
An Edge-Endpoint-Based Configurable Hardware
Architecture for VLSI CAD Layout Design Rule Checking

Zhen Luo, Margaret Martonosi and Pranav Ashar
Princeton University and NEC CCRL

{zhenluo, mrm}@ee.princeton.edu, ashar@ccrl.nj.nec.com

Abstract

Design rule checking (DRC) is an important step in VLSI design
in which the widths and spacings of design features in a VLSI
circuit layout are checked against the design rules of a
particular fabrication process.  In the past, some efforts to build
hardware accelerators for DRC have been proposed, but these
efforts were hobbled by the fact that it is often impractical to
build a different rule-checking ASIC each time design rules or
fabrication processes change.

In this paper, we propose a configurable hardware approach to
DRC.  Because the rule-checking is built in configurable
hardware, it can garner impressive speedups over software
approaches, while retaining the flexibility needed to easily
change the rule checker as rules or processes change.  Our work
proposes an edge-endpoints-based method for performing
Manhattan geometry checking; this approach is particularly
well-suited to the constraints of configurable hardware.
Although design rules do change over time, their intrinsic
similarity allows us to propose a general scalable architecture
for DRC.  We then demonstrate our approach by applying this
architecture to a set of design rules for the MOSIS SCN4N_SUB
process.  The hardware required per rule is quite small; we have
implemented several design rule checks within a single Xilinx
XC4013 FPGA.  Our hardware, implemented on a Pamette
board, runs at a clock rate of 33MHz. We also compare the
performance of our approach to software methods and
demonstrate overall speedups in excess of 25X.

1. Introduction

Over the past several decades, integrated circuit die sizes
have increased dramatically and simultaneously the
smallest possible features on these dies have become
much smaller as well.  As a result, Design Rule Checking
(DRC), which checks a VLSI layout’s features for
compliance with width and spacing rules, has become
more and more time-consuming and compute-intensive.

In the past, several approaches for hardware DRC
accelerators  have been proposed [1,3,5].  The main
difficulty with prior, custom-hardware proposals has been
their inflexibility.  Fabrication processes evolve over
time, with new layers or width/spacing rules being
introduced.  As such, design rule checkers implemented in
hardware must be re-designed and rebuilt to address each

set of changes.  Past hardware DRC approaches avoided
this redesign cycle by accelerating only the basic
primitives of DRC, not the specific rule checks. The
drawback to such approaches is that they accelerate only a
portion of the DRC and do not adequately address the true
compute bottlenecks.

Our proposal notes that while design rules do change over
time and vary between fabrication lines, their fundamental
form remains similar.  Thus, our goal is to design a
general-purpose skeleton for DRC that applies to nearly
all fabrication design rules, and then also to tailor the
rule-checking hardware for a particular fabrication
process.  Tailoring the rule-checks to an individual
process allows for much better speedups and takes
advantage of the inherent flexibility of configurable
hardware. At the same time, the reconfigurations are
likely to be infrequent enough (every 6-12 months) that
the FPGA reconfiguration times have essentially no
impact on performance.

This paper presents our configurable hardware accelerator
for design rule checking.  In order to take the best
advantage of the special characteristics of FPGAs, we
have also developed a new DRC methodology that we
present here.  This edge-endpoint-based approach reduces
the storage and sorting requirements for processing the
layout files compared to prior work.  This makes the
approach particularly amenable to FPGAs and also
reduces the cost considerably. Our evaluations of the
DRC architecture indicate that it offers speedups of 25X
or more over software approaches.

The remainder of the paper is structured as follows.
Section 2 gives background on design rule checking and
surveys prior work on its hardware acceleration. Section 3
then gives an overview of our edge-endpoints-based
approach, while Section 4 focuses in more detail on the
resulting hardware DRC architecture.  In Section 5, we
offer a case study on how to apply our architecture to a
specific fabrication technology example: the MOSIS
SCN4M_SUBM process. Based on this example, Section
6 presents synthesis results and performance evaluations.
In Section 7, we present the hardware prototyping with



Pamette, Finally, Section 8 discusses the future work, and
Section 8 presents our conclusions.

2. Design Rule Checking: Background and
Related Work

Design Rule Checking takes as input a low-level
description of the mask layers and features required for a
particular VLSI design.  Such data is produced by the
CAD tool on which the layout was created. The goal of
DRC is to identify places in the VLSI design in which
design rules, such as the spacing between two features or
the width of a wire, have been violated. Specifying design
rules in terms of a parameterized width factor, typically
referred to as lambda, sometimes allows the same design
rules to be used as the feature size of the process changes.
In spite of this, design rules change frequently and many
fabrication processes, particularly in the sub-micron
domain, will have subtly different design rules.  Section 5
discusses the MOSIS SCMOS design rules on which our
current implementation is based.

There are two major types of design rule checking
methods [2,3]. Bitmap methods were widely used in early
approaches. The layout is rasterized into a grid of square
cells, with each mask layer represented by a separate bit
in each cell. Bit maps are attractive because of the
simplicity of some operations such as Boolean operations
(AND of two masks, for example) and space/width
checking. Many bit map approaches are based on Baker’s
algorithm [2]. This algorithm uses a 3 × 3 window to do
the checking when minimum width is 2 and a 4 × 4
window to do the checking when minimum width is 3.
There are, however, disadvantages to bitmap approaches.
The first one is that bitmap approach requires processing
a large amount of data; this requires large amounts of
memory bandwidth and high parallelism in order to
produce results with acceptable performance. In [3],
special hardware “expands” the layer data on-the-fly into
bitmaps to shrink intermediate storage requirements;
nonetheless, the total amount of data being processed
remains the same. The second disadvantage is that in a
design system where the grid spacing (i.e., the minimum
feature spacing) is much smaller than the minimum
feature size, we need a much larger window size to check
for width or spacing errors. If this is the case, significant
time will be spent comparing error templates with
windows [4].

Edge-based approaches, on the other hand, use edges to
represent regions in each mask layer.  This helps to
reduce the amount of data needed in general and is less
dependent on the mask resolution. Kane and Sahni [5]
proposed a one-dimensional systolic architecture for
design rule checking for Manhattan structures, with only

horizontal and vertical features. The edge files are divided
into horizontal edges and vertical edges and each set is
processed independently. Horizontal edges are checked
for vertical width errors and horizontal spacing errors;
vertical edges are checked for horizontal width errors and
vertical spacing errors. The main disadvantage of this
approach is that it requires non-deterministic amounts of
hardware. The length of the systolic array is roughly
determined by the number of horizontal edges along a
horizontal line and this number varies significantly among
different parts of the whole design.

Most of the edge-based approaches instead use variations
on scanline algorithms [1][6]. The mask layer data are
transformed into an edge file that contains all non-vertical
edges in the mask. Each edge is described by a pair of
points, (Xmin, Ymin) and (Xmax, Ymax) along with an
Orientation field indicating if the edge borders the region
from above or below. Additional layer information is
needed when multiple layers are handled together. The
edges are sorted in a canonical order, by non-decreasing
order of slope within ymin and xmin, before processing. A
vertical scanline sweeps horizontally across the whole
mask and only stops at the X-coordinates of all the edge
endpoints. Edges that intersect the current scanline are
then processed. This approach requires less hardware than
previously-discussed approaches.

3. An Edge-Endpoint-Based DRC Approach

The method we propose is focused on DRC for
Manhattan structures. DRC with non-Manhattan
structures increases complexity considerably.  Since wires
can intersect at arbitrary angles, it requires multiplications
and divisions (generally implemented in floating point) to
calculate intersecting points. This reduces its applicability
to configurable hardware.  For this reason, we focus here
on accelerating DRC for Manhattan structures; in designs
containing non-Manhattan regions, we could separately
run software DRC on these regions, while using
configurable hardware for the strictly Manhattan regions.

We use a variant of the scanline algorithm discussed in
the previous section, rather than directly implementing the
previously-described algorithm, for several reasons
described below:

a. First, edge-based processing leads to a fairly wide
datapath. For Manhattan structures, we need at least 3
coordinate fields (Xmin, Xmax and Y) for each edge: two
X-coordinates for beginning and ending points and
one Y-coordinate for the edge. If each coordinate
takes 18 bits as we use now, we need at least 54 bits
just to store these three coordinates. This imposes



constraints on FPGA size and overall system cost and
performance.

b. Second, some design rules require the generation of
intermediate (or “working”) layers that are Boolean
transformations of true layers.  When an intermediate
layer is generated in an edge-based algorithm, its
edge file is not in canonical order, since the edge with
the smallest X-coordinate of its ending point leaves
the pipeline first. Thus an intermediate sort is needed
[1]. This adds complexity to the control and data flow
in the hardware system and extra hardware cost for
temporary storage. Our variant algorithm avoids the
need for these costly intermediate sorts.

c. Third, we know of no prior work that fully addresses
the edge-reconciliation problem [7]. A general
method to obtain computational parallelism in DRC
is to cut each mask layer into pieces and process each
piece individually. This is possible both in bit-map
approaches and edge-based algorithms. Spurious
width/spacing errors, however, could be generated by
the DRC system because some regions are split into
pieces. Sewing regions back together imposes non-
trivial performance overhead (especially for edge-
based approaches) when the mask is divided into
many small pieces.

For the above reasons, we propose a new approach that is
amenable to configurable hardware and capable of
solving the problems in b) and c).

Our approach assumes a “virtual” scanline that passes
over the mask layers, checking relevant design rules as it
goes. As the scanline passes over the mask, it takes note
of features like edges and their endpoints. In order to
check vertical spacings or widths, the scanline will be
oriented vertically, as shown in Figure 1 and will scan
horizontally across the mask. In order to check horizontal
spacings or widths, the mask is rotated by 90 degrees

counterclockwise and the scanline passes over it again. In
reality, since we are focused on design rule checking
before fabrication, no true scanning occurs, but rather the
features of the mask are extracted in a particular order
from the layout file generated by the CAD tool.

Our method uses an edge-endpoint-based representation.
That is, we categorize all the edges in a mask layer into
horizontal edges and vertical edges and their endpoints
are processed separately. By doing this, we can solve the
problems mentioned above. From this point on, we will
only talk about how to process the endpoints associated
with horizontal edges. Endpoints associated with vertical
edges will be processed in exactly the same way after the
mask is rotated.

3.1 Representation

An endpoint is represented in the following format:

The Y-coordinate field represents the Y-coordinate of the
edge endpoint. The Layer field indicates the layer this
endpoint belongs to. The O bit indicates the orientation of
the edge with which the endpoint is associated. O = ‘0’ if
the edge is a forward edge, i.e. the edge borders the
region from above; O = ‘1’ if the edge is a backward
edge, i.e. the edge borders the region from below. The D
bit indicates the direction of the current endpoint. D = ‘0’
if the endpoint is the starting endpoint of the associated
edge. D = ‘1’ if the endpoint is the ending endpoint of the
associated edge. The P bit indicates if the endpoint has
been processed before. For the endpoints generated from
mask layer data, P = ‘0’ and X-extension = 0. We will
further discuss the P bit and X-extension fields later in
this section.

We maintain the endpoints in a canonical order. All the
endpoints are sorted in increasing order by X-coordinate,
Y-coordinate, layer and orientation. Two endpoints in the
initial edge file “cancel” if they only differ in the D bit.
That is, after endpoints are sorted, they are divided into
groups with the same X-coordinate.  Within each group
they are sorted in increasing order by their first three
fields. Note in the endpoint representation, there is no X-
coordinate information. Instead, a special endpoint of
layer 0 is inserted before each endpoint group of the same
X-coordinate and it records the X-coordinate value in its
Y-coordinate field.

3.2 Scanline Maintenance

Current Scanline

Figure 1: Example mask layer with scanline.

Y-coordinate Layer O D P X-extension

Figure 2 Endpoint Format.



When the scanline is at a particular x coordinate Xc, we
categorize and sort pending edges as follows:
1) Xmin = Xc, i.e., the edge starts from this scanline.
2) Xmax = Xc, i.e., the edge ends at this scanline.
3) Xmin < Xc < Xmax, i.e. the edge intersects this scanline.

Endpoints from the first two categories are called new
endpoints with P = ‘0’ since they have never been
processed before. The points of the third category,
however, are “inherited” from the previous scanline. Each
time a category-1 edge startpoint is processed, it is passed
along to the next scanline. This point inherits all the
information from the starting endpoint except that now P
= ‘1’ since they have been processed before. We refer to
these points as old points. Old points are removed from
the scanline when they meet the ending endpoints
(category 2) of the edge.

3.3 Scanline Processing

Endpoints of the current scanline, after being merge-
sorted with old points inherited from the previous
scanline, stream into the processing unit as shown in
Figure 3. Generally speaking, there are several processing
steps, as described below.

3.3.1 Selecting True Points

In the input data from the CAD tool, there can be
overlapped and coincident regions in some layers. These
regions should be logically ORed to get the final region
profile (see Figure 4). A point, whether it is an old point
or a starting/ending endpoint of an edge, is called a true
point, following Lauther’s terminology [11], if it is on the
boundary of  the final region. A true point is called a true
endpoint, if it is one of the endpoints of the final region.
Thus we need to select out the true points and only
consider them in the design rule checking.

To help select the true points, we keep two counters for
each layer: LC and RC. When a point enters the
processing unit, the counters corresponding to its layer are
updated in the following way:

if (input point is a forward point)
  switch (input point)
    case “old point”: LC ++ ; RC ++ ; break;
    case “starting endpoint”: RC ++ ; break;
    case “ending endpoint”: LC ++ ; break;
else /* input point is a backward point */
  switch (input point)
    case “old point”: LC −− ; RC −− ; break;
    case “starting endpoint”: RC −− ; break;
    case “ending endpoint”: LC −− ; break;

Figure 4 illustrates the counter update process. Point C is
a forward old point, thus both LC and RC are
incremented. Point A is a backward starting endpoint,
thus RC is decremented. Point B is a backward ending
endpoint, thus LC is decremented.

LC indicates if the area on the left side and below the
current position is inside or outside the final region. If LC
> 0, the left side below the current position is inside the
final region; if LC = 0, the left side below the current
position is outside the final region. LC should never be
less than zero, however, unless there is an error in the
endpoint file. RC similarly indicates the situation on the
right side of the current position. In Figure 4, we can see
that both the left side and right side below point C is
inside the region, since LC > 0 and RC > 0. At Point A,
the left side below it is inside the region and the right side
below it is outside the region, since LC > 0 and RC = 0.
Both the left side and right side of point C is outside the
region, as indicated by LC = 0 and RC = 0.

Special care has to be taken when dealing with coincident
points. In considering two coincident points, the forward
point of the two should always be sent to the processing
unit; this lets us know that these two regions “overlap”. In
our approach, this ordering is guaranteed by the canonical
order of the endpoints.

Figure 4 Selecting True Points.

0 0
11

2

1 2

0

1

0A
B

A
B

C C

Merge

Buffer 0,1

Memory for
Intermediate

Layer

Figure 3 Basic Processing Unit.

Error
Memory

Checking

FIFO

PCI Interface
I/O Bus

DMA



Thus a point is a true point if it changes the “inside the
region” or “out of the region” status on either or both
sides of the scanline. In Figure 4, A, B and C are the true
points of the current scanline. A true point is a true
endpoint if it changes the “inside the region” or “out of
the region” status only on one side of the scanline. In
Figure 4, A and B are true endpoints and C is not.

3.3.2 Checking Design Rules

Design rule checking boils down to different instances of
width checking. Space checking of a specific mask layer,
for example, is equivalent to width checking on the
inverse of such a mask. Other types of checking, such as
minimum overlap, can all be transformed to width-
checking in a similar way. This does not mean, however,
that we have to transform the design to these intermediate
forms before checking these rules. Instead, when multiple
layers are present, all the rules that are associated with
these layers can be checked simultaneously, as we will
see in the example given later in this section.

Design rule checking is also a local problem in that only
“adjacent” regions interact with each other. In a bitmap
approach, this locality is utilized by means of pattern
matching on a two-dimension window. In an edge-based
approach, this locality is utilized by processing only
adjacent true edges along the scanline; this is also true in
our edge-endpoint-based approach. Here adjacency not
only refers to the adjacency within one layer, but among
different layers as well. We define point and edge
adjacency as follows:

Definition Point A from layer I is said to be
adjacent to a point B from layer J (I and J could be the
same) if no other point from layer I or layer J is inside or
on the boundary of the rectangle formed by these two
points. Edge l and m are said to be adjacent if ∃ point A
∈ l and point B ∈ m, such that A and B are adjacent.

Intuitively, consider  two points A and B that are adjacent,
and a third point C that is further from A than B is (and
therefore not adjacent).  Our definition of adjacency

allows us to recognize that design rule violations on these
points can be recognized by comparing A and B only.
Since C is further from A than B is, any design rule it
violates with respect to A will also be violated by B.
(Different adjacencies will be relevant for different layers
and design rules.) Therefore, in our implementation, only
the latest point of each layer along the scanline is stored
in the Y-coordinate register of that layer for comparison
with current true point.

Once a true point from a layer is determined, the checker
circuit for each design rule needs: (1) the Y-coordinate
differences between this point and the latest points of
each layer, and (2) the orientation of this point and the
orientations of the latest points of each layer to find
possible errors.

Figure 5 shows a block diagram of a DRC system for N
and P diffusion layers. Here, there are rules for minimum
width of an N- diffusion, minimum width of a P-
diffusion, minimum spacing between two N-diffusions,
minimum spacing between two P-diffusions and
minimum spacing between an N-diffusion and a P-
diffusion. However, not all the rule checkers are activated
when a true point from N or P layer is filtered out. For
example, when a true point of N-diffusion layer is filtered
out, the rule checker for minimum width of an N-
diffusion is activated only if the latest N point is forward
(ON = 0) and the current N point is backward (O = 1). The
rule checker for minimum spacing of an N diffusion is
activated only if the latest N point is backward (ON = 1)
and the current N point is forward (ON = 0). The rule
checker on spacing between an N diffusion and a P
diffusion is activated only if the latest P point is backward
(OP = 1) and the current N point is forward (ON = 0).
Similar activation criteria apply for all the other design
rule checkers.

3.3.3 Handling Other Cases Using Virtual Edges

The design rule checking hardware described above is
able to find all the design rule errors along a scanline.
Thus if all the vertical and horizontal scanlines are
processed, we should be able to find all the errors along
any vertical or horizontal line. Our design would be
complete now except for a special type of error, shown in
Figure 6.

In Figure 6, the central box has spacing errors with the
surrounding four boxes.  That is, if we expand the central
box by the minimum space d, the expanded region (the
dotted box in the center) will intersect all four boxes.
However, this case escapes our DRC hardware thus far
since no scanline will cross both the edges from the
central box and the four boxes around it. Thus a natural

O DY-coordinate

Counter
Update

DIFFN = Y − YN

N width, spacing
P width, spacing

N&P spacing

Figure 5 Checking Unit for N and P Layers.

YN & ON
Updated if Y⊆ N & Y is true.YP & OP

Updated if Y⊆ P & Y is true.

DIFFP = Y − YP

Layer

Layer
Matching

YN

YP

O

ON

OP



way to solve this problem in our existing hardware
framework is to extend some edges of the central box or
the boxes around it by d, so that scanline processing will
be able to find the error. We call these extended edges
virtual edges. Each point on a virtual edge is a virtual
point.

A virtual point inherits the Y-coordinate, Layer and
Orientation information from the edge that generates it.
Virtual points are old points, so P = ‘1’. We use the D bit
to differentiate virtual points and normal points. If D =
‘0’, it is a virtual point; if D = ‘1’, it is a normal point.
Unlike normal points that are automatically cancelled
when they meet the ending endpoints, virtual points
expire according to their X-extension bits. When the
virtual point is first generated, the X-extension bits record
the value of d. Assume the scanline moves to the right by
d’ after the current scanline has been processed, then the
X-extension bits of all the virtual edges are updated by
subtracting d’ from themselves. If the value of the X-
extension bits is less than or equal to zero, the
corresponding virtual edge is cancelled. When multiple
layers exist in the system, we set d to the value of the
largest value of minimum width/spacing requirement
concerning this layer.

In order to minimize the number of virtual edges and to
better accommodate virtual points in our method, we only
generate virtual edges when:
1) The right side of a forward true ending endpoint is

outside the region. This is used for space checking;
OR

2) The right side of a backward true ending endpoint is
inside the region. This is used for width checking.

Thus in Figure 6, only B and D are generated as
horizontal virtual edges, only A and C are generated as
vertical virtual edges (Rotate the picture by 90 degree
counterclockwise). Q will not be generated. Furthermore,
we stipulate that a virtual edge never updates the Y-
coordinate register of its layer.

3.3.4 Flagging Errors

To avoid flagging the same error many times, an error
between current point and a latest point should only be
flagged in the following two cases:
1) The current point is a true starting endpoint
2) The latest point is a starting endpoint and the current

point is either a true point or a virtual point.

The design rule checking system we describe above will
find all the design rule errors between adjacent edges and
will not generate repetitive errors.  A proof of this claim
can be found in [11].

3.3.5 Generating Intermediate Layers

Sometimes intermediate layers are needed for further
design rule checking. For example, a gate “layer” is
usually involved in many design rules but is not explicitly
a layer in the layout file.  In such cases, special working
layers are generated for checking several design rules.
Such layers are often Boolean transformations on true
design layers. Thus points can be selected using the
techniques described in 3.3.1. Unlike traditional edge-
based hardware systems, the intermediate layers
generated here are in canonical order; thus they can be
further processed while they are being generated.

3.4 Exploiting Parallelism

Each mask layer can be sliced in vertical directions when
dealing with horizontal edge endpoints (Figure 7) and in
horizontal directions when dealing with vertical edge
endpoints. Each slice can be individually processed. Since
all virtual edges crossing the cut disappear from the slice
on the right, we need to extend each slice a length d to
ensure that these virtual edges are properly checked. Here
d is the maximum length of all the virtual edges, which is
equivalent to the largest minimum width/spacing required
in all the design rules. We thus expect a performance
penalty of d/s, where s is the width of each resulting slice.

Edge reconciliation does not impose a big problem for our
system since errors are only checked along the scanline
direction. No spurious error will be generated by our
system. Repetitive errors will be generated in the

d

Figure 7 Mask Slicing.

D

BA

C

Q

Figure 6 Virtual Edges.

d



overlapped region. They can be easily removed by
“ORing” the errors collected from all slices.

4. Hardware Architecture

Our hardware architecture is composed of one or more
basic processing units (Figure 3). Each basic processing
unit resembles the hardware architecture described in [1].
The Memory in Figure 3 gets the edge endpoints (i.e. new
endpoints) from mask layers and the buffers store the
“inherited” endpoints (i.e. old endpoints) from the
previous scanline. Since the processing unit generates the
old points for the next scanline while consuming the old
points generated by the previous scanline, we keep two
buffers. Buffer 0 is being read while buffer 1 is being
written and vice versa.

A Merge unit is used to maintain the scanline. Since both
the data from the memory and from the buffer are in their
canonical order, the merge unit does a simple two-way
merge sort to generate the final data stream for
processing.  In addition, the merge sort unit also takes
care of “retiring” old points and virtual points. As
mentioned in Section 3.2, old points are removed when
they meet the ending endpoints. Each old point has the
same representation as the corresponding ending endpoint
except for the P bit, which is the least significant bit in
comparison; thus it will definitely meet the ending
endpoint in the merge unit and it will be cancelled then.
For virtual points, as mentioned in Section 3.3.3, the X-
extension bits of the virtual points are updated in the
merge unit, and virtual points are cancelled if X-extension
bits are less than or equal to zero.

The checking unit is different from each basic processing
unit. Its basic structure is shown in Figure 5. For each
layer, we need a set of counters and an additional
subtractor. Thus the hardware cost grows almost linearly
with the number of layers we send to each checking unit.
The only exception is the number of design rules
involved. If all layers processed by a checking unit
interact with each other, the number of design rules is
roughly quadratic to the number of layers.

When an intermediate layer needs to be generated, the
data from the checking unit will be fed into the memory
of one or more subsequent basic processing units.
Temporary storage is required to store this intermediate
layer. The merge unit of the subsequent processing units
should be able to get the data from its own memory and
from this temporary storage and does a preliminary merge
sort to keep the new endpoints in canonical order.

5. Design Rules Analysis

Based on the hardware architecture described above, we
have done a proof-of-concept implementation for the
MOSIS submicron design rules [10]. In this section, we
analyze the MOSIS submicron design rules and in the
next section, we present our experiment results.

5.1 Introduction to SCMOS Design Rules

For this work, we focused on the MOSIS
SCMOS_SUBM design rules, used for sub-micron
fabrication. There are 27 SCMOS layers possible overall,
but for a specific fabrication process, only a subset of the
above layers are used. We concentrate here on the
SCN4M_SUBM process for digital circuits. This process
is a 0.4µm N-well process with 4 metal layers. Table 1
lists the related design rules for this process and the layers
they involve. Each rule in Table 1 is broken down into
several concrete design rule checks. For example, Rule 1
and Rule 2 are listed in detail in Table 2. In all these rules,
the largest minimum width/spacing in these rules is 18 λ.
This will impact the time that edges and points spend
recirculating through the design rule checker.  The values
of minimum width/spacing specified in the rules are all
multiples of lambda except Rule 5.2 and Rule 6.2 where
half lambda is used.  This granularity impacts the total

Rule 1 – Well N-well, N-high-voltage
Rule 2 – Active Active, N-well, N-high-voltage,

N-plus-select, P-plus-select
Rule 3 – Poly Poly, Active
Rule 4 – Select N-plus-select, P-plus-select,

gate, contact, active
Rule 5 – Contact to Poly contact, Poly, gate
Rule 6 – Contact to Active contact, gate
Rule 7 – Metal 1 metal 1, contact
Rule 8 – Via 1 via 1, metal 1, Poly, active
Rule 9 – Metal 2 metal 2, via 1
Rule 14 – Via 2 via 2, via 1, metal 2
Rule 15 – Metal 3 metal 3, via 2
Rule 21 – Via 3 via 3, metal 3
Rule 22 – Metal 4 metal 4, via 3

Table 1 SCN4M Related Rules and Layers.

Rule Description λ
1.1 Minimum Width of Well 12
1.2 Min Spacing for wells of different potential 18
1.3 Minimum Spacing for wells of same potential 0 or 6
2.1 Minimum Width of Active 3
2.2 Minimum Spacing between active 3
2.3 Source/Drain active to well edge 6
2.4 Substrate/well contact active to well edge 3
2.5 Min spacing between active of different implant 0 or 4

Table 2  SCMOS_SUBM Layout Rules – Well, Active. [10]



number of points that need to be processed for a given die
size.

5.2 Width Analysis

We assume all the endpoints on the layout are on a 0.5λ ×
0.5λ grid. Since λ = 0.2µm, the grid spacing is 0.1µm. If
the maximum die width is 2cm, then we can have at most
2×105 points on a vertical line. Thus we use 18 bits to
store the X and Y-coordinates.

Since there are 14 layers involved in the related design
rules as shown in Table 1, 4 bits are used to store layer
information. Since the largest minimum width/spacing is
18 λ and the grid is 0.5λ, the largest value for X-extension
bits would be 36, so we use 6 bits to store it. From Figure
2, we need 31 bits for an edge endpoint. For simplicity,
we use 32 bits for each endpoint and the one extra bit is
given to the layer field since some intermediate layers
might be generated on the fly.

5.1 Layer Analysis

Theoretically speaking, we could have sorted all the edge
endpoints from all mask layers and sent them through a
large checking unit to figure out all the design rule errors.
However, as mentioned in Section 4, the hardware
requirement grows more than linearly with the number of
layers involved. As shown in Figure 5, each incoming
endpoint’s Y-coordinate is sent to a subtractor. If there are
more than 14 subtractors in our hardware, routing will be
a problem since the Y-coordinate is 18 bits wide. Even if
the routing were possible, we would expect a large delay.

For this reason, our hardware design allows at most 5
layers to be checked by a basic checking unit.

Thus we divide the layers into several groups and process
them independently. From Table 1, we derive the layer
interaction graph shown in Figure 8. An edge is added if
there is a design rule between these two layers. Our
objective is to divide the graph into several cliques such
that each clique has less than 5 layers and the duplicated
layers are minimized.

Here is how we divide the groups:
Group 1: Poly, Active, N+-select, P+-select. Intermediate

layers N-active and P-active are generated.
Group 2: N-active, P-active, N-well, P-well
Group 3: Poly, Active, Contact, Via1
Group 4: Contact, Metal1, Via1, Metal2, Via2
Group 5: Via2, Metal3, Via3, Metal4

6. Experimental Results

To test our ideas, we implemented a general merge unit as
well as a check unit built specifically for Group 2. Since
the merge unit is almost the same among different groups,
we keep the merge unit and the checking unit on two
separate FPGAs.

6.1 Synthesis results

We used the Synopsys fpga_analyzer tool (1998.08) to
generate .sxnf files from our VHDL input and we used
Xilinx Foundation tools (V1.3) for the synthesis. We
targeted our design at the speed of 33 MHz for the merge
and check units and specified this information in the
timing constraint file (.pcf file), where we listed this
requirement for all the critical paths. After successful
placement and routing, the synthesis results we get for the
above design are listed in Table 3. Most notably, our
design fits in a Xilinx 4013 part and achieves the targeted
clock rate for both units.

6.2 Comparison against software

To compare the hardware performance against software,
we wrote a C program for our hardware implementation
and tested it on several small CIF files (see Table 4).
These CIF files were derived by synthesis and place-and-
route of benchmark examples in BLIF format using the
Octtools tool suite from UC Berkeley. We wrote another

Unit Xilinx part
number

CLB
used

Flip-
flops

Pipeline
stages

Speed
(MHz)

Merge XC4013e-2 177 312 4 33
Check XC4013e-2 262 419 4 33

Table 3 Synthesis Results for Merge and Checking Unit.

N+-select

Metal 4

Via 3

Metal 3

Via 2

Metal 2

Via 1

Metal 1

Contact

Poly P+-select

ActiveN-Well N-volt

Figure 8 Layer Interaction Graph.



converter to convert the CIF files to our input format.
Since the hardware we have implemented only performs
design rule checking on N-well, N-high-voltage, N-active
and P-active layers, we extracted from the CIF file the
endpoints of these layers and sorted them in their
canonical order. The resulting file is the input for both our
software and hardware.

To optimize the software performance, we used an integer
for each of the fields in the endpoint. We also tried to
replace as conditional jumps by Boolean operations
wherever possible. We compiled our software on an SGI
workstation running IRIX 6.3 IP32 system V with “cc –
O3” where global optimizations and procedure inlining
are performed by the compiler. Then we used pixie to
instrument the code based on basic blocks and prof –pixie
–invocations to collect the data on total number of points
being processed and software cycles and execution time
in Table 4. We ran the software on an SGI O2 workstation
with a single 4-way superscalar MIPS R10000 processor
running at 150MHz. Pixie uses the instruction scheduling
model of this processor to obtain the data on software
cycles and execution time. The cycles per instruction
(CPI) obtained by pixie is 0.881, but since pixie is unable
to perform instruction scheduling bigger than a basic
block, we expect the true CPI to be higher. The last
column in the table shows the projected speedup over the
software run on a MIPS R10000 processor, if it were
clocked at 500MHz rather than 150MHz.

From this table we can see, by using the hardware
acceleration, we expect to achieve an average hardware
speedup of 93.6 times (excluding C17) over the software
run on a 150MHz MIPS R10000 processor and an
average hardware speed up of 28.0 times (excluding C17)
over the software run on a 500MHz MIPS R10000
processor.

7. Hardware Prototyping on a Pamette

The implementation and performance results presented
thus far represent VHDL designs and simulations.  We
have also mapped our design to the PCI Pamette board
[12] for hardware prototyping. The Pamette hardware
architecture is somewhat different from our ideal
hardware architecture described in Section 4. Figure 9
depicts how the design originally shown in Figure 3 is
mapped to the four XC4010e FPGAs (i.e. LCA0 - LCA3)
of the Pamette. We put the merge unit on LCA0 and the
check unit on LCA1. Instead of building two buffers for
storing old points, we configure LCA2 to be a
synchronous FIFO 256 entries deep. LCA3 is used to pass
the old points generated from the Check unit (LCA1) to
the FIFO (LCA2).

We first configure the LCAs on the Pamette to download
input endpoints into the SRAM0 on the board through the
PIF, the PCI interface. Then we reconfigure the board to
our design to process these input points. The Merge unit
reads new endpoints from SRAM0 and old points from
the FIFO and outputs the current scanline point stream to
the Check unit. Check unit performs rule check on this
point stream, sends design rule errors to SRAM1 and
writes the old points to the FIFO through LCA3. When
the whole process is complete, the board is reconfigured
again to read the errors from SRAM1 to the host machine.

PIF

LCA0
(Merge)

LCA2
(FIFO)

LCA3
(Pass)

PCI
BUS

SRAM 1

SRAM0

clock

Download/
Readback

Figure 9 DRC block diagram on a Pamette Board.

64 36

16

16

40 20

36

36

Pamette board

LCA1
(Check)

CIF files # of
scan
lines

# of
input
points

# of total
points

 Ratio of
total pts/
input pts

# of soft-
ware cycles

by pixie

 Cycle Ratio
of software /

hardware

Software
runtime
by pixie

Hardware
runtime

Hardware
speedup

(150Mhz)

Hardware
speedup

(500Mhz)
C17 25 229 863 3.77 : 1 567327 657.39 2.71ms 0.0259ms 105 37.2

C432 52 1340 7859 5.86 : 1 4259747 542.02 22.12ms 0.2358ms 93.8 28.1
C499 37 1029 5506 5.35 : 1 3052718 554.43 15.53ms 0.1652ms 94.0 28.2
C880 44 1144 6482 5.67 : 1 3540159 546.15 18.24ms 0.1945ms 93.8 28.1
C1355 37 1029 5506 5.35 : 1 3052718 554.43 15.53ms 0.1652ms 94.0 28.2
C1908 40 1228 7017 5.79 : 1 3814853 543.66 19.68ms 0.2105ms 93.5 28.0
C2670 45 1517 8938 5.89 : 1 4806229 537.73 24.93ms 0.2681ms 93.0 27.9
C3540 40 1360 7829 5.76 : 1 4234389 540.86 21.85ms 0.2349ms 93.0 27.9
C5315 54 1518 8820 5.81 : 1 4775876 541.48 24.72ms 0.2646ms 93.4 28.0
C6288 48 1296 7311 5.64 : 1 3993868 546.28 20.55ms 0.2193ms 93.7 28.1

Table 4 Experiment Results.



As shown in Figure 9, the bus width between LCA3 and
LCA2 is only 20 bits wide. Among these 20 bits, only 16
bits can be used freely, the other 4 bits have some
restrictions which make them hard to be utilized by our
application. Since we need at least one bit for the
“write_enable” signal on the FIFO, the representation for
old points has to be less or equal than 15 bits wide. Based
on data width analysis of the benchmarks shown in Table
4, we tailored our original point representation (see Figure
2) as follows. We use 7 bits for Y-coordinate, 2 bits for
Layer, 1 bit each for Orientation and Direction and 4 bits
for X-extensions. Since bit P is always ‘1’ for old points,
we omit the bit P in this representation.

Pamette board has three modes [12]: static mode,
transaction mode and miscellaneous mode. In our runtime
implementation, we used static mode throughout the
process and we used clkusr [13] to provide a  33MHz
clock for the four LCAs. The correctness of the board has
been verified by running through our entire suite of test
examples.

8. Future Work

While the Pamette board is useful as a proof-of-concept,
we ultimately intend to build a specialized FPGA board
for design rule checking.  This board will have sufficient
data buffering to handle large designs, and can also
include several FPGAs in order to check a number of
design rules in parallel.

This paper has focused on Manhattan structures in which
all lines are either horizontal or vertical, and proposes that
non-Manhattan structures be handled via software DRC.
We are currently considering the hardware costs of
handling special cases of non-Manhattan structures in
hardware.  For example, edges intersecting at 45-degree
angles are the most commonly allowed non-Manhattan
structure.  The constrained geometry of these 45-degree
angles greatly eases their intersection calculations.  In
such a process, all the geometric structures can be
comprised of either quadrilaterals or isosceles triangles,
and the spacing computations require no floating point
calculations; spacings can be inferred from manipulations
of known wire lengths.

9. Conclusions

Because of the intrinsic similarity between different
design rules [9], we have showed in this paper that
hardware checking system for different design rules can
be accommodated in a general scalable architecture. The
variation between design rules of different fabrication
processes makes configurable hardware an ideal candidate
for the rule-checking unit in our general architecture. This

paper describes and validates an edge-endpoint-based
geometry checking method for Manhattan structure, that
is amenable to configurable hardware implementation. In
comparison with previous edge-based methods, our
technique uses a smaller datapath width, simplifies data
flow control and easily handles the edge reconciliation
problem.

As a verification of this general architecture, we analyzed
the design rules of SCN4M_SUBM process from MOSIS
and implemented the essential hardware for checking a
subset of the design rules. The final hardware system runs
at 33 MHz and offers a speedup of more than 25X over
the conventional software run on the state-of-the-art
microprocessors.

References

[1] Eric C. Carlson and Rob A. Rutenbar, “A Scanline Data
Structure Processor for VLSI Geometry Checking”, IEEE
Trans. computer-aided design, vol CAD-6, NO. 5, Sep. 1987

[2] C.M. Baker, “Artwork Analysis Tools for Integrated
Circuits”, MIT/LCS/TR-239, Master’s Thesis, MIT 1980

[3] L. Seiler, “A Hardware Assisted Design Rule Check
Architecture”, Proc. 19th Design Automation Conf., June
1982, pp. 235-238

[4] Steven M. Rubin, “Computer Aids for VLSI Design”, 2nd

edition, Addison-Wesley Publishing Company, 1994.
[5] R. Kane and S. Sahni, “A Systolic Design Rule Checker”,

Proc. 21st Design Automation Conf., Jun 1983, pp. 243-250
[6] T.G. Szymanski and C.J. Van Wyk, “Space Efficient

Algorithms for VLSI Artwork Analysis”, Proc. 20th Design
Automation Conf., June 1983, pp.734-739

[7] George E. Bier and Andrew R. Pleszkun, “An Algorithm for
Design Rule Checking on a Multiprocessor”, Proc. 22nd

Design Automation Conf., June 1985, pp. 299-304
[8] U. Lauther, “An O(N log N) algorithm for Boolean mask

operations”, Proc. 18th Design Automation Conf.,  July 1981,
pp. 555-562

[9] B.W. Lindsay and B.T. Preas, “Design Rule Checking and
Analysis of IC Mask Designs”, Proc. 13th Design
Automation Conf., June 1976, pp. 301-308

[10] MOSIS service, “MOSIS Scalable CMOS (SCMOS)
Design Rules”, Revision 7.2, http://www.mosis.org/New/
Technical/Designrules/dr-scmos72.html

[11] Zhen Luo, Margaret Martonosi, and Pranav Ashar, “A
Configurable Hardware Design Rule Checker”, Princeton
University Department of Electrical Engineering.  Technical
Report #CE-99-1.

[12] Mark Shand, “PCI Pamette: Generic PCI Board”, http://
www.research.digital.com/SRC/pamette/

[13] Mark Shand, “PCI Pamette user-area interface for firmware
V1.9”, http://www.research.digital.com/SRC/pamette/


