on perfor-
mance. (Its compile-time is similar to the other prob-
lems we have considered.) GRASP took more than

eight hours of CPU time to solve this problem. Our



Problem number of | number of Total
name variables clauses Cost
aim-100-6_0-yes1-1 100 600 33467
aim-200-6_0-yes1-1 200 1200 | 100453
dubois20 60 160 10398
holel0 110 561 21872
ii8a2 180 800 37959
i132c1 225 1280 | 128064
jnhi 100 850 | 102663
par8-1-c 64 254 12220
parl6-1-c 317 1264 80215
pret60_25 60 160 10673
ssa0432-003 435 1027 | 103709

Table 2: Hardware cost for a collection of DIMACS SAT problems.

configurable SAT solver completes this problem in 566
seconds. This leads to the 51X speedup ratio shown in
Table 1. However, the compilation time should also be
included. Using the same Sun workstation, the Virtu-
alWires compilation takes 503.7 seconds and uses ten
FPGA chips. The FPGA placement and routing for
these 10 chips can be sent to multiple workstations.
The place-and-route time is limited by the most diffi-
cult chip, which took 2400 seconds in this case. Load-
ing the configuration to hardware take a few seconds.
Thus, total solution time including both compilation
and running is about 3470 seconds. With this adjust-
ment, the speedup ratio is still a very significant 8.3X.

This experiment shows that SAT problems requir-
ing more than a few hours of runtime with a software
approach like GRASP will benefit from the applica-
tion of configurable hardware, even when compilation
time is taken into account. There are more than forty
problems taking more than three hours to solve in the
suite of 240 problems and there are many real world
problems that may need too much computation for
conventional approaches.

Current FPGA place-and-route software is more
optimized to space utilization, rather than compila-
tion speed. As faster place-and-route software is de-
veloped, the range of problems our SAT-solver accel-
erates will increase.

As an example of faster FPGA compilation on the
horizon, consider the work by Gehring and Ludwig [7].
Their FPGA compiler achieves 10 to 100X speedup
compared to Xilinx tools. In their case, the speed gain
is mainly achieved by preserving the circuit’s hierar-
chical information. Placement with arrays is simplified
and routing for identical elements can be duplicated.
Our SAT implementation also has these properties, so

it will be an excellent candidate for speedup with these
faster place-and-route tools. If the FPGA compilation
time can be reduced from roughly one hour to a few
minutes, there will be many problems, both SAT and
otherwise, that can benefit from the input-specific so-
lution using configurable hardware. We are also look-
ing at rapid placement and routing algorithms that
can trade spatial efficiency for compilation speed. Ba-
sically, as technology advances, more routing resources
can be allocated on the FPGA. This mitigate the
need for placement optimization. For our array styled
structures, it is much more efficient to perform high
level placement. The placement and routing of a single
cell can be executed separately only once for the whole
class of problems. With these approaches combined,
we believe the compilation time can be dramatically
reduced.

Overall, we envision a system where easy SAT prob-
lems are still solved in software. Very difficult prob-
lems, ones that often timeout today, can invoke the
hardware compiler and configure an FPGA board to
assist in solving them.

6 Related Work

At this time, we know of two interesting proposals
for solving SAT using reconfigurable hardware [16, 1].
Both these proposals are recent and have overlapped
with our work. To the best of our knowledge, only
our work has implemented relatively large, difficult
problems on hardware.

Suyama et al. [16] have proposed their own SAT
algorithm, instead of the Davis-Putnam approach.
Their algorithm is characterized by the fact that at



any point, a full assignment is evaluated. While
the authors propose heuristics to prune the search
space, they admit that the number of states visited
in their approach can be 8x larger than the basic
Davis-Putnam approach. In addition, their implemen-
tation requires a “max” calculator and a complex rule
checker making it very hardware-resource-intensive.
In comparison, the advantage of our approach is that it
is an implementation of the Davis-Putnam algorithm
resulting in many fewer states visited. We believe on
the same hardware, our implementation will be much
faster.

The work by Abramovici and Saab also proposed a
configurable hardware SAT solver [1]. Their approach
basically amounts to an implementation of a PODEM-
based [8] algorithm in reconfigurable hardware. PO-
DEM is used to solve test generation problems. It is
targeted on multilevel circuits and it is not efficient on
generic SAT problems, such as those in the DIMACS
benchmark suite. Davis-Putnam’s efficient data struc-
tures capture relationships between internal variables
in a circuit; this reduces the state space visited and the
run time significantly over PODEM [11, 4, 14]. Fur-
thermore, they used centralized control for the input
assignment. There is complex flow control in this part
and it may need to manipulate up to several hundred
signals. In contrast, our approach uses distributed
control and only three global signals.

J. Babb et alreported solving graph problems using
similar input-specific approach [2], which they called
“dynamic computation structures”. From an input
graph, a circuit description is generated in Verilog.
It is then compiled to Virtual Wires emulator sys-
tems (an earlier version of the IKOS emulator). The
speedup against software is 10 to 400 times without
compilation overhead. However, since these graph
problems are relatively easy and short-running, the
long compilation time makes the hardware accelera-
tion useless. Contrary to their situation, there are
many difficult SAT problems that make the compila-
tion time of our implementations often acceptable.

7 Discussion

Based on our experience with this case study of a
SAT solver, we have some observations regarding com-
plex problem solving on configurable hardware and
the application of input-specific approach. In contrast
to traditional applications (e.g. signal processing) on
configurable hardware, our design is not built around
one or several deep pipelined data paths. Instead, it

has more control logic and global connections (despite
our attempts to minimize them). The systolic array
style hardware such as SPLASH [9] does not suit the
SAT application well, because of limited interconnect
between chips and the specialized topology of the ar-
ray. A more flexible hardware system is desired. That
is the reason behind our choice of a logic emulator
as our implementation platform. The IKOS compiler
also eases partitioning problems that would otherwise
complicate our automatic design generator.

However, further improvements on the configurable
SAT-solver, and other problems like it, will place fur-
ther requirements on the configurable hardware plat-
form used. For example, GRASP [14] has achieve dra-
matic improvements compared to the basic algorithm,
by using a diagnostic engine to find the variable as-
signments that are responsible for conflicts. With this
information, it applies non-chronological backtracking
which can prune more of the search space than ba-
sic backtracking. It can also dynamically add clauses
to prune the search space further. We have also im-
plemented a preliminary variant of nonchronological
backtracking [18] and are looking at further improve-
ments. In order to make complicated diagnoses in
support of non-chronological backtracking, the host
computer may need to have quite low-latency commu-
nication with the configurable hardware. In an even
more aggressive approach, we may also choose to mod-
ify the configurable hardware on-the-fly to add new
clauses or new implications. This requires the tech-
niques of dynamic (during the application) hardware
reconfiguration. We believe that such future work will
provide more insight on applications and techniques
for configurable computing.

8 Conclusions

Overall, the contributions of this paper are two-
fold. First, we provide a system design for formula-
specific Boolean satisfiability solutions based on a con-
figurable hardware implementation. We have a fully-
automatic procedure to generate the hardware config-
uration from the original SAT formula. The problems
have been successfully mapped to Digital’s Pamette
and IKOS emulator. Moreover, our hardware perfor-
mance results demonstrate that the configurable com-
puting approach has the potential for dramatic im-
provements over general-purpose software-based tech-
niques.

The second contribution of this paper is much
broader. We present our SAT-solver as a case study



of a complicated configurable hardware application.
These applications aggressively harness the increas-
ing integration levels and reconfigurability of cur-
rent FPGAs by performing template-driven hard-
ware designs for each problem/data set being solved.
Their amenability to parameterized, automated design
makes it relatively easy and fast to compile configu-
rations for them. Experiments with current compiler
and hardware platforms show that difficult problems
can benefit from the application of configurable hard-
ware, even including the compilation time. With im-
provements in FPGA compilation and other software
techniques, the input-specific approach will have even
broader appeal on many difficult problems; as such, it
represents a new class of applications benefiting from
configurable hardware.
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