
LOCALE: Collaborative Localization Estimation
for Sparse Mobile Sensor Networks

Pei Zhang and Margaret Martonosi
Department of Electrical Engineering

Princeton University
{peizhang, mrm}@princeton.edu

Abstract

As the field of sensor networks matures, research in this
area is focusing not only on fixed networks, but also on mo-
bile sensor networks. For many reasons, both technical and
logistical, such networks will often be very sparse for all
or part of their operation, sometimes functioning more as
disruption-tolerant networks (DTNs). While much work has
been done on localization methods for densely populated
fixed networks, most of these methods are inefficient or
ineffective for sparse mobile networks, where connections
can be infrequent. While some mobile networks rely on
fixed location beacons or per-node, onboard GPS, these
methods are not always possible due to cost, power and
other constraints.

In this paper we present the Low-density Collabora-
tive Ad-Hoc Localization Estimation (LOCALE) system for
sparse sensor networks. In LOCALE, each node estimates
its own position, and collaboratively refines that location
estimate by updating its prediction based on neighbors it
encounters. Nodes also estimate (as a probability density
function) the likelihood their prediction is accurate. We
evaluate LOCALE’s collaborative localization both through
real implementations running on sensor nodes, as well as
through simulations of larger systems. We consider scenar-
ios of varying density (down to 0.02 neighbors per com-
munication attempt), as well as scenarios that demonstrate
LOCALE’s resilience in the face of extremely-inaccurate in-
dividual nodes. Overall, our algorithms yield up to a me-
dian of 21X better accuracy for location estimation com-
pared to existing approaches. In addition, by allowing
nodes to refine location estimates collaboratively, LOCALE
also reduces the need for fixed location beacons (i.e. GPS-
enabled beacon towers) by as much as 64X.

1 Introduction

As sensor network deployments become reality, sensor
network applications have become more diverse in form and
function. Many applications involve mobile networks that
are made up of nodes with unpredictable movement pat-
terns [14][16]. Because of these unpredictable movements,
there will be sparse areas in the network. Furthermore, other

factors, such as cost, will further limit network node densi-
ties. In these sparse areas the networks need to behave as
disruption-tolerant networks (DTNs). Yet it is common, in
these sparse mobile sensor networks, to require up-to-date
location information for each node in the network [17][21].

One way to localize sparse mobile nodes is by using
a Global Positioning System (GPS) on each node. Un-
fortunately, many prerequisites have to be met for proper
GPS function. The GPS antenna must have a clear view
of the sky, making it difficult for use indoors or in urban
canyons. Furthermore, the power consumption of such de-
vices greatly shortens the lifetime of the sensor nodes, and
greatly increases the cost of each node.

To solve these problems, several mobile networks use lo-
cation beacons as localization references. Nodes use their
proximity to these fixed or mobile beacons to estimate their
own locations [24]. However, this method requires the bea-
cons to cover all areas of the network where localization is
desired; this can translate into high infrastructure costs.

To reduce the infrastructure requirements in dense net-
works, many collaborative methods have been developed.
Typically, nodes in these networks localize by collabora-
tively deducing network topology and using several anchor
beacons to calculate absolute locations [19]. If nodes are
mobile, however, these methods become inefficient or inef-
fective due to increasing collaboration overhead. Further-
more, in sparse mobile networks, naive collaboration be-
comes impossible due to lack of nodes in range.

In this paper, we present Low-density Collaborative Ad-
Hoc Localization Estimation (LOCALE). Our method is a
distributed localization algorithm designed to enable collab-
orative localization in sparse mobile sensor networks. It
not only merges location information when neighbors are
present, but also actively predicts and maintains the loca-
tion estimation during periods of disconnection.

LOCALE maintains an ongoing, rough estimation of the
nodes’ location and certainty during disconnects by using
a dead-reckoning (DR) system. (This is simpler, cheaper,
and more energy-efficient than per-node GPS.) When nodes
meet a neighbor, they swap position estimates and then re-
fine the nodes’ location by a linear combination of the two
estimates, weighted by the variances. Over time, in a delay
tolerant manner, LOCALE effectively averages movement
of nodes and gives each node a distribution describing its lo-



cation. With such distributions the nodes maintain not only
a prediction of their actual location, but also a “confidence
estimate” of the likely accuracy of this prediction.

LOCALE has the following key characteristics:

• It maintains a node’s location estimation with move-
ment tracking when neighbors are not present. It re-
fines the location estimation with information swapping
when neighbors are encountered.

• Provides accurate location information with median of
up to 21X less area error compared to the commonly
used beacon-tracking method.

• Reduces infrastructure requirements by up to 64X,
while maintaining location accuracy.

• Offers more than 10X faster error correction for nodes
with inaccurate estimations.

• Provides broad applicability to sparse, dense and het-
erogeneous systems without modification.

• Dissipate to 150X less power than per-node GPS.

In this paper, we evaluate our collaborative method
against a baseline method that acquires localization only di-
rectly from location beacons and maintain the estimation
with a dead-reckoning system. LOCALE, when compared
with the baseline method, produces a much more accurate
measurement with 75th-percentile area error reduced by up
to 27X. In addition, LOCALE is resilient to the case where
nodes with large location errors are introduced into the net-
work. Through its collaborative approach, these large er-
rors can be quickly reduced. This method allows the entire
sparse sensor network to operate with much less beacon in-
frastructure (64X reduction), while maintaining accuracy.

This paper is organized as follows. Section 2 provides
the details of our system. Section 3 shows measured results
in a real sensor node implementation. Section 4 shows large
scale simulated results based on the measured parameters.
Section 5 discusses related work. Section 6 gives the con-
clusions.

2 Collaborative Location Estimation
Low-density Collaborative Ad-hoc Location Estimation

(LOCALE) is a distributed collaborative localization algo-
rithm designed to solve the localization problem in highly
partitioned, sparse mobile sensor networks. LOCALE not
only maintains a location estimate, but also a “confidence
cloud” indicating the likelihood of that estimate’s accuracy.
Most importantly, LOCALE nodes actively refine the loca-
tion estimate when neighboring nodes come into communi-
cation range.

LOCALE features three major phases, shown in Figure
1, to maintain and refine location estimations. Section 2.2
describes the local phase, which uses the node’s movement
tracking information to maintain a cheap but possibly inac-
curate location estimation. This phase allows the node to
maintain location information during long periods of dis-
connection, but is not sufficiently accurate to be used by
itself. Section 2.3 describes the transform phase, where the

Figure 1. LOCALE overview: Location er-
ror increases during the local phase and
decreases with collaboration in the update
phase.

neighbor’s location estimation is used to create an estima-
tion of self location. Section 2.4 describes the update phase,
where the estimation obtained from the neighbor and the
existing estimation are combined. This phase allows accu-
rately refining of the location estimate from different nodes.

The novelty of LOCALE is that it is, to the best of our
knowledge, the first delay-tolerant, collaborative localiza-
tion policy that is effective for sparse mobile sensor net-
works.

Before describing LOCALE’s three phases in detail, we
first describe how LOCALE represents a node’s position.

2.1 Location in LOCALE

In order for LOCALE to predict and merge localization
information from multiple estimations, it requires not only
the location estimation, but also the certainty of the esti-
mation. Since, by using LOCALE, each node’s location
is in essence an average of location estimations of nodes
in the network, we use a normal distribution to represent
the location estimation (mean) and the certainty (variance).
While a single node’s location estimation may not follow
a normal distribution, by the Central Limit Theorem, the
averaged estimation should approach a normal distribution.
This assumption allows the use of well established distribu-
tion merging methods described in Section 2.4. In Section
4.6, we also explore the effect on LOCALE’s performance
when this assumption does not hold, i.e. the movement
model is highly non-normal.

To represent the distribution we use the probability den-
sity function:

p(X) =
1

2π
√|C| ∗ e

−
1
2

(X−X̄)T C−1(X−X̄)
(1)

The equation represents the probability of the true location
for node (X) relative to the estimated location (X̄). To de-
fine the equation we need only the estimated location (X̄)
and the covariance matrix C. For simplification purposes,
we consider the two-dimensional case in this paper; how-
ever this work can be easily extended to three-dimensions



Figure 2. Representation of 2 neighboring
nodes with different orientations.

with altitude information.

C =
(

σ2
x ρσxσy

ρσxσy σ2
y

)
X =

(
x
y

)
(2)

The main diagonal of the matrix are the variances along the
axes of its coordinate system, and the other values are the
covariance between the two axes. These two variables are
updated by LOCALE as the nodes move and meet neigh-
bors. Initially, they should be initialized with the start loca-
tion, this can be accomplished by deploying near a location
beacon.

To define the distribution and its orientation, LOCALE
keeps 3 variables: the location estimation X̄ , the covariance
matrix C, and the angle θ between the local coordinates and
the global coordinates. Figure 2 illustrates our definitions of
the relative angle of the neighboring nodes θo, where each
node has its own local coordinate (xh, yh)(xn, yn), and an
angle (θh, θn) relating it to the global coordinate (x, y).

We maintain an estimation of the node’s location approx-
imated using this multi-dimensional normal distribution, al-
lowing LOCALE to estimate both location and confidence
in terms of variance. The variance allows the application
or the end user to calculate the confidence interval and in-
terpret the location estimation accordingly. Furthermore,
when nodes are expressed using this method, information
from systems with heterogeneous hardware can also be in-
corporated. Finally, we note that while this representation
(and the math to manipulate it) may appear complex, Sec-
tion 3 describes its implementation on an MSP 430 embed-
ded processor which is used in several sensor nodes.

2.2 Local Phase
To maintain the location estimation of a moving node

through long periods of disconnection, a local phase is
needed. In LOCALE, each node maintains a local posi-
tion estimation based on one of a variety of simple, existing,
low-cost, low-energy movement tracking methods.

While some nodes have onboard location sensors, such
as GPS sensors, LOCALE strives to reduce the number of
nodes with such expensive sensors. With LOCALE, most

nodes can use cheaper, low-accuracy dead-reckoning sen-
sors to track their movement relative to their last measured
location [43]. These sensors are currently available on some
sensor nodes [5], as well as other more capable devices such
as cell phones or laptops.

LOCALE incorporates measurements from the move-
ment tracking algorithm After each step in the local phase,
the new distribution is then the combination of relative mea-
surement distribution and the existing estimation distribu-
tion.

N = Nold(X1, C1) + Ndelta(X2, C2) (3)

Together this gives the new distribution with mean and vari-
ance as

Ncombined = N(X1 + X2, C1 + C2) (4)

To incorporate the relative measurement distribution, both
must be in the same global coordinate system. However,
the movement covariance matrix is oriented in the direction
moved. The covariance matrix in local coordinate CL is
described as:

CL =
(

σ2
x′ 0
0 σ2

y′

)
(5)

The local covariance matrix is rotated to the global coordi-
nate by

C = R(−θ)T CLR(−θ) (6)

Where θ is the direction the node moved, and the rotational
matrix is defined as

R(θ) =
(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)
(7)

Finally, the mean and covariance matrix of the new esti-
mated location distribution is simply the summation.

The novelty of incorporating the relative movement
tracking information lies in the ability of the system to
merge the movement information along with the covariance
information. Thus movement tracking generates not only
information on the estimated location, but also the new es-
timate of accuracy.

2.3 Transform Phase
LOCALE merges location information of the nodes in

order to create a more accurate estimation than one node
can achieve alone. Since neighboring nodes are not at the
same location, the distance between the nodes prevents a
node from simply copying a confident neighbor’s position
estimate and merging it with its own. Instead, to transform
the neighbor’s estimate so that it is suitable for merging, we
must transform it to an observation on the host’s location.
In order to achieve this, we need to obtain information on
the relative location between the two nodes. Figure 4 illus-
trates the transform process, where neighbor transformation
is shown on the right.

LOCALE supports different forms and quality levels
of relative node-to-node location information, including
both relative measurement of range and direction of the



Figure 3. Relative location estimation with no
direction measurement.

neighbor, relative range to the neighbor, or only very sim-
ple information indicating that the neighbor is somewhere
within communication range of the node. There are vari-
ous methods to obtain both range and direction information
[18][20][26][32]. Since most sensor nodes do not have very
specialized hardware, however, this paper only assumes the
simplest case. Namely, we assume that nodes are only able
to discern that another neighbor is within communication
range, with a distribution describing the nodes’ distance
while they are in range.

While formal methods exist to account for this informa-
tion, we present and use a heuristic method that reduces
complex matrix manipulation and relies mostly on inner
matrix additions [15]. This method is easily implemented
on low-power micro-controllers. Figure 3 shows the con-
ceptual steps performed to incorporate the neighbor’s ob-
servation into the host’s local frame. In Step 1, we obtain
information from the location estimation and rotate the ob-
servations to comply with the relative coordinate, where the
X-axis of the two observations coincide

Ch = R(θo − θh)T CLh
R(θo − θh) (8)

Cn = R(θo − θn)T CLnR(θo − θn) (9)

In Step 2, the y-component of the transformed covariance
matrix is calculated from the angle uncertainty caused by
the host’s location uncertainty. Step 3 adds in the additional
contributions caused by the neighbor’s location uncertainty.
In Step 4, the transformed observation distribution is cre-
ated by including the x component of the covariance matrix
taking into account of variability of distance when nodes

are in range, which is the sum of x component of the host

variance and Range2(1 − 2
√

2/3). Since all nodes are
oriented in the relative coordinates, the covariance of the
error observations are 0. The mean of the observation to
be merged is moved by distance d, the expected vector of
distance between the two neighboring nodes when in radio

range, which is Range/
√

2, in the direction (θo − θn).

CLobserved =
(

σradio + σn 0
0 σh + 2σn

)
(10)

Xobserved =
(

xn + d ∗ cos(θo − θn)
yn + d ∗ sin(θo − θn)

)
(11)

Finally, in Step 5, we rotate the transformed observation and
the host distribution to the global coordinate system for the
final merging in Step 6.

Cobserved = R(−θo)T CLobservedR(−θo) (12)

The “in-range” distribution we rely on for neighbors, in
general, gives the node a better estimate in the direction fac-
ing the neighbor node. However, as nodes move, they will
encounter this or other neighbors in different orientations,
and thus obtain a more accurate estimation in all directions.
This in effect creates delayed triangulation even with only
one neighboring mobile node.

The novelty of the transformation phase is how the sys-
tem projects neighbor observation to a self observation, al-
lowing for more accurate merging in the next phase. Fur-
thermore, this method does not assume a particular radio
profile or special hardware and only requires probabilistic
measurements.

2.4 Update Phase

LOCALE improves node localization accuracy by merg-
ing observation between neighbors, when one is encoun-
tered. This essentially increases the number of observations
on the node’s location and averages out measurement errors.
Due to different movement patterns, or measuring devices,
each node has estimations with different certainties. There-
fore, we combine the estimations weighted by their respec-
tive certainties, which are represented by their variances.

The distributions are merged as a weighted linear com-
bination. Our matrix merging methodologies are inspired
by prior robotics work by Smith and Cheeseman [35]. This
section describes the self-estimation preparation and the fi-
nal merging process shown in Figure 4. From the self-
estimation (Section 2.2) and the neighbor observation (Sec-
tion 2.3), we have two distributions that can be merged to
create the new estimation. Due to the increased number of
observations, we calculate the combination of these distri-
butions as the harmonic mean. First we calculate the merge
factor defined as:

K = Ch ∗ [Ch + Cobserved]−1 (13)

The merge factor represents the weight each distribution has



Figure 4. Block diagram of the merging pro-
cess when neighbor is encountered.

on the result. This is used to calculate both the new covari-
ance matrix and the new location estimation.

Cmerged = Ch −KCh (14)

X̄merged = X̄h + K(X̄observed − X̄h) (15)

We next obtain the new angle of the covariance matrix with

θ =
1
2
tan−1

(
2b

a− d

)
C =

(
a b
b d

)
(16)

and finally rotate the merged distribution back to the lo-
cal coordinate.

CLnew = R(−θmerged)T CmergedR(−θh) (17)

The merged location and the covariance matrix are stored as
the new self location estimate. Since the merging algorithm
is a linear combination, the process can be repeated if more
neighbors are in range.

This phase, in conjunction with other parts of LO-
CALE, enables delay-tolerant collaborative localization in
extremely sparse networks.

2.5 Assumption of Independence

LOCALE assumes that all observations merged are ap-
proximately independent. If information flow in the system
has loops (i.e. nodes repeatedly combine with each other
without movement) the estimation could be erroneously
“certain”. Fortunately this is not a common problem in
sparse mobile networks where both a) movement estima-
tion between merges and b) time between connections, re-
duce the dependence between previously merged informa-
tion. However, to mitigate problems when two nodes stay
in range for long periods of time, we include a merge his-
tory table to record nodes’ merging history. After two nodes
merge 4 consecutive times, it will set a timer to prevent fur-
ther repeated merges. This further decreases the likelihood
of undesired merges of non-independent observations. We
evaluate such situations with a strongly correlated move-
ment model in Section 4.6.

3 Hardware Implementation
We designed LOCALE to function on hardware with a

wide range of compute, storage, communication, and local-
ization capabilities. As a proof of concept for LOCALE
in real hardware, we implemented a two-dimensional LO-
CALE system on off-the-shelf sensor nodes. This prototype
also provides measured system parameters for the large-
scale simulations in Section 4.

The sensor network nodes used were the ZebraNet 5.2
test nodes. These nodes are electronically the same as nodes
deployed for wildlife tracking in Kenya during the summer
of 2005 [45]. The test node consists of several different
peripherals. Of particular importance to LOCALE are the
microcontroller, the radio, and the accelerometers. All Ze-
braNet nodes are equipped with GPS, but for LOCALE, the
GPS is turned off on all nodes except the one being used as a
beacon. Below, we discuss LOCALE’s movement tracking,
overhead, power consumption and real-world experiments
of our hardware implementation.

3.1 Movement Tracking
The local phase of LOCALE requires nodes to track

their movement. Since each ZebraNet node has a three-
dimensional accelerometer [37], we use this to track its
movement. To determine the orientation of the node, a mo-
tion sensor [33] or an electronic compass [30] module could
be added. However, we only use the accelerometer as an im-
plementation to demonstrate the basic concept of movement
tracking for LOCALE.

We created a rudimentary tracking algorithm in order to
test LOCALE. Tracking is performed by recording the ac-
celerometer data and converting the acceleration informa-
tion based on the equations:

dnew =
1
2
∗a∗t2+vo∗t+do vnew = a∗t+vo (18)

The quantities v and d are calculated each time period, v



Function Clock Cycles Time

Prediction Merging 1,900,000 475ms

Movement incorporation 760,000 190ms

Table 1. LOCALE Merging Function Runtime,
showing speed is acceptable even when im-
plemented on low-end microcontrollers

is reset to 0 when no vibration is sensed and d is reset af-
ter each merge of LOCALE. Experiments were performed
to determine the characteristics of this algorithm. Track-
ing errors were mostly within 15% of the distances moved
in both X and Y direction. These measured parameters are
collected and used for the simulations in the Section 4.

3.2 LOCALE Code
The ZebraNet nodes use the 16-bit MSP430F1611 mi-

crocontroller running at 4MHz. This is a popular processor
that is also used in other sensor nodes [10]. Our demon-
stration that LOCALE can run on this platform indicates its
practicality in similar systems such as MICA motes [8][9],
as well as more capable systems such the Imote2[7], or the
Stargate [6].

Code Size: LOCALE is designed for sensor network
nodes, which mostly have strict memory constraints. There-
fore, code memory usage needs to be kept low. While LO-
CALE uses floating point numbers to keep track of location
and uses math functions for merging, the MSP430 proces-
sor is a integer processor. Thus, floating point operations,
trig functions, division and multiplication are performed by
software library functions provided by the MSP-GCC com-
piler. Even so, the total LOCALE code size including math
functions, prediction, update and movement tracking codes,
is only 17KB, corresponding to 35% of the available code
flash. RAM memory usage is also low at less than 1.4KB,
or 14% of total RAM.

Code Overhead: LOCALE must execute within a rea-
sonable time as not to interfere with normal operation of
the nodes. Table 1 shows the measured runtime of the
main parts of LOCALE. In the table, prediction merging
consists of both the transform phase and the update phase
of LOCALE, whereas movement incorporation consists of
the local phase, which incorporates the information gath-
ered from the accelerometers. Even on the MSP430 pro-
cessor running at 4MHz, LOCALE executes fairly quickly.
The process speeds are especially acceptable considering
the long periods of idleness in sparse sensor networks, for
which LOCALE is designed. The entire process takes only
around 650ms to complete. Since prediction merging only
runs once every communication cycle, the impact on sys-
tem performance is small. Furthermore, since these func-
tions are not time-critical, the process can be scheduled to
run only during idle time.

3.3 LOCALE Power Consumption
Most sensor nodes have very limited energy sources,

so LOCALE’s energy efficiency is extremely important.

Power Consumption

LOCALE 430μW

GPS one sample per 8 minutes 4100μW

GPS one sample per second 66000μW

Table 2. LOCALE Power Comparison

For LOCALE, energy consumption stems mostly from two
components: node movement tracking, and the communi-
cation needed to exchange location information with their
neighbors. Here, we present the power consumption of
our implementation, and compare it to the per-node GPS
method.

Movement Tracking: For the motion tracking in the
dead-reckoning ”local phase”, the accelerometer needs to
record data periodically to avoid large sampling errors,
with the sample frequency dependent on movement of the
node. From our experiments, with our rudimentary tracking
method, 32 samples per second is sufficient. Table 2 com-
pares the average system power of LOCALE to ZebraNet
nodes fitted with the Xemics GPS module [44] for localiza-
tion. The Xemics RGPSM002 is an ultra low power GPS re-
ceiver module. From the table we see the constant measure-
ments of the full-degree of movement would require only
430μW. Compared to the energy consumption for GPS re-
ceiver sampling every 8 minutes, this is a 9.5X reduction.
Furthermore, when applications require location informa-
tion even more often, LOCALE consumes 150X less power
than obtaining one GPS sample per second.

Communications: The radio used on the ZebraNet node
is the XTendTM OEM RF Module [22]. The radio has a
maximum transmit power of 1W, which gives roughly 2 km
of outdoor range. Every two minutes, a radio communica-
tions cycle runs, in which nodes first send out peer discov-
ery packets to discern if other nodes are within range. If so,
the communication cycle can continue for up to 1 minute
in order for nodes to exchange position data. During each
communication cycle, the node’s self estimation needs to be
communicated to its neighbors. This consists of five 4-byte
numbers totaling 20 bytes: X location, Y location, X vari-
ance, Y variance, and angle to the global coordinates. This
translates to less than 5mJ per communication, or an aver-
age of 1.4μW of transmission overhead. However, since we
piggyback this information into the previously empty peer
discovery packets, this overhead is avoided in our imple-
mentation.

3.4 Real World Experiments

Small scale case study experiments were performed on
vehicles as a proof-of-concept for LOCALE in real systems.
While we show results from large scale simulations of LO-
CALE in Section 4, these case study experiments show the
feasibility of the system.

In these tests, a node is placed on a car and travels ap-
proximately 300 meters west down the road at speeds of less
than 15 miles per hour to point A where it is held stationary.
Another node is placed in a car and travels 300 meter east to



Percentiles 25 50 75

Without Merge 26m 48m 90m

LOCALE 3.9m 21m 37m

Table 3. Vehicle case studies

Figure 5. Definition of percent area error, a
metric used in our simulations.

point A, where these nodes now exchange and merge their
location estimations. This process was repeated 10 times.
The radio was tuned down to 10mW power with a range of
approximately 20 meters. The results of the experiment are
shown in Table 3. We see that for all percentiles LOCALE
performed significantly better than with movement tracking
alone.

4 Simulation
To evaluate the performance of LOCALE in large-scale

environments, we performed simulations based on param-
eters measured from the ZebraNet node implementation
described in Section 3. In this section, we first explain
our measurement metric, then evaluate LOCALE’s perfor-
mance in a small scale example, followed by evaluating var-
ious aspects of its performance in sparse sensor networks.

In our simulations, we measure the error as a vector that
points from the estimated location to the node’s true loca-
tion. To show typical error, we use the median, 25 per-
centile and 75 percentile because they are less affected by
abnormally large errors. However, because the error vec-
tors point in multiple directions, we use the median per-
cent area error to display the errors of multiple nodes. As
shown in Figure 5, the median area error is the area of the
smallest circle that includes 50% of the error vectors when
their starting points are placed at the origin of the circle.
The median percent area error is calculated by dividing the
area error by the testing area. For example, when there is a
median percent area error of 3%, it means that 50% of the
estimations fall within a circle with 3% the area of the entire
testing area. The 25 and 75 percent area error are the small-
est circles that include 25% and 75% of the error vectors
respectively. This metric gives an unit-less representation
of error for multiple nodes that is irrespective of the size of
the testing field.

Our simulations are performed in networks with den-
sities shown in Table 4. In these simulations, we com-
pare LOCALE with the baseline technique of the beacons
method combined with dead-reckoning (DR) system. The

Number of Nodes Movement Model Neighbors

10 Random 0.02

100 Random 0.24

100 Zebra Movement 0.16

Table 4. Average number of neighbors per
communication slot for each node in our ex-
periments over 100kmx100km field and radio
range of 2km.

beacon-and-DR method is selected because it is the only
method, besides per-node GPS, that can work in sparse net-
works. It requires an infrastructure where beacons pro-
vide known location to the nodes. Nodes, when in direct
communication range of location beacons, update their lo-
cation information based on the beacon’s information. To
make a fair comparison in the sparse situation, nodes with-
out LOCALE also track their location with the DR system
when not in range of the beacon. The primary difference is
that LOCALE allows node-to-node position updates, while
beacon-and-DR can only make updates when in direct con-
tact with the beacon.

The base experiments are performed 100 times with 100
nodes. The results are sorted and the area errors at various
percentiles are plotted. The tests are run on a 100 by 100
kilometers field. In most experiments, we adopted the ran-
dom walk model, where speed and directions are reassessed
every 8 minutes. In each 8 minute cycle, the nodes move
in a random direction ranging a random distance uniformly
distributed from 0 to 1 kilometer. At initialization, each
node starts with the knowledge of its deployed location and
their confidence levels are each set to a circle with unit ra-
dius.

For both LOCALE and the beacon-and-DR methods, we
placed one fixed GPS beacon in the center of the field. The
beacon has an accurate location, with a confidence set to
a circle with 10 meters, and is not affected by erroneous
information from other nodes. Movement tracking errors
are taken from the results measured from our rudimentary
tracking method described in Section 3.1. It incurs a max-
imum error of 20% in both X and Y directions. The radio
range for the simulation is set to 2 kilometers. Only “in
range” information is used to determine distance between
two nodes during the transform phase. In every 8-minute
cycle, a communication is attempted where LOCALE nodes
search and merge with neighbors’ location estimations.

The baseline, beacon-and-DR, method runs under the
same conditions, with the only exception that nodes only
receive location information from the location beacon. In
the following sections, we demonstrate various aspects of
LOCALE’s performance.

4.1 Small Scale Example
In this section we start with a small scale simulation

to provide intuition for LOCALE. 10 nodes were placed
in a 10x10km area where each node was characterized by
the parameters described before. Figures 6 and 7 show a



Figure 6. Top-down view of 10 nodes run-
ning the baseline beacon-and-DR method af-
ter 1000 cycles. Gradients represent con-
fidence distributions, white dots show the
estimated location and the connected dots
show the actual locations. Some nodes ex-
hibit large error because they have not been
in range of the central location beacon for a
long time.

top-down view of the simulation field after 1000 simulated
time slots, for the baseline beacon-and-DR method and LO-
CALE respectively. In the figures, the oval clouds show the
estimated confidence for the location estimation. The white
dots located in the center of the ovals are the position esti-
mations themselves. The dots connected by a line segment
to the position estimations are the true location of the node.

With the baseline method in Figure 6, the node’s only
source of information is the fixed beacon. Nodes that do not
frequently encounter a beacon exhibit large errors. In con-
trast, Figure 7 has much smaller clouds, indicating that LO-
CALE’s method offers much better (tighter) bounds on po-
sition estimates. This is because nodes that do not meet the
beacon can still get location information from other nodes to
refine their estimations. Furthermore, we see that with LO-
CALE, the uncertainty cloud more frequently encloses the
true location. This indicates that, in LOCALE, the variance
is a good estimate for the confidence of the location esti-
mations. From these results, we see that even for relatively
small areas, where the beacon has 13% coverage, LOCALE
performs significantly better than the baseline beacon-and-
DR method.

4.2 System Performance under Normal
Conditions

In this section, we compare the performance of LO-
CALE with the baseline beacon-and-DR method for large-
scale simulations. As described above, these simulations
are performed 100 times, with 100 nodes over a 100x100
area, giving each node an average of 0.24 neighbors each

Figure 7. Top-down view of 10 nodes running
LOCALE after 1000 cycles. Visual compar-
isons with Figure 6 show that LOCALE re-
duces both location error and uncertainty.

simulated time period. The results of this experiment are
shown in Figure 8 in term of median percent area errors de-
scribed earlier. The error bars indicate the 25th percentile
and the 75th percentile of the percent area error. Smaller
values with tighter error bars are more preferable, since
these indicate position estimates that are closer to the ac-
tual location.

Figure 8 shows that between 10,000 data points, the me-
dian area error for LOCALE is reduced by 21X to less than
0.2%. In addition, the 75th-percentile reduction improves
further with 27X improvement to less than 0.5%. This
graph shows that LOCALE drastically improves the usabil-
ity of DR movement tracking with minimal beacon sup-
port, and allows for reasonably accurate localization with-
out GPS.

4.3 Beacon’s Influence on Accuracy
Our next experiments compare LOCALE to the baseline

approach in terms of its sensitivity to a node’s distance from
a beacon. While the true coverage of the beacon is only
the 2-km radio range, LOCALE’s node-to-node informa-
tion exchanges increase its effective coverage. These ex-
periments are performed with the base parameters described
before, but we now plot median error versus the node’s dis-
tance from the beacon. Since the field is a 100x100 square
with one beacon in its center, the maximum distance away
from the beacon is around 70.

Figure 9 shows that both methods have lower uncertainty
for nodes nearer to the beacon. The nodes running LO-
CALE, however, have a much lower error when compared
to those with the beacon-and-DR method. At mid-range
LOCALE effectively reduces the error by as much as 38X.
The area error at the furthest distance from the beacon is
less than 1%. This is because nodes that directly encounter
the beacon can subsequently encounter other more remote
nodes and propagate position information throughout the



Figure 8. Plot of median area error under
nodes running beacon-and-DR method and
LOCALE. Error bars represent the 25th per-
centile and the 75th percentile. LOCALE’s
lower uncertainty values and tighter error
bars indicate improved accuracy. In partic-
ular, there is up to 21X reduction in median
uncertainty.

Figure 9. Plot of error with relation to dis-
tance away from the central beacon. Shows
error reduction by 38X in the mid range.

field. This experiment shows that LOCALE significantly in-
creases the effective coverage of the beacon and effectively
spreads its information.

4.4 Error Correction with Unknown Ini-
tial Position

LOCALE’s ability to propagate accurate position infor-
mation node-by-node through the network effectively in-
creases the coverage of the beacons. One question is how
quickly this propagation can occur. That is, if all the nodes
are deployed with unknown initial positions, how quickly
can they converge towards reasonable accuracy and confi-
dence? The simulations here use the same parameters as
prior experiments, except that the initial position estimates
are random within the 100x100 grid with the same initial
confidence (a circle with unit radius) as the previous simu-
lations.

Figure 10. Plot of median area error under
nodes running beacon method and LOCALE
without initial position. Shows up to 57X me-
dian improvement after 2000 time slots.

Figure 10 shows the resulting median area error over
time. We see that both methods show a decreasing error
as more nodes encounter beacons over time. However, be-
cause of its node-to-node interactions, LOCALE propagates
the beacon information throughout the network much more
quickly. 75% of the nodes drop below 5% error within 2000
time intervals. At this point, the median percent area error
is 57X lower compared with the beacon-and-DR method.

4.5 Effect of Node Density

We now explore the performance of LOCALE under
varying node densities. While LOCALE is intended to im-
prove localization resilience when networks are sparse, its
accuracy improves as density increases. An ability to with-
stand highly varying densities is important for several rea-
sons. Over a network’s lifetime its density may vary greatly,
due to phased deployments, varying node lifetimes, or sim-
ply movement patterns. The experiment was performed
with the same parameters as the base case. All experiments
were run on a 100x100 field and only the number of nodes
on the field was varied between runs.

Figure 11 shows the median percent area error for the
beacon-and-DR method, for a sparse configuration of LO-
CALE with only 10 nodes, and for a denser configuration of
LOCALE with 100 nodes. Even with only 10 nodes, which
have 0.02 neighbors per communication, LOCALE already
shows a nearly 4X improvement relative to the baseline.
75% of LOCALE nodes performed better than the median
of the baseline beacon-and-DR method. In the 100-node ex-
periment, the density of nodes increases to 0.24 neighbors
on average, and LOCALE has more neighbors to encounter.
This increase in neighbor density directly results in even
further improvements of position estimates. This experi-
ment shows that LOCALE works for both dense and sparse
situations. As a rule of thumb, for LOCALE to provide
useful location estimation, density should be kept above 0.1
neighbors per communication. While its performance be-
comes better as node density increases, the 4X improvement
is already significant in extremely sparse situations.



Figure 11. Plot of median error for different
node densities. Shows error reduction even
with a very sparse 10-node network.

Figure 12. Plot of median error with nodes
running LOCALE and the beacon-and-DR
method respectively the extremely low-
mobility ZebraNet movement model. Shows
reduction of error even in this unfavorable
case.

4.6 Effect of Highly Correlated Movement
Model

LOCALE relies on node movement to propagate beacon
information to other nodes with the assumption of identical-
independent-distributions (IID) in movement models. This
assumption of uncorrelated motion allows us to use Gaus-
sian summation properties in our position confidence es-
timate. We next wish to explore whether LOCALE ex-
periences greater error when the IID assumption does not
fully hold. To explore this, we used the ZebraNet move-
ment model [42], which is based on zebra movement traces
obtained from ZebraNet deployment during the summer of
2005. The ZebraNet movement model is bi-modal, where
nodes remain stationary for long periods of time, to feed,
while, at other times, make long-range movements between
feeding fields. In addition, the movement model is also cor-
related, where nodes tend to stay in groups with the same
neighbors for long periods of time.

Figure 12 shows the results from experiments using this
mobility model as the basis for how nodes move through
the simulated grid. This, in turn, dictates how often nodes

Figure 13. Plot of median area error of
nodes in fields with different beacon densi-
ties. Shows LOCALE with one beacon in a
200x200 area obtains an accuracy of between
that of the beacon method with a beacon ev-
ery 20x20 and 30x30 area, a 64X infrastruc-
ture reduction.

encounter the fixed beacon, how often they encounter each
other as neighbors, and how uncorrelated these contacts
are. Although the sparseness and reduced mobility does
adversely affect LOCALE’s accuracy, it still gains more
than 3X area error improvement over the beacon-and-DR
method. At the end of simulation time, 75% of the nodes
had position error of less than 25% of the nodes with
beacon-and-DR. This is because the merge history table
sets a merge delay of 100 time slots, for nodes that remain
in range in 4 consecutive time periods. This experiment
shows that even under difficult conditions that do not match
the initial system assumptions—highly correlated move-
ments, low mobility, and relatively fewer unique neighbor
contacts—LOCALE is still able to greatly outperform the
base case.

4.7 Beacon Density Requirements
In the deployment of sensor networks, cost of infrastruc-

ture is another general concern. In rural or remote areas
where deploying a dense infrastructure would be impracti-
cal, it is desirable for a system to have as few requirements
as possible. This experiment is designed to compare the ac-
curacy of LOCALE and the beacon-and-DR method when
different beacon densities are considered.

For LOCALE, the field is increased to 200x200km with
one beacon in the center. For the beacon-and-DR method,
experiments were run with beacons evenly distributed on
the 200x200 field at different densities: one per 200x200,
50x50, 30x30, and 20x20. Figure 13 shows that, as beacon
density goes up, the error for the beacon-and-DR method
is reduced. More importantly, the same graph shows that
nodes running LOCALE even with only 1 beacon over the
entire 200x200 area can achieve better accuracy than the
beacon-and-DR method with much costlier and higher bea-
con densities. In particular, in a system running LOCALE,
beacons have a coverage area that is effectively 64X larger
than the baseline approach. As a rule of thumb, beacon cov-



erage can be reduced to 0.1% for highly mobile situations,
and even further reduced if placed in high-trafficked areas.
By requiring fewer beacons, LOCALE systems can operate
accurately with much lower infrastructure costs.

5 Related Work
There has been a wide range of research related to local-

ization. These fields include localization methods in dense,
sparse, and more capable robotics systems. In this section
we discuss some of the related work in each of these cate-
gories and how they relate to and differ from LOCALE.

Localization for Fixed or Dense Mobile Networks:
Much work has focused on fixed, dense sensor networks
[19]. The nodes in such networks collaboratively measure
relative distance and use this information to triangulate and
calculate the network topology. Most methods use existing
radio ranging for these measurements [1][2][23][25], while
some only use connectivity as a metric [13][27][34]. Local-
ization within a graphical model framework has also been
explored [15]. In these methods, similar to LOCALE, nodes
combine information from multiple potentially mobile sen-
sor nodes in a dense network. While these methods are well
suited for sensor nodes within a dense network, these lo-
calization methods incur a large communication overhead
especially when nodes are mobile, as this topology infor-
mation would need to propagate through the network. Fur-
thermore, unlike LOCALE, these methods require full con-
nectivity and cannot maintain location information in dis-
connected operations; such approaches would not function
in our design space.

In systems where lower density localization is needed,
some research has investigated the use of beacon nodes that
send calibration signals for nodes without GPS to local-
ize [24]. These methods are similar to the base beacon-
and-DR method that we use to compare with LOCALE.
While these methods remove the requirements for high den-
sity and specialized sensors, they incur the additional cost
of a dedicated infrastructure. In other deployments, nodes
cannot rely on inter-node measurements to obtain a posi-
tion estimate due to lack of available connections. To solve
this problem, some work uses mobile beacons where nodes
can use to obtain their location information [29][31][36].
These are similar to LOCALE in the sense that they utilize
movement to transfer location information, but LOCALE
also further exploits position information from non-beacon
nodes to propagate location information beyond the bea-
cons.

Self-Localization in Mobile Robotics: Many ap-
proaches have been proposed to tackle the localization prob-
lem for autonomous robots. Work relevant to LOCALE
can be largely categorized into two main categories: self-
localization, and target localization. In self-localization,
robots refine their location estimations based on sensor
readings [3][4][11][28][38][40][41]. These techniques are
similar to LOCALE in that they merge multiple observa-
tions of a fixed map or fixed targets to self localize. How-
ever, these techniques are based on multiple observations
of a single node, as opposed to LOCALE where multiple

nodes make multiple observations of each other’s estimates
and collaboratively form better self estimations. Further-
more, algorithm needed to recognize maps or objects are
too computationally intensive, hence not directly applicable
to sensor networks.

Robotic target-localization shares many of the same
challenges as LOCALE in that they both use sensor read-
ings to locate and track targets, and then rely on collabo-
ration to merge observations in order to improve accuracy
[12][35][39]. LOCALE differs, however, in that each nodes
only observe themselves, as opposed to a commonly visible
target. More importantly, LOCALE enables sparse collab-
oration, allowing nodes that cannot make direct observa-
tion of the localization target to collaboratively localize in a
delay-tolerant manner.

6 Conclusion
In this paper, we introduced LOCALE, a distributed lo-

calization algorithm designed for sparse mobile sensor net-
works. We have shown that LOCALE greatly reduces the
localization error, reducing the 75th-percentile area error by
as much as 27X. Furthermore, when compared to the exist-
ing method relying on direct beacon contact and a dead-
reckoning system, nodes using LOCALE achieved a simi-
lar location accuracy with 64X lower beacon density. LO-
CALE enables collaborative localization in sparse networks
by not only allowing nodes to predict their current posi-
tion but also to actively refine their location estimation from
neighbor nodes.

LOCALE is a comprehensive system that, when com-
pared to currently available methods, drastically improves
localization capabilities of sparse mobile sensor networks.
We have shown that it is a powerful, efficient and effective
method that can be easily implemented in many types of
hardware including low-capability sensor nodes. It provides
a viable solution to the localization problem in mobile net-
works. More broadly, LOCALE effectively enables and uti-
lizes collaboration localization in sparse and disconnected
mobile sensor networks.

References

[1] P. Bergamo and G. Mazzimi. Localization in Sensor Net-
works with Fading and Mobility. In Proceedings of IEEE
PIMRC, 2002.

[2] N. Bulusu, J. Heidemann, and D. Estrin. Gps-less Low
Cost Outdoor Localization for Very Small Devices. IEEE
Personal Communications Magazine, 7(5):28–34, October
2000.

[3] W. Burgard, A. Derr, D. Fox, and A. Cremers. Integrating
Global Position Estimation and Position Tracking for Mo-
bile Robots: the Dynamic Markov Localization approach.
In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’98), pages 730–735,
October 1998.

[4] W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimat-
ing the Absolute Position of a Mobile Robot Using Position
ProbabilityGrids. In Proc. of the National Conferenceon Ar-
tificial Intelligence, 1996.



[5] Crossbow. MTS-MDA Series Users Manual. http://
www.xbow.com/, June 2006.

[6] Crossbow. Stargate DataSheet. http://www.xbow.
com/, Nov. 2006.

[7] Crossbow. IMote2 DataSheet. http://www.xbow.
com/, 2007.

[8] Crossbow. MICA2 DataSheet. http://www.xbow.
com/, 2007.

[9] Crossbow. MICAZ DataSheet. http://www.xbow.
com/, 2007.

[10] Crossbow. TelosB DataSheet. http://www.xbow.
com/, 2007.

[11] A. Curran and K. J. Kyriakopoulos. Sensor-based Self-
localization for Wheeled Mobile Robots. In IEEE Interna-
tional Conference on Robotics and Automation, May 1993.

[12] M. Dietl, J. Gutmann, and B. Nebel. Cooperative Sensing in
Dynamic Environments. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS’01), 2001.

[13] T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelza-
her. Range-Free Localization Schemes in Large Scale Sen-
sor Networks. In MobiCom ’03, 2003.

[14] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko,
A. K. Miu, E. Shih, H. Balakrishnan, and S. Madden. Car-
Tel: A Distributed Mobile Sensor Computing System. In
4th ACM SenSys, November 2006.

[15] A. T. Ihler, J. W. Fisher III, R. L. Moses, and A. S. Will-
sky. Nonparametric belief propagation for self-calibration
in sensor networks. In Information Processing in Sensor
Networks, 2004.

[16] P. Juang, H. Oki, Y. Wang, et al. Energy-Efficient Comput-
ing for Wildlife Tracking: Design Tradeoffs and Early Ex-
periences with ZebraNet. In Proceedings of the 10th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-X), Oct.
2002.

[17] Y.-B. Ko and N. H. Vaidya. Location-Aided Routing (LAR)
in Mobile Ad Hoc Networks. In Fourth Annual ACM/IEEE
International Conference on Mobile Computing and Net-
working (Mobicom98), 2005.

[18] B. Kusy, G. Balogh, A. Ledeczi, and M. M. J. Sallai. in-
Track: High Precision Tracking of Mobile Sensor Nodes.
In 4th European Workshop on Wireless Sensor Networks
(EWSN 2007), January 2007.

[19] K. Langendoen and N. Reijers. Distributed Localization
in Wireless Sensor Networks: a Quantitative Comparison.
Computer Networks: The International Journal of Com-
puter and Telecommunications Networking, 43(4):499–518,
2003.

[20] W. E. Mantzel, C. Hyeokho, and R. G. Baraniuk. Dis-
tributed Camera Network Localization. In Signals, Systems
and Computers, 2004.

[21] M. Mauve, J. Widmer, and H. Hartenstein. A Survey on
Position-Based Routing in Mobile Ad-Hoc Networks. IEEE
Network Magazine 15 (6), pp. 30-39, Nov. 2001.

[22] Maxstream, Inc. XTend OEM RF Module: Product Manual
v1.2.4. http://www.maxstream.net/, Oct. 2005.

[23] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust Dis-
tributed Network Localization with Noisy Range Measure-
ments. In Proc. 2nd ACM SenSys, pages 50–61, Baltimore,
MD, November 2004.

[24] R. Moses, D. Krishnamurthy, and R. Patterson. A Self-
Localization Method for Wireless Sensor Networks. In
Eurasip Journal on Applied Signal Processing, Special Is-
sue on Sensor Networks, 2002.

[25] R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a Global
Coordinate System from Local Information on an Ad Hoc
Sensor Network. In 2nd International Workshop on In-
formation Processing in Sensor Networks (IPSN ’03), Apr.
2003.

[26] D. Niculescu and B. Nath. Ad Hoc Positioning System
(APS) using AoA. In In Proceedings of INFOCOM 2003,
2003.

[27] D. Niculescu and B. Nath. DV Based Positioning in Ad hoc
Networks. In Journal of Telecommunication Systems, 2003.

[28] C. Olson. Probabilistic self-localization for mobile robots.
In IEEE Transactions on Robotics and Automation, vol. 16,
no. 1, pp. 55-66, Feb. 2000.

[29] P. N. Pathirana, N. Bulusu, S. Jha, and A. V. Savkin. Node
Localization Using Mobile Robots in Delay-Tolerant Sen-
sor Networks. In IEEE Transactions on Mobile Computing,
volume 4, pages 285–296, May 2005.

[30] PNI Corporation. MicroMag3 DataSheet. https://www.
pnicorp.com/, 2007.

[31] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller.
Mobile-Assisted Localization in Wireless Sensor Networks.
In IEEE INFOCOM, Miami, FL, March 2005.

[32] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The
Cricket Location-Support system. In 6th ACM MOBICOM,
Aug. 2000.

[33] Servoflo Corporation. AMI601 DataSheet. http://www.
servoflo.com/, 2007.

[34] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localiza-
tion From Mere Connectivity. In MobiHoc’03, 2003.

[35] R. C. Smith and P. Cheeseman. On the Representation and
Estimation of Spatial Uncertainty. The International Journal
of Robotics Research, 5(4):56–68, 1986.

[36] K.-F. Ssu, C.-H. Ou, and H. C. Jiau. Localization with Mo-
bile Anchor Points in Wireless Sensor Networks. In Vehicu-
lar Technology, IEEE Transactions on, 2005.

[37] STMicroelectronics. LIS3L02AQ DataSheet. http://
www.st.com/, Nov. 2004.

[38] A. Stroupe and T. Balch. Collaborative Probabilistic
Constraint-Based Landmark Localization. In Proceedings
of IROS ’02, October 2002.

[39] A. Stroupe, M. Matrin, and T. Balch. Distributed Sensor Fu-
sion for Object Position Estimation by Multi-robot Systems.
In Int. Conf. on Robotics and Automation (ICRA’01), 2001.

[40] S. Thrun. Bayesian Landmark Learning for Mobile Robot
Localization. In Machine Learning, volume 33, pages 41–
76, 1998.

[41] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust
Monte Carlo Localization for Mobile Robots. Artificial In-
telligence, 128(1-2):99–141, 2000.

[42] Y. Wang, P. Zhang, T. Liu, C. Sadler, and M. Martonosi.
Movement Data Traces from Princeton ZebraNet
Deployments, 2007. CRAWDAD Database.
http://crawdad.cs.dartmouth.edu/.

[43] G. Welch and E. Foxlin. Motion Tracking: No Silver Bullet,
but a Respectable Arsenal. IEEE Computer Graphics and
Applications, special issue on Tracking, 22(6):24–38, Nov.
2002.

[44] Xemics. DP1201A, 433.92MHz Drop-in Module Product
Brief. http://www.xemics.com/, Mar. 2004.

[45] P. Zhang, C. Sadler, S. Lyon, and M. Martonosi. Hard-
ware Design Experiences in ZebraNet. In Proceedings of
the ACM Conference on Embedded Networked Sensor Sys-
tems (SenSys), 2004.


