
Accelerating Pipelined Integer and
Floating-Point Accumulations in Configurable
Hardware with Delayed Addition Techniques

Zhen Luo and Margaret Martonosi, Senior Member, IEEE

AbstractÐThe speed of arithmetic calculations in configurable hardware is limited by carry propagation, even with the dedicated

hardware found in recent FPGAs. This paper proposes and evaluates an approach called delayed addition that reduces the carry-

propagation bottleneck and improves the performance of arithmetic calculations. Our approach employs the idea used in Wallace trees

to store the results in an intermediate form and delay addition until the end of a repeated calculation such as accumulation or dot-

product; this effectively removes carry propagation overhead from the calculation's critical path. We present both integer and floating-

point designs that use our technique. Our pipelined integer multiply-accumulate (MAC) design is based on a fairly traditional multiplier

design, but with delayed addition as well. This design achieves a 72MHz clock rate on an XC4036xla-9 FPGA and 170MHz clock rate

on an XV300epq240-8 FPGA. Next, we present a 32-bit floating-point accumulator based on delayed addition. Here, delayed addition

requires a novel alignment technique that decouples the incoming operands from the accumulated result. A conservative version of

this design achieves a 40 MHz clock rate on an XC4036xla-9 FPGA and 97MHz clock rate on an XV100epq240-8 FPGA. We also

present a 32-bit floating-point accumulator design with compiler-managed overflow avoidance that achieves a 80MHz clock rate on an

XC4036xla-9 FPGA and 150MHz clock rate on an XCV100epq240-8 FPGA.

Index TermsÐDelayed addition, accumulation, multiply-accumulate, MAC, FPGA.

æ

1 INTRODUCTION

WHEN an arithmetic calculation is carried out in a RISC
microprocessor, each instruction typically has two

source operands and one result. In many computations,
however, the result of one arithmetic instruction is just an
intermediate result in a long series of calculations. For
example, dot product and other long summations use a
long series of integer or floating-point operations to
compute a final result. While FPGA designs often suffer
from much slower clock rates than custom VLSI, configur-
able hardware allows us to make specialized hardware for
these cases; with this, we can optimize the pipelining
characteristics for the particular computation.

A typical multiplier in a full-custom integrated circuit

has three stages. First, it uses Booth encoding to generate

the partial products. Second, it uses one or more levels of

Wallace tree compression to reduce the number of partial

products to two. Third, it uses a final adder to add these

two numbers and get the result. For such a multiplier, the

third stage, performing the final add, generally takes about

one-third of the total multiplication time [8], [9]. If

implemented using FPGAs, stage 3 could become an even

greater bottleneck because of the carry propagation pro-

blem. It is hard to apply fast adder techniques to speed up

carry propagation within the constraints of current FPGAs.

In Xilinx 4000-series chips, for example, the fastest 16-bit

adder possible is the hardwired ripple-carry adder [19]. The
minimum delay of such an adder (in a ÿ9 speed grade
XC4000xla part) is more than four times the delay of an
SRAM-based, 4-input look-up table that forms the core of
the configurable logic blocks. Since this carry propagation is
such a bottleneck, it impedes pipelining long series of
additions or multiplies in configurable hardware; the carry-
propagation lies along the critical path, it determines the
pipelined clock rate for the whole computation. Our work
removes this bottleneck from the critical path so that stages 1
and 2 can run at full speed. This improves the performance
of dot-products and other series calculations.

As an example, consider the summation C of a vector A:
C �P99

i�0 A�i�. Our goal is to accumulate the elements of A
without paying the price of 99 serialized additions. We
observe that, in traditional multiplier designs (e.g., the
multiply units of virtually all recent microprocessors [15],
[16]), Wallace trees are used to ªaccumulateº the result in an
intermediate format. Our work proposes and evaluates
ways in which similar techniques can be used to replace
time-consuming additions in series calculations with
Wallace tree compression. The technique is applicable to
configurable hardware because, in a dynamically configur-
able system, it is practical to consider building specific
hardware for dot-products or other repeated calculations.
The technique is effective for configurable hardware because
it removes addition's carry propagation logic from the
critical path of these calculations, thus allowing them to be
pipelined at much faster clock rates.

By using Wallace trees to accumulate results without
carry propagation overhead, we can greatly accelerate both
integer and floating-point calculations. We demonstrate our

208 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000

. The authors are with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544-5263.
E-mail: {zhenluo, mrm}@ee.princeton.edu.

Manuscript received 15 Oct. 1998; accepted 1 Mar. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 108042.

0018-9340/00/$10.00 ß 2000 IEEE

ideas on three designs. The first design is an integer unit
that performs pipelined sequences of MAC (multiply-
accumulate) operations; this pipelined design operates at
a 72 MHz clock rate on an XC4036xla-9 FPGA and 170MHz
clock rate on an XV300epq240-8 FPGA. The second and
third designs perform floating-point accumulations (i.e.,
repeated additions) on 32-bit IEEE single-precision format
numbers. One of them uses a conservative stall technique to
respond to possible overflows; it operates at 40MHz on an
XC4036xla-9 FPGA and 97MHz on an XV100epq240-8
FPGA. The other sign relies on compiler assistance to avoid
overflows by breaking calculations into chunks of no more
than 512 summation elements at a time. This approach
yields an 80MHz clock rate on an XC4036xla-9 FPGA and
150MHz clock rate on an XCV100epq240-8 FPGA for 32-bit
IEEE single-precision summations. These clock rates in-
dicate the significant promise of this approach in imple-
menting high-speed pipelined computations on FPGA-
based systems.

The remainder of this paper is structured as follows:
Section 2 introduces the basic idea of Delayed Addition
calculation and presents a design for a pipelined integer
multiply-accumulate unit based on this approach. Section
3 moves into the floating-point domain, presenting a
design of a pipelined 32-bit floating-point accumulator
with delayed addition. Building on this basic design,
Section 4 then presents the floating-point accumulator
with compiler-managed overflow avoidance. Section 5
discusses issues of rounding and error theory related to
these designs, Section 6 presents related work, and
Section 7 provides our conclusions.

2 DELAYED ADDITION IN A PIPELINED INTEGER

MULTIPLY-ACCUMULATOR

2.1 Overview

A multiply-accumulator unit consists of a multiplier and an
adder. For adders of 16 bits or less implemented in Xilinx
FPGAs, the hardwired ripple-carry adder is the fastest. For
adders more than 16 bits long, a carry-select adder is a good
choice for fast addition in FPGA. It uses ripple-carry adders
as basic elements and a few multiplexers to choose the
result. Thus, it can still utilize the hardwired ripple-carry
logic on FPGA to achieve relatively high speed.

Most of the multipliers that have been implemented so
far in FPGAs are based on bit-serial multipliers [2], [14].
This is because bit-serial multipliers take much less area
than any other kind of multipliers. Since they have a regular
layout, it is easy to map on an FPGA to achieve very high
clock rate. However, bit-serial multiplier requires a very
long latency to produce a result. For two multiplicands of M
and N bits long, it takes M + N clock cycles to get the
product [7]. Although some implementations have tried to
relieve this problem by multiplying more than one bit per
cycle [2], we know of no such implementations with an
overall throughput of more than 10MHz.

Bit-array multipliers also have a regular layout, which
makes it easy to map on FPGA and to achieve high clock
rates [3]. Unlike bit-serial multipliers, these produce one
product every cycle. Thus, they can achieve a very high

throughput at the price of large area cost. In the case of a 32-
bit integer MAC with a 64-bit final result, we would expect
to have a bit-array multiplier of 63 pipeline stages for
multiplication and one more pipeline stage for accumula-
tion. Thus, we would need a 64� 64 CLB matrix to
implement it [3]; this is too big an area cost.

Our design, as we will see next, has comparable
performance to bit-array multiplier for vector MAC and is
much more area efficient.

2.2 Background on Wallace Trees

Before continuing on detailed designs, we will first give a
brief review on some basics of Wallace tree [10] and its
derivatives [11]. One level of Wallace tree is composed of
arrays of 3-2 adders (or compressors). The logic of a 3-2 adder
is the same as a full adder except the carry-out from the
previous bit has now become an external input. For each bit
of a 3-2 adder, the logic is:

S[i] = A1[i] � A2[i] � A3[i];
C[i] = A1[i]A2[i] + A2[i]A3[i] + A3[i]A1[i];
For the whole array, S + 2C = A1 + A2 + A3

S and C are partial results that we refer to in this paper as
the pseudo-sum. They can be combined during a final
addition phase to compute a true sum. The total number
of inputs across an entire level of a 3-2 adder array is the
same as the bit-width of the inputs. Fig. 1a shows the layout
of such an array example.

In some Wallace tree designs, 4-2 adder arrays have also
been used because they reduce the number of compressor
levels required [11]. Each bit of such an array is composed
of a 4-2 adder. The typical logic is:

Cout[i] = A1[i]A2[i] + A2[i]A3[i] + A3[i]A1[i] ;
S[i] =A1[i] � A2[i] � A3[i] � A4[i] � Cin[i];
C[i] = (A1[i] � A2[i] � A3[i] � A4[i])C_in[i]
+ (A1�i� �A2�i� �A3�i� �A4�i�)A4[i];
For the whole array, S + 2C = A1 + A2 + A3 + A4

Fig. 1b shows the layout of an array example using 4-2
adders. At first glance, one might initially think that Cin and
Cout are similar to the carry-in and carry-out in the ripple-
carry adders. The key difference, however, is that Cin does
not propagate to Cout. The critical path of an array of 3-2 or
4-2 adders is in the vertical, not horizontal direction.
Furthermore, the logic shown maps well to coarse-grained
FPGAs. With Xilinx 4000-series parts, we can fit each S or C,
for either a 3-2 or 4-2 adder, into a single CLB using the F, G,
and H function generators.

2.3 Design of Integer MAC with Delayed Addition

For an integer MAC unit, the implementation is straightfor-
ward because integers are fixed-point and are therefore
aligned. Our design looks exactly like a traditional multi-
plier design with Booth encoding and Wallace tree except
that a 4-2 adder array is inserted into the pipeline before the
final addition. This MAC unit takes in two 32-bit integers as
input and produces a 64-bit accumulated result. It is quite
common for a MAC unit to have a wider bit-width
accumulated result than its input operands in DSP
processor designs. For example, in [26], the accumulated

LUO AND MARTONOSI: ACCELERATING PIPELINED INTEGER AND FLOATING-POINT ACCUMULATIONS IN CONFIGURABLE HARDWARE... 209

result is 24 bits while the two input operands are all 16 bits.
To achieve accumulation, we repeatedly execute:

Pseudosum � Pseudosum

� �the final two partial products of each multiplication�:
Recall that pseudosum refers to the S and C values

currently being computed by a 3-2 or 4-2 adder array,
awaiting the final addition that will calculate the true result.
Fig. 2 shows a block diagram of our implementation.

Each level of a Wallace tree has a similar delay and this
delay is also similar to that of a Booth encoder. Thus,
considering in Fig. 2, a natural way to pipeline this design is
to let each level of logic (above the dotted line) be one of the
pipeline stages. The well-matched delays make for a very
efficient pipelined implementation. The final compressor,
just above the dotted line, stores and updates the
pseudosum every cycle. When the repeated summation is
complete, a final add (not part of the pipeline) converts this
intermediate form to a true sum result.

The pseudosum is updated each cycle, but the final
adder is only used when the full accumulation is done.
Therefore, it is not one of the pipeline stages, but, rather,
constitutes a postprocessing step, as shown in Fig. 3. With
this structure, the carry propagation time for the final
addition is no longer on the critical path that determines the
clock rate of the pipelined MAC design. For sufficiently
long vectors, this final addition time, done only once per
entire summation rather than once per element, will be
negligible even compared to the faster vector MAC
calculations of this design.

2.4 Design Synthesis Results

For all the designs in this paper, we used Xilinx Foundation
tools (V2.1) with embedded Synopsys fpga_express (V3.3)
for the synthesis. In order to remove the bottleneck at the
pad inputs, we added an extra pipeline stage before the
booth encoder to buffer the chip inputs. We used both the
popular XC4000 parts and the latest Virtex-E parts to obtain
the synthesis results. Timing constraints are specified in a

210 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000

Fig. 1. (a) An array of n 3-2 adders. (b) An array of n 4-2 adders.

Fig. 2. Integer MAC with delayed addition.

user constraint file (.ucf file), where we listed the timing
requirement for all the critical paths. The PAR (placement
and routing) worked through successfully and Timing
Analyzer gives all the timing information after our design is
completely placed and routed. The synthesis results we get
for the above design are listed in Table 1.

To demonstrate the advantage of delayed addition, we
compared our design to an integer MAC composed of a
traditional integer multiplier and an adder in which the
adder is used for accumulating the result of the multiplier.
To trade-off between pipeline speed and area cost, we
divided the final adder into two pipeline stages. In the first
stage, the lower 32-bit addition is carried out. In the second
stage, we perform the addition of the upper 32. The
synthesis result of this design is also listed in Table 1.
Timing analysis shows it is exactly the two pipeline stages
of the adder that are the bottleneck of the whole design.
However, further pipelining the adder will involve a much
larger area cost and is not likely to give any performance
gain due to the long wiring delays in FPGA.

From Table 1, we can see that, by using the delayed
addition algorithm, we have achieved a higher pipeline
speed than the traditional multiplier and accumulator

design. According to the data above, if we use XC4000
series, an IMAC with the delayed addition would require

7� �Nÿ 1� � 3 � N� 9

cycles for an integer inner product of length N to
complete, where 7 stands for the number of pipeline
stages, 3 stands for the cycle time for the final addition.
The overall latency for this design would thus be
15ns� �N� 9� � �15N� 135�ns. For an IMAC with tradi-
tional multiplier and adder, the overall latency for an inner
product of size N using traditional IMAC would be

10� �Nÿ 1� � N� 9

cycles as well. Thus, the delayed addition design has a
performance speedup of 120 percent according to the
maximum frequency listed in Table 1.

Using similar analysis, if we use Virtex-E series, an
IMAC with delayed addition would require

7� �Nÿ 1� � 2 � N� 8

cycles to complete since the final addition would only
require two cycles to complete in this case. However, an
IMAC with traditional multiplier and accumulator design
would still require

10� �Nÿ 1� � N� 9

cycles to complete. Thus, the delayed addition design has a
performance speedup of 110 percent. The performance
speedup is diminished in Virtex-E series because their carry
logic is even faster. In Virtex-E series, a 16-bit adder takes
4.3ns, while a 64-bit adder only takes 6.3ns [25].

3 USING DELAYED ADDITION IN A FLOATING-POINT

ACCUMULATOR

Multiply and accumulation also appears frequently in
floating-point applications. For example, of the 24
Livermore Loops, five loops (loop 3, 4, 6, 9, 21) are
basically long vector inner-product-like computation [17].
In certain applications, such as using the conjugate
gradient method in Space-Time Adaptive Processing
[27], [28], multiply and accumulation dominates the
whole computation process. Thus, it would be ideal if

LUO AND MARTONOSI: ACCELERATING PIPELINED INTEGER AND FLOATING-POINT ACCUMULATIONS IN CONFIGURABLE HARDWARE... 211

Fig. 3. Pipeline diagram of Integer MAC:
P5

i�0 A�i�B�i�. The stages marked: BTH (Booth encoders), W1 (Wallace tree level 2), W3 (Wallace tree

level 3), W4 (Wallace tree level 4), and CPR (Compressor) refer to the six pipeline stages shown in Fig. 2. The final addition is performed only once

per summation and does not impact the pipelined clock rate.

TABLE 1
Synthesis Results for Pipelined Integer MAC with Delayed

Addition and Pipelined Integer Multiplier (with Adder)

(a) Synthesis results fo XC4000 seried (XC403xlahq208-9).
(b) Synthesis results for Virtex-E series (XCV300epq240-8).

we could also use our delayed addition techniques to
build a floating-point multiply and accumulator to speed
up this kind of computations, like what we did in the
integer case.

However, a floating-point MAC unit uses too much
area to fit on a single FPGA chip. The major reason is
that floating-point accumulation is a much more complex
process than the integer case, as explained below. Rather
than a MAC unit, we instead focus here on a floating-
point accumulator using delayed addition. We first give a
brief review of traditional approaches, then describe how
we have used delayed addition techniques to optimize
performance.

3.1 Traditional Single-Precision Addition Algorithm

As shown in Fig. 4, a traditional floating-point adder would
first extract the 1-bit sign, 8-bit exponent, and 23-bit fraction
of each incoming number from the IEEE 754 single
precision format. By checking the exponent, the adder
determines if each incoming number is denormalized. If the
exponent bits are all ª0,º which means the number is
denormalized, the mantissa is 0.fraction, otherwise, man-
tissa is 1.fraction. Next, the adder compares the exponents
of the two numbers and shifts the mantissa of the smaller
number to get them aligned. Sign-adjustments also occur at
this point if either of the incoming numbers is negative.
Next, it adds the two mantissas; the result needs another
sign-adjustment if it is negative. Finally, the adder
renormalizes the sum, adjusts the exponent accordingly,
and truncates the resulting mantissa into 24 bits by the
appropriate rounding scheme [2].

The above algorithm is designed for a single addition,
rather than a series of additions. Even more so than in the
integer case, this straightforward approach is difficult to
pipeline. One problem lies in the fact that the incoming
next-element-to-be-summed must be aligned with the
current accumulated result. This adds a challenge to our
delayed addition technique since we do not keep the
accumulated result in its final form and, thus, cannot align
incoming addends to it. Likewise, at the end of the
computation, renormalization also impedes a delayed
addition approach.

For these two problems, we have come up with two
solutions:

1. Minimize the interaction between the incoming
number and the accumulated result. To achieve this,
we self-align the incoming number on each cycle,
rather than aligning it to the Pseudosum. Section 3.2.1
will describe self-alignment in more detail.

2. Use the delayed addition for accumulation only.
Postpone rounding and normalization until the end
of the entire accumulation. This approach is also
used when implementing MAC in some full-custom
IC floating-point units [12].

3.2 Our Delayed Addition Floating-Point
Accumulation Algorithm

This section describes our approach for delayed addition
accumulation in floating-point numbers. Similar to what we
did in Integer MAC, we repeatedly execute pseudosum =
pseudosum + incoming operand. Each incoming operand is
an IEEE single-precision floating-point number, with 1-bit
sign, 8-bit exponent (EXP[7-0]) and 23-bit fraction. For
simplicity of discussion, we consider the exponent bits as
three subfields: high-order exponent, a decision bit, and
low-order exponent. High-order exponent refers to the
EXP[7-6], the decision bit is EXP[5], and low-order exponent
refers to EXP[4-0]. We take different actions according to the
value of these three fields.

Like the traditional adder, our design first extends the
23-bit fraction into 24-bit mantissa. However, unlike the
traditional adder, we choose not to align the incoming
operand and the current pseudosum directly because that
way the alignment process could easily become the bottle-
neck of the whole pipeline. In a traditional adder, the
incoming operand interacts with the accumulated pseudo-
sum throughout the alignment process, which makes
further pipelining impossible. Instead, we keep summary
information about the high-order exponent of the accumu-
lated result and align its mantissa to a fixed boundary
according the its low-order exponent. We refer to this
technique as ªself-alignmentº and describe it below.

3.2.1 Self-Aligning Incoming Operands

There are two ways to align two floating-point numbers.
The common way is to shift the mantissa of one number by
d bits, where d stands for the difference of the exponents of
the two numbers. Another way is to instead shift both
mantissas to some common boundaries. Traditional float-
ing-point adders employ the first method. In our case,
however, the second way is used since we would like to
minimize the interactions of the incoming number and the
accumulated pseudosum.

We could have fully ªunrolledº the incoming operand
and the accumulated pseudosum by left-shifting their
mantissas the number of bits denoted by their exponents
except for the huge area cost involved. In that case, the
shifted mantissa would be as long as 255 (the largest 8-bit
exponent possible) + 24 (the width of single precision
mantissa) = 279 bits. Because of this, we only left-shift the
mantissa the number of bits denoted by the low-order
exponent (EXP[4-0]) in our design. Since low-order ex-
ponent is a 5-bit quantity, the largest decimal it can express
is 31. Thus, by left-shifting to account for low-order bits, we
have extended the width of our mantissa to 55 bits.
Although this is still wide, our design can fit into a single
piece of Xilinx 4036, as we will see later, and this gives us
the ability to garner truly high-performance single-precision
floating-point from an FPGA-based design.

212 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000

Fig. 4. IEEE single precision format. S is the sign, exponent is biased by 127. If exponent is not 0 (normalized form), mantissa = 1.fraction. If

exponent is 0 (denormalized forms), mantissa = 0.fraction.

In the above self-aligning process, we did not take into
consideration of the high-order exponent (EXP[7-6]) and
decision bit (EXP[5]). Thus, the shifted mantissa of the
incoming operand is still not perfectly aligned with that of
the current pseudosum. We used the fact below to solve this
remaining problem.

In single-precision IEEE floating-point, the mantissa is
only 24 bits wide. Thus, if we try to add two originally
normalized numbers that differ by more than 224 times,
alignment will cause the smaller of the two numbers to be
ªright-shiftedº out of the expressible range for this format.
For example, 226 � 22 � 226 in single-precision calculations.
Our algorithm efficiently uses this fact to identify the
similar cases and handles them appropriately.

Once self-aligned, the incoming number can be thought
of as

mi0�the 55-bit mantissa� � 264�EXP�7-6� � 232�EXP�5�:

Meanwhile, our pseudosum is stored as

mp0�the 64-bit mantissa� � 264�EXP�7-5� � 232�EXP�5�:

If the current pseudosum and the incoming operand are
identical in decision bit (EXP[5]), then if the high-order
exponent (EXP[7-6]) of the incoming number is bigger than
that of the pseudosum, the mantissa of the pseudosum will
be shifted out of the expressible range as long as it is no
more than 64 bits wide. In this case, we simply replace the
current pseudosum by the incoming operand. On the other
hand, if the high-order exponent of the incoming number is
smaller than that of the pseudosum, the incoming number
will be shifted out of the expressible range since mi0 is less
than 64 bits wide. Thus, we simply ignore the incoming
operand. The compression will only take place when high-
order exponent of the pseudosum is equal to that of the
incoming number.

Note that if the current pseudosum and the incoming
operand are not identical in EXP[5], then determining the
appropriate response would actually require subtracting
the two full exponents to determine by how much they
differ. This would pose a bottleneck in the pipeline; thus,

we hope to avoid this scenario entirely. This leads to our
design described in Section 3.2.2 below.

3.2.2 Compressor Implementation Details

In order to avoid the undesirable scenario of unequal
decision bits, we actually keep two running pseudosums.
One compressor, referred to as compressor-0, takes care of
incoming operands whose decision bit is ª0º and the other
compressor (compressor-1) handles those which has a
decision bit of ª1.º We simply shunt each incoming operand
to the appropriate compressor, as shown in Fig. 6. In this
way, we can always take operations corresponding to the
high-order exponent as described above. The two pseudo-
sums from compressor-0 and compressor-1 are both added
together during the final add stage as a postprocessing step
following the pipelined computation.

Fig. 5 shows the design layout for one of the two
compressor units in the design, namely compressor-0.
Compressor-1 has essentially identical structure except that
it cross-connects with adder-0, as shown in Fig. 6. The
running pseudosum is stored as the Wallace tree's S and C
partial results in the 64-bit registers shown.

Were it not for the possibility of either pseudosum
overflowing, the design would now be complete. Since the
accumulated result may exceed the register capacity, we
have also devised a technique for recognizing and respond-
ing to potential pseudosum overflows. Since we are not
doing the full carry-propagation of a traditional adder, we
cannot use the traditional overflow-detection technique of
comparing carry-in and carry-out at the highest bit. In fact,
without performing the final add to convert the pseudosum
to the true sum, it is impossible to precisely know a priori
when overflows will occur.

Our approach instead relies on conservatively determin-
ing whenever an overflow might occur and, then, stalling
the pipeline to respond. We can conservatively detect
possible overflow situations by examining the top three bits
of the S and C portions of the pseudosum and the sign bit
from the 55-bit incoming operand. We have used espresso to
form a minimized truth table generating the GlobalStall

LUO AND MARTONOSI: ACCELERATING PIPELINED INTEGER AND FLOATING-POINT ACCUMULATIONS IN CONFIGURABLE HARDWARE... 213

Fig. 5. Compressor design (compressor-0).

signal (GS in Fig. 4) as a Boolean function of these seven
bits. As shown in Fig. 5, the GlobalStall signal is used as the
clock enable signal on the first three pipeline stages; when it
is asserted, the pipeline stalls and no new operands are
processed until we respond to the possible overflow.

Since the design's two compressors are summing

different numbers, they will, of course, approach overflow
at different times since only one number is added a time.
Our design, however, does overflow processing in both
compressors whenever either compressor's GlobalStall
signal is asserted. This coordinated effort avoids cases
where overflow handling in one compressor is immedi-
ately followed by an overflow in the other compressor

and it potentially reduces the number of stalls needed,
too, since we process these two pseudosums in parallel
during the stall.

When a stall occurs, our response is to sum the S and C
portions of each compressors' pseudosum using the 64-bit
adders shown in the Stall Response box in Fig. 5. This is a
traditional 64-bit addition incurring a significant carry-

propagation delay, but, since it occurs during the stall-time,
it does not lie on the critical path that determines the
design's pipelined clock rate. (As long as stalls are
infrequent, it does not noticeably impact performance.)

The decision of what to do with the newly formed sum
depends on its value, i.e., it depends on whether 1) an
overflow truly occurred or 2) we were overly conservative
in our stall detection. In cases where an overflow does
occur, the value of EXP[5] in the pseudosum will change.
Recall that compressor-0 is to handle the accumulation of
incoming operands whose EXP[5] bit is 0, with a pseudo-
sum whose EXP[5] bit is also 0. If the pseudosum overflow
causes EXP[5] to change value, then we need to pass the
newly computed full sum over to the other compressor.
This is why the design in Fig. 6 includes the cross-coupled
connections of adder-1 to compressor-0 and vice versa.
When we are overly conservative in predicting a stall,
EXP[5] will not change values. In this case, we retain the
pseudosum in its current form.

3.3 Experimental Results

Fig. 6 shows the block diagram of this design and Table 2
summarizes the synthesis results. Because this is a floating-
point accumulator rather than a MAC unit, it is actually
smaller than the integer MAC unit discussed in the
previous section. Using four pipeline stages, our design
attains a clock rate of 40MHz with an XC4000 part and
97MHz with a Virtex-E part. Because of extra bookkeeping
required to renormalize the final result, the postprocessing

214 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000

Fig. 6. Floating-point accumulator pipelining scheme.

delay in this design is larger. For the XC4000 part, this delay
corresponds to roughly four pipelined clock cycles, while,
for the Virtex-E part, this delay corresponds to roughly five
clock cycles. As in the integer case, this difference between
the final add time and the pipelined clock cycle time
highlights the utility of delayed addition. By pulling this
delay off the vector computation's critical path, we pay for
it only once per vector, not on each clock cycle.

According to the data above, using the same analysis as
in Section 3.3 and assuming there is no stall during the
computation, we will have to wait

4� �Nÿ 1� � 4 � N� 7

cycles for an accumulation of length N to complete for an
XC4000 part and

4� �Nÿ 1� � 5 � N� 8

cycles for a Virtex-E part.
Since each stall causes a 3-cycle bubble in the pipeline

and too many stalls may eventually incur expensive system
interrupt, we also want to make sure how frequent stalls
might be when we accumulate N numbers. We did two
simulations. Simulation I used 100,000 uniformly distrib-
uted floating-point numbers with their absolute values
ranging from 2ÿ31 to 231. Because positives and negatives
are balanced, we did not even meet one case of stalling.
Simulation II uses 100,000 uniformly distributed positive
floating-point numbers ranging from 0 to 231 and we only
found 24 cases of stalling. Summing these 100,000 numbers
would need 100,006 cycles so that 72 stall cycles are
negligible. From this experiment, we conclude that over-
flow and stalling pose little problem for most applications
as long as we have a reasonably large local buffer for
operands. As we will show and exploit in Section 4, we can
prove that, for vectors shorter than 512 elements, there is no
chance of stalling at all.

4 FLOATING-POINT ACCUMULATOR WITH

COMPILER-MANAGED OVERFLOW AVOIDANCE

The main reason why we have the overflow detection and
handling logic in the previous design is to avoid possible
overflow of the pseudosum after a number of operations.
However, the stall-related logic is very complicated and has
a big area cost. Worst of all, it sits on the critical path of our
design and slows down the pipeline speed. To avoid the
area and speed overhead due to overflow detection and
handling, we present a different style design here. This
design omits overflow handling by relying on the compiler
to break a large accumulation into smaller pieces so that

overflow is guaranteed not to occur when each of these
pieces is executed.

Avoiding area overhead for stall handling is desirable,
but we will not have much gain in our design if we have to
break an accumulation into very small pieces. Our goal is to
determine a bound of how often the stall will occur. The
largest incoming mantissa that can be fed into one
compressor is 11 . . . 1100 . . . 00 (the first 24 bits are ª1ºs
and the rest 31 bits are ª0ºs). This is less than 255. Thus, if
the pseudosum is stored in an n-bit (n > 55) register, we
may have an overflow every 2nÿ55 accumulations. We can
use this formula to choose a suitable n for specific
applications.

In this design, we choose the pseudosum width to be
64, as in the design from Section 3. Since 64ÿ 55 � 9,
overflows may occur every 29 � 512 accumulations. We
will rely on the compiler to break summations into 512-
element vectors. For the following loop, we can transform
the source code on the top to the bottom. A procedure
ACCUMULATE(A, n) is used to compute the accumula-
tion in configurable hardware, where A is the pointer to
the floating point array and n is the number of floating
point numbers to be accumulated.

for (i=0; i< N; i++)
S += A[i];

#
for (i=0; i< (N>>9); i+=512)

S += ACCUMULATE(A[i],512);

Since now we no longer need the overflow checking and
handling in this design, all the related components in our
previous design can be removed and the two 64-bit adders
below the compressors in Fig. 4 are replaced by an array of
4-2 adders. This also greatly simplifies the control logic on
the critical path and enables us to further pipeline our
design. Fig. 7 shows a resulting 5-pipeline-stage design.

Synthesis results summarized in Table 3 show that we
have dramatically increased the speed of the conservative
design and have achieved a high clock rate of 80MHz with
the XC4000 part and 150MHz with the Virtex-E part. For an
accumulation of size N, we will need 5� �Nÿ 1� � 7 �
N� 11 cycles to complete the whole computation with an
XC4000 part and 5� �Nÿ 1� � 7 � N� 11 cycles, too, with
a Virtex-E part.

5 DISCUSSION

In this section, we discuss some of the issues raised by
our delayed addition technique, particularly with respect
to floating-point calculations. The IEEE floating-point

LUO AND MARTONOSI: ACCELERATING PIPELINED INTEGER AND FLOATING-POINT ACCUMULATIONS IN CONFIGURABLE HARDWARE... 215

TABLE 2
Synthesis Results for Pipelined Floating-Point Accumulation with Delayed Addition

standard [1] specifies the format of a floating-point number

of either single or double precision, as well as rounding

operations and exception handling. It provides us with both

a representation standard and an operation standard. The

representation standard is helpful for transporting code

from one system to another. The operation standard,

together with the representation standard, works to ensure

that same result can be expected for floating point

calculations on different platforms (if they all choose the

same rounding scheme). Our designs, described in

Sections 3 and 4, abide by the representation portion of

the IEEE standard and implement single-precision IEEE

floating-point including denormalized numbers.
In the accumulator design, we make the basic assump-

tion that the additions performed are commutative. This

assumption is also routinely made by most current-

generation microprocessors, where out-of-order execution

also assumes that floating-point operations on independent

registers are commutative. Similarly, many compiler opti-

mizations geared at scientific code also assume commu-

tativity; optimizations such as loop interchange and loop

fusion reorder computations as a matter of course.
Our operations do, in effect, reorder computations. For

any accumulation sequence A1 �A2 � . . .�An, assume

there is no overflow in either compressor throughout the

computation and assume for now that our rounding scheme

is exactly like in a normal adder. We first divide array A

into two arrays A0 and A1 according to their EXP[5]. All the

numbers in A0 �A01;A02; . . . A0m� have EXP[5] = 0, while all

the numbers in A1 �A11;A12; . . . A1nÿm� have EXP[5] = 1.

216 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000

Fig. 7. Floating-point accumulator with compiler-managed overflow avoidance pipelining scheme.

TABLE 3
Synthesis Results of Floating-Point Accumulation with Delayed Addition and Compiler-Managed Overflow Avoidance

Let A01;A02; . . . A0K be the numbers with the largest high
order exponent bits in A0 and A0K�1;A0K�2; . . . A0m be the
rest numbers in A0. Similarly, let A11;A12; . . . A1J be the
numbers with the largest high order exponent bits in A1
and A1J�1;A1J�2; . . . A1nÿm be the rest numbers in A1. Our
accumulator virtually did the accumulation �A01 �A02 �
. . .�A0K� � �A11 �A12 � . . .�A1J� while ignoring all the
other numbers in A0 and A1. This result is the same as that
we get by using a normal floating-point adder to do the
accumulation in the following order

�A01 �A0K�1 �A0K�2 � . . .�A0m �A02 �A03 � . . .

�A0K� � �A11 �A1J�1 �A1J�2 � . . .�A1nÿm

�A12 �A13 � . . .�A1J�:
This is because, in a normal adder,

A01 �A0K�1 � A01;A01 �A0K�2 � A01; . . . :

Thus, the above computation is equivalent to

�A01 �A02 � . . .�A0K� � �A11 �A12 � . . .�A1J�:
Furthermore, we use a different rounding system in the

accumulator design. Instead of rounding each time after the
addition, we only round once for each compressor through-
out the accumulation if there is no compressor overflow.
This, in fact, reduces the rounding error for the whole
accumulation since we do fewer roundings throughout the
computation, but it will certainly produce a different result
from what we get in a general-purpose microprocessor even
if computation are carried out in exactly the same order.
However, according to [18], even for all the systems that
conform to IEEE 754, ªmost programs will actually produce
different results on different systems for a variety of
reasons.º And, even for the same executable running on
the same machine under the same operating system, we
could have different the results due to different run time
environment. For example, an extra cache miss in the
second run of a program could cause the floating point
instructions to be reordered in a different way from how
they were reordered in the first fun, potentially producing a
different result. Thus, we care more about if the computa-
tion results are reasonable than if the results are the same as
in a microprocessor system.

6 RELATED WORK

This paper touches on areas related to both computer
arithmetic and configurable computing. Patterson et al.
provide an overview of computer arithmetic in Appendix A
of [6]. They concentrate on logic principles of various
designs of basic arithmetic components. In addition,
innumerable books and papers go into more detail on
adder and multiplier designs at the transistor level. For
example, Weste and Eshraghian [7] provide a detailed
discussion on various multiplier implementations and
Wallace trees. Examples of recent full-custom multiplier
design can be found in the work by Ohkubo et al. [8] and
Makino et al. [9]. We can also find recent multiplier designs
in state-of-the-art microprocessors such as DEC Alpha

21164 [15] and SUN Ultrasparc [16]. These designs, as with
most, use Booth encoders and Wallace trees

Our approach employs the idea used in Wallace trees.
Wallace used 3-2 adders to build up the first Wallace tree
[10]. There have been many derivatives since then. The most
important change is to use 4-2 adders to replace the 3-2
adders in the original implementation. In many designs,
pass transistors, rather than full CMOS logic gates, are used
to build 4-2 adders to improve the circuit speed, as we can
see in Heikes and Colon-bonet [12].

Early in 1994, Canik and Swartzlander [3] discussed how
to map a bit-array multiplier to Xilinx FPGA. They built an
8� 8 bit-array multiplier for integer multiplication with
Xilinx 3000 series and their fully pipelined implementation
on XC3190-3 achieved more than 100 Mhz. Now, almost all
the major FPGA vendors have provided their implementa-
tions of integer multiplier or multiply-accumulator of 16 bit
or shorter length [22], [24]. A comparison of the speed of
these implementations can be found in [23]. Most of them
are based on bit-serial or bit-array multipliers. However,
bit-array multiplier has too big an area cost for long integer
multiplication. We know of no implementations of 32-bit-
array multiplier nor have we seen any implementations of
32-bit integer multiplier or multiply-accumulators based on
bit-serial or other algorithms.

More recent work has examined implementing floating-
point units in FPGAs [2], [3], [13], [14]. Louca et al. [2]
present approaches for implementing IEEE-standard float-
ing-point addition and multiplication in FPGAs. They used
a modified bit-serial multiplier and prototyped their de-
signs on Altera FLEX8000s. Ligion et al. [14] also discuss the
implementation of IEEE single precision floating-point
multiplication and addition and they accessed the practic-
ability of several of their designs on XILINX 4000 series
FPGA. Shirazi et al. [13] talk about the limited precision
floating point arithmetic. They have adapted IEEE standard
for limited precision computation like FFT in DSP.

Finally, several authors have discussed rounding and
error theory [4], [5], [12], [21]. We can see how people deal
with the error in physics from Taylor [4]. Wilkinson [5] and
Heikes and Colon-bonet [12] touch on rounding error in
MAC and inner-product units. In chapter 4 of [21], Higham
discussed how rounding error depends on the order of
summation. Goldberg [20] presents a detailed description
on IEEE 754 standard error analysis of floating-point
operations under this standard and Priest [18] talks about
the impact on the error analysis of different implementa-
tions of IEEE standard.

7 CONCLUSIONS

Within many current FPGAs, carry propagation represents
a significant bottleneck that impedes implementing truly
high-performance pipelined adders, multipliers, or Multi-
ply-accumulate (MAC) units within configurable designs.
This paper describes a delayed addition technique for
improving the pipelined clock rate of designs that perform
repeated pipelined calculations. Our technique draws on
Wallace trees to accumulate values without performing a
full carry-propagation; Wallace trees are universally used
within the multiply units in high-performance processors.

LUO AND MARTONOSI: ACCELERATING PIPELINED INTEGER AND FLOATING-POINT ACCUMULATIONS IN CONFIGURABLE HARDWARE... 217

The unique nature of configurable computing allows us to
apply these techniques not simply within a single calcula-
tion, but, rather, across entire streams of calculations.

We have demonstrated the significant leverage of our
approach by presenting three designs exemplifying both
integer and floating-point calculations. The designs operate
at pipelined clock rates from 40 to 72 MHz on Xilinx 4000
series and from 97 to 170 MHz on Xilinx Virtex-E series.
These techniques and applications should help to broaden
the space of integer and floating-point computations that
can be customized for high-performance execution on
current FPGAs.

ACKNOWLEDGMENTS

This research was supported in part by DARPA Grant
DABT63-97-1-0001 and by a grant from the U.S. National
Science Foundation (NSF) Experimental Systems Program.
In addition, Zhen Luo was supported in part by a Princeton
University Gordon Wu fellowship and Margaret Martonosi
is the recipient of an NSF Career Award. This paper is a
revised version of the paper ªUsing Delayed Addition
Techniques to Accelerate integer and floating point Calcu-
lations in Configurable Hardwareº presented at SPIE 98.

REFERENCES

[1] IEEE Standards Board, ªIEEE Standard for Binary Floating-Point
Arithmetic,ºTechnical Report ANSI/IEEE Std. 754-1985, IEEE,
New York, 1985.

[2] L. Louca, T.A. Cook, and W.H. Johnson, ªImplementation of IEEE
Single Precision Floating Point Addition and Multiplication on
FGPAs,º Proc. IEEE Symp. FPGAs for Custom Computing Machines,
Apr. 1996.

[3] R.W. Canik and E.E. Swartzlander, ªImplementing Array Multi-
pliers in XILINX FPGAs,º Proc. 1994 28th Asilomar Conf. Signals,
Systems, and Computers, 1994.

[4] J.R. Taylor, An Introduction to Error Analysis. Univ. Science Books,
1982.

[5] J.H. Wilkinson, Rounding Errors in Algebraic Processes. Prentice
Hall, 1963.

[6] D.A. Patterson, J.L. Hennessy, and D. Goldberg, Computer
Architecture, A Quantitative Approach, Appendix A, second ed.
Morgan Kaufmann, 1996.

[7] N.H.E. Weste and K. Eshraghian, Principles of CMOS VLSI Design,
second ed. Addison-Wesley, 1993.

[8] N. Ohkubo et al., ªA 4.4 ns CMOS 54� 54 Bit Multiplier Using
Pass-Transistor Multiplexer,º IEEE J. Solid State Circuits, vol 30,
no. 3, pp. 251-256, Mar. 1995.

[9] H. Makino et al., ªAn 8.8 ns 54� 54 Bit Multiplier with High
Speed Redundant Binary Architecture,º IEEE J. Solid State Circuits,
vol. 31, no. 6, pp. 773-783, Mar. 1995.

[10] C.S. Wallace, ªSuggestions for a Fast Multiplier,º IEEE Trans.
Electronic Computers, vol. 13, pp. 114-117, Feb. 1964.

[11] Y. Kanie et al., ª4-2 Compressor with Complementary Pass-
Transistor Logic,º IEICE Trans. Electron, vol. E77-c, no. 4, pp. 789-
796, Apr. 1994.

[12] C. Heikes and G. Colon-bonet, ªA Dual Floating Point Copro-
cessor with an FMAC Architecture,º ISSCC Digest Technical Papers,
pp. 354-355, 1996.

[13] N. Shirazi, A. Walters, and P. Athanas, ªQuantitative Analysis of
Floating Point Arithmetic on FPGA Based Custom Computing
Machines,º Proc. IEEE Symp. FPGAs for Custom Computing
Machines, pp. 155-162, Apr. 1995.

[14] W.B. Ligion III, S. McMillan, G. Monn, F. Stivers, and K.D.
Underwood, ªA Re-Evaluation of the Practicality of Floating-Point
Operations on FPGAs,º Proc. IEEE Symp. FPGAs for Custom
Computing Machines, Apr. 1998.

[15] D.P. Bhandarkar, Alpha Implementations and Architecture, Complete
Reference and Guide. Digital Press, 1996.

[16] R.K. Yu et al., ª167 MHz Radix-4 Floating Point Multiplier,º Proc.
12th Symp. Computer Arithmetic, pp. 149-54, July 1995.

[17] F.M. McMahon, ªThe Livermore FORTRAN Kernels: A Computer
Test of Numerical Performance Range,º Technical Report UCRL-
55745, Lawrence Livermore Nat'l Laboratory, Univ. of California,
Davis, Dec. 1986.

[18] D. Priest, ªDifferences among IEEE 754 Implementations,º
http://www.validgh.com/goldberg/addendum.html, 1997.

[19] Xilinx, ªXC4000E and XC4000X Series Field Programmable Gate
Arrays, Product Specification,ºV1.4, Nov. 1997.

[20] D. Goldberg, ªWhat Every Computer Scientist Should Know
about Floating-Point Arithmetic,º http://www.validgh.com/
goldberg/paper.ps, 1991.

[21] N.J. Higham, Accuracy and Stability of Numerical Algorithms. SIAM,
1996.

[22] Microelectronics Group, Lucent Technologies, ªCreate Multiply-
Accumulate Functions in ORCA FPGAs,º Feb. 1997.

[23] Altera, ªFLEX 10K v.s. FPGA performance,ºTechnical Brief 12,
Sept. 1996.

[24] Altera, ªImplementing Multipliers in Flex 10K Devices,ºApplica-
tion Note 53, Mar. 1996.

[25] Xilinx, ªVirtex-E 1.8V Field Programmable Gate Arrays Datasheet
Description v1.1,º 1999.

[26] M. Nomura et al., ªA 300-MHz 16-b 0.5 um BiCMOS Digital Signal
Processor Core LSI,º IEEE J. Solid State Circuits, vol. 29, no. 3, Mar.
1994.

[27] N.D. Gupta, ªReconfigurable Computing for Space-Time Adap-
tive Processing,º master's thesis proposal, Dept. of Computer
Science, Texas Tech Univ., Fall 1997.

[28] S.T. Smith et al., ªLinear and Nonlinear Conjugate Gradient
Methods for Adaptive Processing,º Proc. 1996 Int'l Conf. Acoustics,
Speech, and Signal Processing, May 1996.

Zhen Luo received his BS degree from the
Computer Science and Technology Department
of Peking University in 1996. He has been a PhD
student in the Electrical Engineering Department
at Princeton University since then. His research
interests include configurable computing, com-
puter arithmetic, and CAD for VLSI.

Margaret Martonosi earned her PhD from
Stanford University in 1993 and also holds a
master's degree from Stanford and a bachelor's
degree from Cornell University, all in electrical
engineering. She is currently an associate
professor at Princeton University, where she
has been on the faculty in the Department of
Electrical Engineering since 1994. Her research
interests are in computer architecture and the
hardware-software interface and her group's

current research focus is on hardware and software strategies for
power-efficient computing. She is a senior member of the IEEE and a
member of the IEEE Computer Society.

218 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000

