Using Reconfigurable Computing Techniques to Accelerate Problems in the CAD Domain:
A Case Study with Boolean Satisfiability

Peixin Zhong, Pranav Ashar, Sharad Malik and Margaret Martonosi
Princeton University and NEC CCRL
pzhong, sharad, mrm@ee.princeton.edu, ashar@ccrl.nj.nec.com

Abstract

The Boolean satisfiability problem lies at the core of several
CAD applications, including automatic test pattern genera-
tion and logic synthesis. This paper describes and evaluates
an approach for accelerating Boolean satisfiability using con-
figurable hardware. Our approach harnesses the increasing
speed and capacity of field-programmable gate arrays by tai-
loring the SAT-solver circuit to the particular formula being
solved. This input-specific technique gets high performance
due both to (i) a direct mapping of Boolean operations to
logic gates, and (ii) large amounts of fine-grain parallelism in
the implication processing. Overall, these strategies yields
impressive speedups (>200X in many cases) compared to
current software approaches, and they require only modest
amounts of hardware. In a broader sense, this paper alerts
the hardware design community to the increasing impor-
tance of input-specific designs, and documents their promise
via a quantitative study of input-specific SAT solving.

1 Introduction

While hardware accelerators for CAD are not new, the in-
creasing capacity and speed of field-programmable gate ar-
rays (FPGAs) offers flexibility and computing power not
available before. The hardware can be reused for different
applications and can be easily updated to accommodate new
developments in algorithms. This paper introduces an novel
approach for accelerating the Boolean satisfiability (SAT)
problem using configurable computing hardware. In our im-
plementation of the SAT problem, we have harnessed this
flexibility by implementing the SAT solver circuit on an
“Input-specific” basis. That is, a circuit is generated es-
pecially for each SAT formula to be solved. Since Boolean
satisfiability approaches are logical-operation-intensive, the
hardware approach can show large advantages by mapping
the SAT expressions directly to logic gates, and by harness-
ing large amounts of parallelism in the evaluation of the
logic.

While the bulk of the configurable computing applica-
tions currently implemented have been fairly simple data-
centric systolic designs, our design shows the potential of
custom computing on difficult problems with complex con-
trol structures. We have implemented a tree search algo-
rithm, as opposed to the generally-simpler signal processing
pipelines common to configurable computing thus far. In
addition, we have also implemented a hardware version of
nonchronological backtracking similar to that seen in soft-

ware SAT solvers [11]. This requires complex control struc-
tures to manage the backtracking steps. These implemen-
tations demonstrate configurable computing’s potential for
impact on a much broader set of applications, particularly
in CAD domain, than may initially have been considered.

2 The SAT Problem

The Boolean satisfiability (SAT) problem is a well-known
constraint satisfaction problem with many applications in
computer-aided design of integrated circuits, such as test
generation, logic verification and timing analysis. Given a
Boolean formula, the goal is either to find an assignment of
0-1 values to the variables so that the formula evaluates to
1, or to establish that no such assignment exists.

The Boolean formula is typically expressed in conjunc-
tive normal form (CNF), also called product-of-sums form.
Each sum term (clause) in the CNF is a sum of single lit-
erals, where a literal is a variable or its negation. In order
for the entire formula to evaluate to 1, each clause must be
satisfied, i.e., at least one of its literals should be 1.

An assignment of 0-1 values to a subset of variables
(called a partial assignment) might satisfy some clauses and
leave the others undetermined. If an undetermined clause
has only one unassigned literal in it, that literal must eval-
uate to 1 in order to satisfy the clause. In such a case, the
corresponding variable is said to be implied to that value. A
variable is considered free if neither assigned nor implied. A
conflict or contradiction arises if the same variable is implied
to be different values. This means that the corresponding
partial assignment cannot be a part of any valid solution.

Most current SAT solvers are based on the Davis-Putnam
algorithm [4]. This is a backtrack search algorithm. The ba-
sic algorithm begins from an empty assignment. It proceeds
by assigning a 0 or 1 value to one free variable at a time.
After each assignment, the algorithm determines the direct
and transitive implications of that assignment on other vari-
ables. If no contradiction is detected after the implication
procedure, the algorithm picks the next free variable, and
repeats the procedure (forward search). Otherwise, the al-
gorithm attempts a new partial assignment by complement-
ing the most-recently assigned variable (backtrack). If this
also leads to contradiction, this variable is reset to the free
value and the next most-recently assigned variable is com-
plemented. The algorithm terminates when: (i) no free vari-
ables are available and no contradictions have been encoun-
tered (a solution has been found), or (ii) it wants to back-
track beyond the first variable, which means all possible
assignments have been exhausted and there is no solution
to the problem.

Determining implications is crucial to pruning the search
space since it allows the algorithm to skip entire regions of
the search space corresponding to contradictory partial as-
signments. Every implied variable corresponds to one less
free variable to branch on. Unfortunately, detecting impli-

cations in software is very slow. Each clause containing the
newly assigned or implied variable is scanned and updated
sequentially, with the process repeated until no new impli-
cations are detected.

Our intuition for hardware speedup potential in the SAT
algorithm stems from recognizing that the implication pro-
cedure central to the algorithm is both highly parallelizable
and easily mapped to basic logic gates. Our entire hardware
architecture is designed to take advantage of this parallelism.
Section 4 details our mapping of the algorithm onto recon-
figurable hardware in a formula-specific manner.

Recent software implementations of the SAT algorithm
have enhanced it in several ways while maintaining the same
basic flow [8, 3, 12, 11]. The contribution of the GRASP
work [11] is notable since it applies nonchronological back-
tracking and dynamic clause addition to prune the search
space further. Very significant improvements in run time
are reported. Recognizing nonchronological backtracking as
an important feature, Section 5 shows how it can be mapped
to reconfigurable hardware with significant improvements in
run time.

3 The Promise of Configurable Computing

Special-purpose hardware accelerators for CAD problems
are not new. This approach, however, usually suffers from
long development time and high cost. The growth of field
programmable logic devices allows application-specific hard-
ware without the costs of fabrication. The SRAM-based
programmable logic devices (such as Xilinx FPGAs) allow
the same chip to be reprogrammed to different circuits an
unlimited number of times. One successful application of
such devices is logic emulation. A logic design is mapped
to an FPGA array and simulated before it is actually fabri-
cated. An emulator is many orders of magnitude faster than
simulation on a general purpose computer.

The development of FPGAs has also led to the advent
of field-programmable custom computing machines. The
abundant programmable logic components and routing re-
sources are used to form special-purpose computers exploit-
ing fine-grain parallelism. Such custom computing machines
have achieved very high performance in signal processing,
genetic analysis, and cryptography applications. Previous
work mostly concentrated on data-centric problems with rel-
atively simple logic control.

Increasing density in programmable logic opens up ex-
citing opportunities for hardware acceleration for complex
computations. As feature sizes shrink even further, 1M-gate
FPGAs will be feasible by roughly the year 2001 [10]. With
programmability and high integration densities, we can cre-
ate a machine specialized not only to the application but
also to the input data associated with a specific problem.

Our choice of Boolean satisfiability (SAT) as a case study
here was guided by two main factors:

o It is a search-intensive application, as opposed to data-
intensive applications with simple control found in many
previous studies of configurable computing. It is also
a basic NP-complete problem that is core to many im-
portant problems. Gaining experience with this prob-
lem will help us accelerate a wide range of applications.

o It contains a significant amount of bit-level logic op-
erations. This makes it very amenable for mapping to
configurable hardware.

At this time, we know of three interesting proposals for
solving SAT using reconfigurable hardware [13, 1, 9].

Suyama et al. [13] have proposed their own SAT algo-
rithm - instead of the Davis-Putnam approach - for imple-
mentation in reconfigurable hardware. The search uses full
assignment to explore the space. In their paper, they ac-
knowledge that this is not as efficient as a backtrack search
algorithm.

The proposal by Abramovici and Saab [1] is also not an
implementation of the Davis-Putnam algorithm. Their pro-
posal basically amounts to an implementation of a PODEM-
based [6] algorithm in reconfigurable hardware. Therefore it
is difficult to handle a generic CNF formula directly. On the
other hand, our approach is more general and can exploit
heuristics not available to PODEM.

Rashid et al. [9] implement small instances of the PO-
DEM algorithm on a Xilinx XC6216. While mapping and
compilation issues are presented in detail, there are currently
no performance results for their approach.

4 FPGA Mapping: Basic Backtrack Search

4.1 Hardware Organization

Our hardware implementation has two parts: (i) the impli-
cation circuit (ii) a state machine to manage the backtrack
search. Given a SAT formula, a VHDL description of the
hardware is generated automatically.

The speedup over software arises from our implementa-
tion of the implication circuit. It finds all direct implications
of newly-assigned or newly-implied variables in a single clock
cycle. Consequently, all transitive implications of a new vari-
able assignment can be determined in a few cycles. Since all
clauses are examined in one cycle, parallelism is quite con-
siderable in practice. For the aim-100-6_0-yesl-1 example
in the DIMACS benchmark suite, this approach yields an
average of 41.9 effective clause evaluations per cycle.

Aout

: LContra

Aout

i : LChange

GClear

Figure 1: Circuit for implication and conflict detection.

Figure 1 shows the details of the implication circuit. The
state of each variable in the circuit is encoded into two bits,
(v,%). A free literal is (0,0). The 1 value of the variable is
represented by (1,0) and the 0 value by (0, 1).

Implications are easy to determine. For a clause with
n literals, if n-1 literals are 0, the last literal is implied to
1. In our encoding, given the clauses (E + a)(d_—l— a)(E +c+
a)(e + a)(c + &), a is implied by ¢+ d + b¢ and a is implied
by € + ¢, as shown in Figure 1. If both v and ¥ are implied
or assigned to be true, there is a contradiction. No solution
exists with this partial assignment.

GClear
...... GContra ‘
GChange A
Vi Vis
GChange LChange GChange LChange GChange LChange
“= GContra LContra GContra LContra GContra L Contra
—= GClear LClear GClear LClear GClear LClear
""" Eil Eo Ei Eo Ei Eo e
Ea Eir Ea Eir —1 Ea Eir —
Clk Clk Clk

Clack [[[

Figure 2: Global Circuit Topology

The transitive implication may include cyclic loops. Since
the implication is monotonic, changing from 0 to 1 due to
our 2-bit encoding, it will never cause oscillation. A D flip-
flop is used with each literal, so new implications will propa-
gate one level in one cycle. The LChange signal checks new
value changes. Implications finish when no new changes are
found.

In order to avoid heavy communication with a host com-
puter, search control is also implemented in hardware. A
state machine is implemented for each variable and they are
connected according to the order of search, as in Figure 2.
Each box in the figure contains the implication circuit and
the state machine for each variable. This distributed topol-
ogy keeps global signals to a minimum and reduces hardware
costs. At any instant, only one state machine is in control.
Once that state machine has finished processing, it asserts
E,. to transfer control to the state machine on the right (if
progressing forward in the computa.tion) or it asserts Fo; to
pass control to the left (if backtracking). Each state machine
is aware of whether its variable has been assigned, implied
or is free.

The state machine for a single variable is shown in Fig-
ure 3. The five states in the state machine are encoded by
three bits. Two bits correspond to the values of the positive
and negative literals of its variable. The third bit indicates
whether this particular state machine is active. The inputs
to each state machine are the Enable signals from its left
and right neighbors, and the global contradiction (GCon-
tra) and change (GChange) signals. State machine outputs
are the enable signals, E, and E,, that pass control to the
left or right.

System operation is fairly simple. After initialization,
all the state machines are in the init state. When a state
machine receives an enable signal, it changes its states. If
control is transferred from the left, it can only be in the init
state. If this variable’s value is not implied, it asserts value
1 (active 1) and determines all the transitive implications
of that assignment. If a contradiction is detected, it will try
the value 0 instead (active 0) and repeat the implication
step. If the implication settles without a contradiction, it
transfers control to the state machine on its right and it
transitions to the passive 1 state. From active 0, if a
contradiction is detected, it will backtrack. Its state is reset
to init and the control is passed to the left. On the other
hand, if implications settle without a contradiction, then it
moves from active 0 to passive 0 and passes the control
to the right.

If, as above, control is transferred to a state machine from
the left, but its variable’s value has already been implied by
a previous assignment, then it merely passes control to the
state machine on its right on the next clock cycle and re-

GContra/10

E /10 Ei (Vlmp“{mp)/0L
Q Change GContra/00

E/E;/00 Ei (Ving Vi) Imp)/oo GOt GChange GContra/00
init aC“Ve 1 active 0

GChange GContra/01

GChange GContral01

E;;/00 E;/00

Figure 3: State Diagram for Backtracking Machine

mains in the init state. Its output value will be maintained
by the implication.

If control is transferred to a state machine from the right,
the system is backtracking. If the variable has been implied
by some previous assignment, the state machine is in the
init state now. It simply passes control to the variable
on its left. If the variable currently has the assigned value
1 (passive 1), then it is changed to 0 (active 0). The
implications are computed. If the variable already has the
assigned value 0, we have already tried both possible values
for this variable. In this case, the state machine resets to
init and backtracks further by transferring control to the

left.

Finding a Solution A solution has been found when the
rightmost state machine further attempts to pass control to
the right. No solution exists if the leftmost state machine
attempts to backtrack by further passing control to the left.

4.2 Performance Results

In this section we compare the performance of our hard-
ware implementation of the basic Davis-Putnam SAT algo-
rithm to its implementation in GRASP [11]. In order to
estimate the hardware performance, we use simulation to
count the exact number of hardware clock cycles needed to
solve each problem and divide by clock rate to compute the
run time. We have used a VHDL model to verify design cor-
rectness on moderate examples. However, since VHDL sim-
ulation can be slow, we have generated a C-language hard-
ware model that is significantly faster then general VHDL
simulation. We use this for performance estimation of long-
running problems. Like a VHDL simulation, the C-language
simulation is also capable of counting the number of hard-
ware clock cycles required exactly.

The number of hardware clock cycles is translated into
run time based on a clock rate of 1.33 MHz. This is a
clock rate achieved on a large example on an IKOS FPGA
board [7] as detailed in the section on hardware implemen-
tation issues. The GRASP runs were timed on a Sun 5
workstation with 64 MB of RAM and a 110 MHz processor.

As discussed earlier, our hardware implementation cur-
rently requires variables be ordered statically prior to the
hardware implementation. Our ordering strategy places ear-
lier the variables with more appearances in the formula.

We compared the performance for all the examples in the
DIMACS SAT benchmark suite [5]. There are 240 problems
in the DIMACS suite. Some of them take a very long time to
solve and neither GRASP nor our C-model simulation gets

a result in reasonable amount of time (several hours). There
are 134 instances in which at least one program finished.

20
15
o]
g 10+
vs 4
2]
5_
0-
HOOO%OOOOOOOOO%OOOOOO L
éHN(") LOMNMNOOOOOAANM LO@I\ODOOS
AR bt TIIIFFFAAIAAF
HN(‘YJQLOLOI\CDOOOOOOOOOOO
OO AdNMILNHONOO
A A ddAdAAAA A
Speed up ratio

Figure 4: Speedup ratio histogram comparing our FPGA
approach to a GRASP run, both with basic backtracking.

In all examples for which the implementation of the ba-
sic Davis-Putnam algorithm completes in GRASP, our hard-

ware implementation also completes — usually in much shorter

time. Figure 4 shows a histogram in which each bar corre-
sponds to a speedup range. Speedup is defined as the ratio
of the GRASP run time to the hardware run time. (That
is, a 10X speedup means that our approach is ten times
faster than GRASP.) The height of the bar corresponds to
the number of DIMACS SAT examples for which the corre-
sponding speedup is obtained.

The histogram indicates that more than 90% of the ez-
amples have speedup greater than 20X and more than 45%
of the ezamples have speedup greater than 100X. The results
clearly demonstrate that utilizing parallelism by direct logic
mapping in the SAT algorithm achieves significant speedup
even when the hardware clock is much slower than that of
the general purpose computer.

5 FPGA Mapping: Nonchronological Backtrack

5.1 Algorithm

When the Davis-Putnam algorithm backtracks to the most
recently assigned variable, its backtracking is said to be
chronological. On the other hand, when an algorithm jumps
over several previously-assigned variables to a variable more
than one level above the current variable, the backtracking
is said to be nonchronological. In order to jump directly to
a previous level, the algorithm must first determine that no
combination of values on the skipped variables will result in
a satisfying assignment. GRASP is a recent SAT implemen-
tation with nonchronological backtracking. The GRASP
work demonstrated that nonchronological backtracking can
lead to significant reductions in run time. We describe an
algorithm to achieve a similar goal in hardware, but with
less control complexity than GRASP.

GRASP maintains a data structure called the implica-
tion graph, from which one derives the transitive implica-
tions leading to the contradiction. From the contradiction,
it traces back to a set of assignments contributing to the con-
tradiction. It jumps to the most recently assigned variable
in the set. It is difficult, however, to traverse the implication

Y=l

V=1 /O

Figure 5: Search example for basic backtracking.

circuit in hardware. As a result, we devised the following
alternative.

Rather than analyzing the implications, we take advan-
tage of the fact that determining implications is very fast
in our hardware. When a contradiction occurs for both as-
signments of the variable, it should backtrack. If we reset
this variable to be free, the observed contradiction will dis-
appear, but may recur when the same variable is assigned a
value in the future. We want to change the value of the vari-
able that really contributes to the observed contradiction.

If a contradiction was detected for both assignments to
v;, with 7 being its level, our procedure works its way back
up the levels, one at a time. At each level j (< i), the
procedure calls the implication routine twice, once for each
v; value, while v; has a flipped value. The variables v
between 7 and j (j < k < i) are left unassigned when the
implication routine is called, i.e. both literals vx and v
are set to 0. The algorithm must backtrack to v; if a no-
contradiction case was found for one of the two assignments.
If both cause contradiction, the variable v; can be skipped,
and the procedure repeats this step for variable v;_;.

This procedure requires only 2n calls to the implication
routine if the algorithm reverts back by n levels. Since the
procedure does not call the implication routine an exponen-
tial number of times, and since the implication hardware
is very fast, this analysis for nonchronological backtracking
can be expected to be very fast also. In comparison, GRASP
has the overhead of maintaining the implication graph data
structure and analyzing it when a contradiction is found,
but it does not do the 2n implications.

The following simple example shows how our approach
works. Suppose we have the following formula: (v; + vi; +
v13)(v1 +vis +v13)(vi +vi2 +v1a)(v] +v12 +v1s) - -. Assume
that no assignment for variables vy — v11 leads to a contra-
diction. The basic search tree for this formula is shown in
Figure 5. In the figure, each solid arrow represents assigning
a new value and determining its implications. It begins by
assigning v; = 1 and goes on until v1; = 1. Finally, v12 =1
is tried. This leads to a contradiction since ;3 is required
to be both 0 and 1 simultaneously. Similarly, viz = 0 also
leads to a contradiction. The normal backtrack procedure
would reset vis to unknown and it would backtrack to vi:.
The conflict disappears temporarily but will appear again
whenever vis is set.

Figure 6(a) shows our version of nonchronological back-
tracking. Figure 6(b) shows how GRASP directly back-
tracks to v1. The dotted arrows indicate skipping and do

Figure 6: Search examples for nonchronological backtrack-
ing. (a) Algorithm in our hardware algorithm. (b) Software
algorithm used in GRASP.

GChange GContra/00

QO

GChange GContra/00 GChange GContra/00

GContra/00

GContra/10
GContra/00

GChange GContra/00 GContra/00

GChange GContra/00

GChange GContra/00

E) (VimgtVienp) 0

E, /10<>Q

GChange GContra/01
Eji (Vimg+Vimp)/00
EE, /00

GChange GContra/0;

GChange GContra/01

GChange GContra/01

GChange GContra/00. GChange GContra/00

E/00 GContral00
Figure T7: State diagram for nonchronological backtracking
machine

GContra/10

not incur any computation; they simply show what values
are assumed before an implication calculation. For both
methods, the search is the same before reaching vi2. Back-
tracking differs, however. When backtracking at each level,
our implication procedure is called twice. That is, we back-
track to vi after effectively calling the implication proce-
dure only 22 times, rather than 4082 attempts with the
basic backtracking approach. While this simple example
is mainly pedagogic, dramatic speedup potential also exists
in real benchmarks. For example, in the aim-100-1_6-yesl-
1 benchmark from the SAT suite, chronological backtrack-
ing visits 606,578 partial assignments; the nonchronological
backtracking algorithm only visits 1384 partial assignments.

5.2 Hardware Organization

The only modifications required to implement our nonchrono-
logical backtracking algorithm are to the state machine. No
new global signals are added and the implication circuit is
not modified.

The state machine to perform the nonchronological back-
tracking is shown in Figure 7. It has more states and transi-
tions to reflect the complex backtracking procedure outlined

204
f 15
2]
%]
c 104
54

HOOO%OOOOOOOOO%OOOOOO'

STYRIROTRRSIYRINEERSRE

HOOOQOOOO...........N

AN M LOMNMNOVODODOOOOOOO0OO0OO0

OO dNMILNHONQO

AA A A A A AAAA

Speed up ratio

Figure 8: Speedup ratio histogram for nonchronological
backtracking

previously. Although the state machine has become bigger,
the extra states require only one more encoding bit. Since
most of the circuit is the same and since the state machine
is not instrumental in determining the clock cycle time, the
cycle time from the basic algorithm remains valid here.

5.3 Performance Results

We compare our runtime with nonchronological backtrack-
ing to a GRASP implementation with nonchronological back-
tracking. Similar to Figure 4, the results are graphed in
Figure 8. Due to the improved performance, there are 149
problems that finished with either GRASP of our approach.
While GRASP’s more complicated nonchronological back-
tracking allows it to garner a bigger improvement from this
technique than our hardware does, we still obtain a median
speedup over GRASP of 63.5X. From the full DIMACS suite,
we offer 100X or greater speedups on 63 of the examples.

6 Implementation Issues

6.1 Envisioned Usage

Depending on the problem characteristics, the configurable
computing implementation can often offer significant speedups
over a software SAT solver. In order for the acceleration to
be useful, however, it must offer performance advantages
even after hardware compile time and configuration time
are considered. For this reason, we envision that the con-
figurable hardware techniques will mainly be used on SAT
problems with very long GRASP run-times (hours or days)
or in cases where GRASP aborts. In such cases, the hard-
ware synthesis times required will be acceptable. Further-
more, current commercial CAD tools for FPGAs are quite
general and therefore quite slow in this usage; it is not un-
common for synthesis and place-and-route times to exceed
one hour. Since our designs are quite regular and easy-to-
route, however, compiler tools specialized for our template
design could be much faster, and could thus broaden the
range of problems for which hardware acceleration is useful.
Overall, we envision a system where easy SAT problems are
still solved in software. Very large problems, ones that of-
ten timeout today, will invoke the hardware compiler and
configure an FPGA board to assist in solving them.

The envisioned hardware platform is a high-performance
workstation with an FPGA board attached via an exter-

nal connection or the I/O bus. Easy problems are handled
by software running on the workstation itself, while longer-
running problems are handled by the FPGA board. Re-
quirements for the FPGA board itself are partly a function
of the hardware size of the problems being solved; this is
discussed in the following subsection.

6.2 Hardware Resources

Hardware requirements for our approach are a function of
the size and complexity of the formula being solved. The
hardware usage is estimated in terms of CLBs of Xilinx
XC4000 series FPGAs.[14]. The SAT solver’s CLB require-
ments varies widely with the formula to be solved. Across
the DIMACS benchmarks, the median CLB requirements
are 3655. Overall, relatively few (less than 30%) of these
problems will fit within the about 2000 CLB limit of cur-
rent FPGA chips. However, 202 of 240 problems require
fewer than 20000 CLBs and should fit on fewer than ten
FPGAs.

Partitioning the design across FPGAs is straightforward
because of the regular topology used. In our experiments, we
have used the partitioning and pin multiplexing techniques
in the Ikos SLI logic emulation system originally developed
as part of the MIT Virtual Wires effort [2, 7]. This parti-
tioning software can multiplex several inter-chip signals to
use the same physical pins, thereby circumventing the pin
limitations that can often limit the CLB utilization of FPGA
designs. Furthermore, the software performs this multiplex-
ing with minimal impact on hardware cycle times. We have
compiled many of the DIMACS problems for the IKOS sys-
tem. Their clock rate ranges from 700KHz to 2 MHz. We
use a 1.33 MHz clock rate as a typical value for performance
comparison. If SAT is implemented on a directly-connected
array, the clock rate is expected to be 10 to 20 MHz.

7 Future Work

As evidenced by the organization of our paper, we began our
work by implementing the basic Davis-Putnam procedure in
reconfigurable hardware. Recent software implementations
of the Davis-Putnam procedure have grown to be very so-
phisticated however [11]. To beat them consistently, our im-
plementation should match that sophistication. We zeroed
in on nonchronological backtracking as a key requirement
and have been able to implement it with a small increase in
hardware. The GRASP implementation still contains two
additional features that our implementation does not:

1. The ability to add clauses on the fly plays a signifi-
cant role in GRASP’s ability to solve hard problems.
Variable relationships derived in the search help prune
search tree in the future. It is hard to change the
circuit and reroute the FPGA in the middle of the
algorithm. We are working on low cost ways of imple-
menting this feature based on multiple configuration
contexts.

2. The ability to choose the next decision variable on the
fly also contributes to the efficiency of the software
implementations. While this is very simple to do in
software, it can be very hardware intensive in recon-
figurable hardware, as evidenced by the Abramovici
and Saab proposal [1]. In practice, we have found that
a good static ordering of variables works quite well.
If dynamic ordering can provide significant improve-
ment, we will implement it as well.

8 Conclusions

Overall, the contributions of this paper are two-fold. First,
we provide a system design for formula-specific Boolean sat-
isfiability solutions based on a configurable hardware imple-
mentation. Owur design’s hardware requirements are quite
modest compared to other recent proposals. Moreover, our
hardware performance results indicate that the configurable
hardware approach offers dramatic improvements over even
the best current software-based techniques. We have ob-
served speedups of well over 200X compared to software SAT
solutions on several of the DIMACS SAT benchmarks.

The second contribution of this paper is much broader.
We present our SAT-solver as a case study of a class of input-
specific configurable hardware applications. These appli-
cations aggressively harness the increasing integration lev-
els and reconfigurability of current FPGAs by performing
template-driven hardware designs for each problem/data set
being solved. Their amenability to parameterized, auto-
mated design makes it easy and fast to compile configu-
rations for them. Overall, this paper alerts the hardware
design community to an increasingly-important application
style, and documents its significant promise via a detailed
case study on formula-specific SAT-solving.

References

[1] M. Abramovici and D. Saab. Satisfiability on Reconfig-
urable Hardware. In Seventh Intl. Workshop on Field Pro-
grammable Logic and Applications, Sept. 1997.

[2] J. Babb, R. Tessier, and A. Agarwal. Virtual Wires: Over-
coming pin limitations in FPGA-based logic emulators. In
Proc. IEEE Workshop on FPGA-based Custom Computing
Machines, pages 142-151, Apr. 1993.

[3] S. Chakradhar, V. Agrawal, and S. Rothweiler. A transi-
tive closure algorithm for test generation. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
12(7):1015-1028, July 1993.

[4] M. Davis and H. Putnam. A Computing Procedure for Quan-
tification Theory. Journal of the ACM, 7:201-215, 1960.

[5] DIMACS. DIMACS Challenge benchmarks
and UCSC benchmarks. Available at ftp://Dimacs.Rut-
gers.EDU/pub/challenge/sat /benchmarks/cnf.

[6] P. Goel. An Implicit Enumeration Algorithm to Generate
Tests for Combinational Logic Circuits. IEEE Tran. on
Computers, C30(3):215-222, March 1981.

[7] IKOS Systems. Virtual Logic SLI Documentation. Version
1.6.

[8] T. Larrabee. Test Pattern Generation Using Boolean Satis-
fiability. In IEEE Trans. on Computer-Aided Design, vol-
ume 11, pages 4-15, January 1992.

[9] A.Rashid, J. Leonard, and W. H. Mangione-Smith. Dynamic
Circuit Generation for Solving Specific Problem Instances of
Boolean Satisfiability. In Proceedings IEEE Workshop on
FPGA-based Custom Computing Machines, Apr. 1998.

[10] J. Rose and D. Hill. Architectural and Physical De-
sign Challenges for One Million Gate FPGAs and Beyond.
In Proc. 1997 ACM/SIGDA Fifth Intl. Symp. on Field-
Programmable Gate Arrays, Feb. 1997.

[11] J. Silva and K. Sakallah. GRASP-A New Search Algorithm
for Satisfiability. In IEEE ACM Intl. Conf. on CAD-96,
pages 220-227, Nov. 1996.

[12] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli.
Combinational Test Generation Using Satisfiability. Depart-
ment of Electrical Engineering and Computer Sciences, Uni-
versity of California at Berkeley, 1992. UCB/ERL Memo
Mo92/112.

[13] T. Suyama, M. Yokoo, and H. Sawada. Solving Satisfiabil-
ity Problems on FPGAs. In 6th Int’l Workshop on Field-
Programmable Logic and Applications, Sept. 1996.

[14] Xilinx Corp. The Programmable Logic Data Book. Xilinx
Corp. San Jose, CA, 1996.

