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Computer architects have long exploited application memory ref-
erencing characteristics to optimize memory performance. While
most prior work has looked at only time-independent aspects of
memory behavior, such as event ordering and interleaving,
recent work introduced timekeeping metrics to improve memory
performance and power dissipation [1]. The performance and
power results for timekeeping structures are examined and
implementation options are discussed. 

Much like natural lifetimes in the real world, memory lifetimes
show generational patterns [1, 4]. Each cache line generation
(Fig. 9.5.1) begins with a cache miss that brings new data to this
memory hierarchy level. Generations end when data leaves the
cache because a miss to other data causes eviction. Cache line
generations have two parts: live time starts from the beginning
of a generation and ends with the last successful use before evic-
tion. Dead time lies between last use and when the data is actu-
ally evicted. Access interval is the duration between successive
accesses to the same cache line within a generation’s live time.
Tracking time intervals at run time is useful because they are
strongly predictive of future program behavior. Figure 9.5.2
shows the distributions of access intervals and dead times for the
SPEC2000 benchmarks. Access intervals are quite short, while
both short and long dead times are common. Such statistical
observations form the basis of timekeeping predictor mecha-
nisms. 

Example 1: Cache Decay These techniques use timekeeping
metrics to create simple mechanisms for leakage energy control
[2].  Observe that cache lines often spend thousands of cycles in
their dead times, consuming leakage energy while not contribut-
ing to performance. If one predicts a cache line is currently in its
dead time, the line can be “turned off” to save leakage energy. No
extra misses occur, because the cache line is dead and the next
access will be a miss anyway. Cache Decay’s timekeeping-based
dead-block predictor harnesses the fact that  typical access inter-
vals are much shorter than dead times. Prediction of a cache line
as dead occurs when its idle time exceeds a pre-set threshold.
From simulation results for an 8000-cycle threshold, cache decay
can reduce cache leakage energy by 4X, with little impact on miss
rate or performance. Figure 9.5.3 depicts a cache decay imple-
mentation. When a coarse-grained cache line timer receives a tick
while in the uppermost “10” state, it switches off the gate transis-
tor [5] so (tag and data) cells are disconnected from VSS and the
leakage path to the ground is cut off. (Cache lines with dirty data
are written back before deactivation.) Valid bits are always fully-
powered to correctly track cache line validity. 

Example 2: Timekeeping for Conflict Miss Identification
Shown here is a use for timekeeping predictions of generations
with short dead times. From simulation data, generations with
short dead times are likely to occur due to pre-mature evictions
from mapping conflicts. If short dead times are predictive of con-
flict misses, this prediction leads to a victim cache filter. The fil-
ter ensures that victim cache entries are mainly used to store
cache lines likely to be reused soon. Results show the effective-
ness of filtering victim cache entries to store only items with

dead times <1024 cycles. This approach reduces victim cache
traffic by 87% while also improving overall system performance.
As shown in Fig. 9.5.4, counters gauge the time-since-last-refer-
ence of each victim; a comparator allows only victims with dead
times smaller than a threshold to enter the victim cache. 

Example 3: Timekeeping Prefetch This third timekeeping
structure predicts both what and when to prefetch. Revisiting
Fig. 9.5.1, a new cache line can be safely brought in when the
current cache line is dead, at the end of its live time. The current
live time cannot be exactly known beforehand, but can be pre-
dicted from the live time of the same line’s previous generation.
If, in a cache set in the past, line A was followed by B, then C,
and the live time of B was lt(B), then the next time A is followed
by B, line C is predicted as the next address and lt(B) as the live
time of B. A prefetch of C is scheduled about lt(B) after B’s
appearance. Comparing a “timekeeping” prefetcher using an
8KB correlation table to an 8MB Dead-block Correlating
Prefetcher (DBCP) [3], non-timekeeping prior work, the time-
keeping prefetcher outperforms DBCP with an average of 11%
performance improvement over baseline [1]. Figure 9.5.5 shows
the timekeeping prefetcher implementation.

Implementation Options Tracking time intervals at run time
is a common requirement for all timekeeping techniques. Only
fairly coarse-grained time estimates are needed. One can get
these via hierarchical counters (Fig. 9.5.6). For example, in cache
decay, each cache line is augmented with a local counter that is
2-5 bits wide. All local counters are triggered by a global cycle
counter, shared by the whole cache. The size of a local counter is
small: ~1% of a cache line. Counter ticks are infrequent, so
dynamic power dissipation is also quite small. To further reduce
power dissipation, counter states are gray-coded. Local time-
keeping counters gauge time intervals dynamically at the need-
ed granularity. A cache line’s idle time is obtained by resetting its
local counter upon each access (hit or miss) and increasing the
local counter with each global tick. To avoid switching too many
counters simultaneously, the global counter tick is cascaded;
each local counter receives the global counter tick from its previ-
ous neighbor and passes it on to the next neighbor. In Cache
Decay, this staggered design also spreads out dirty-line write-
backs, avoiding large writeback bursts on a global tick.
Timekeeping techniques need not impact processor cycle time. At
2-5 bits of precision, the counters are narrow, so updates happen
quickly. Updating local counters is not on a cache access critical
path; it is done in parallel with tag comparison or data output.
In extreme cases, timekeeping bookkeeping is pipelined across
several processor cycles to avoid being on a critical path.
Overall, how to improve memory performance by exploiting typ-
ical statistics of memory referencing events is presented. Since
simple counters can track relevant time intervals, effective and
power-efficient timekeeping-based hardware can improve
processor power and performance. 
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Figure 9.5.1: Timeline depicting a generation of the cache line with A resident, followed by A’s eviction to begin a generation with B resident. Eventually, A
is referenced to begin yet another generation.

Figure 9.5.4: Timekeeping victim cache filter implementation. Figure 9.5.5: Timekeeping prefetcher implementation.

Figure 9.5.3: Cache decay implementation.
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Figure 9.5.2: Distribution of access intervals (top) and dead times
(bottom) for the SPEC2000 benchmark suite.
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Figure 9.5.6: Hierarchical counter gauge time intervals per cache line.
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Figure 9.5.1: Timeline depicting a generation of the cache line with A resident, followed by A’s
eviction to begin a generation with B resident. Eventually, A is referenced to begin yet another
generation.
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Figure 9.5.2: Distribution of access intervals (top) and dead times (bottom) for the SPEC2000
benchmark suite.
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Figure 9.5.3: Cache decay implementation.
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Figure 9.5.4: Timekeeping victim cache filter implementation.
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Figure 9.5.5: Timekeeping prefetcher implementation.
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Figure 9.5.6: Hierarchical counter gauge time intervals per cache line.

local counters

global cycle counter

tag

CLK

data

tag data

tag data

tag data


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


