
Extracting Useful Computation From Error-Prone Processors For
Streaming Applications

Yavuz Yetim Margaret Martonosi Sharad Malik

Princeton University

Abstract—As semiconductor fabrics scale closer to fundamen-
tal physical limits, their reliability is decreasing due to process
variation, noise margin effects, aging effects, and increased sus-
ceptibility to soft errors. Reliability can be regained through re-
dundancy, error checking with recovery, voltage scaling and other
means, but these techniques impose area/energy costs. Since some
applications (e.g. media) can tolerate limited computation errors
and still provide useful results, error-tolerant computation models
have been explored, with both the application and computation
fabric having stochastic characteristics. Stochastic computation
has, however, largely focused on application-specific hardware
solutions, and is not general enough to handle arbitrary bit errors
that impact memory addressing or control in processors.

In response, this paper addresses requirements for error-
tolerant execution by proposing and evaluating techniques for
running error-tolerant software on a general-purpose processor
built from an unreliable fabric. We study the minimum error-
protection required, from a microarchitecture perspective, to
still produce useful results at the application output. Even with
random errors as frequent as every 250µs, our proposed design
allows JPEG and MP3 benchmarks to sustain good output
quality—14dB and 7dB respectively. Overall, this work estab-
lishes the potential for error-tolerant single-threaded execution,
and details its required hardware/system support.

I. INTRODUCTION

As transistor sizing and threshold voltages approach their
limits, semiconductor fabrics are expected to experience in-
creasing device failures and higher error rates [7]. These
trends make it increasingly difficult to maintain an error-free
hardware abstraction. Techniques such as modular redundancy,
error checking with recovery, or voltage scaling may mitigate
error frequency, but often at high area/energy costs. Razor [4]
focused on checking and recovering from timing errors to
reduce these overheads. Stochastic computing approaches re-
lax the expectation of error-free hardware with specialized
approaches for inherently error-tolerant applications, such as
media processing [6]. Such stochastic computing, however,
mostly assumes application-specific hardware solutions.
An important next step is to extend error-tolerant computa-

tion to software on programmable processors implemented on
unreliable fabrics. Irrespective of application error-tolerance,
corruptions in architectural state can corrupt program control
flow or cause memory addressing errors or other exceptions
that terminate the program. Our characterizations show that
a streaming application whose runtime is only 50ms may
infinitely loop or crash when bit errors occur roughly every
1ms. In previous work, Jolt [1] detects some infinite loops,
and exits them by dynamic binary modification. A system
with hardware errors must more aggressively detect infinite
loops and cannot rely on software-only solutions. ERSA [9]

The first author can be reached at yyetim@princeton.edu. The authors
acknowledge the support of the Gigascale Systems Research Center, one
of six research centers funded under the Focus Center Research Program,
a Semiconductor Research Corporation program. In addition, this work was
supported in part by National Science Foundation.
978-3-9815370-0-0/DATE13/ c© 2013 EDAA

deals with hardware errors by isolating the algorithmic flow on
a highly reliable core, and the data computation on reduced
reliability cores. This solution requires a reliable core, and
also requires the application to be easily partitioned into a
single control and multiple worker threads. EnerJ [13] and
Flikker [10] are distinct in proposing type systems to annotate
variables and partition the computation/data into error-tolerant
and error-intolerant parts. They further partition the hard-
ware as “error-prone/low power” and “error-free/high power”.
Error-prone components run error-tolerant instructions, store
error-tolerant data, whereas error-free components run error-
intolerant instructions and store error-intolerant data. This
approach ensures reliability but significantly reduces potential
gains, because such partitioning means less than half of the
instructions are error-tolerant and less than half of the core is
error-prone.
This paper studies the minimum error-protection re-

quired from the microarchitecture in order to support useful
application-level results for streaming applications running on
a general-purpose processor built on an error-prone fabric.
Overall, we make the following contributions: i) We are the
first to propose a solution to ensure software progress through
errors without assuming any fully-reliable cores or a specific
error model. Further, we characterize how hardware errors
propagate through layers of the computation stack and change
program behavior or output. We propose minimal protection
schemes for each type of error. Our solution space includes
components that guide control flow, memory addressing and
I/O accesses with customizable granularities to handle these
errors. ii) Even though errors quickly become program-critical
under even modest error rates, we show that control flow and
memory addressing do not have to be perfectly reliable to
eliminate such outcomes. Our microarchitectural components
bound and guide computation at a coarser grain to avoid these
crashes and hangs with minimal hardware overhead. iii) We
further show that modest information on the program structure
of streaming applications allows further error mitigation. Our
solutions do not require rewrite of the streaming applications;
in fact the only code transformation we require can be auto-
mated in the compiler. iv) We show the results of different er-
ror types for 7 Streamit [15] benchmarks including two widely
used multimedia benchmarks (JPEG and MP3 decoders). The
resulting output quality is as good as the zero-error case
for errors that occur as frequently as every 10

7 instructions
(< 10ms of runtime). For even more frequent errors (every
250 microseconds) the SNR value remains acceptable: 14dB
(-32%) for JPEG and 7dB (-28%) for MP3.

II. OVERVIEW

Error Dependence Characterization: While applications
may have some inherent error tolerance, that does not translate
uniformly to instruction-level error-tolerance. Errors in critical

0 %

20 %

40 %

60 %

80 %

100 %

audiobeamformer

fft filterbank

fmradio
jpegdecoder

matrixmult

mp3decoder

P
e

rc
e

n
ta

g
e

 o
f

 I
n

s
tr

u
c
ti
o

n
s

Load
Store

Loop Back-edge

Fig. 1. Percentage of error-free instructions needed to avoid i) mem-
ory accesses that may cause crashes and ii) control flow operations
that change looping behavior leading to hangs.

instructions may have a catastrophic effect on execution, even
for error-tolerant applications. For example, memory access
instructions cause segmentation faults if a corrupted address
points to a disallowed location. Similarly if control flow
is corrupted, a program may hang or loop indefinitely. A
location/instruction is error-intolerant if its corruption could
lead to a catastrophic failure such as a crash or a hang. For an
application to progress without crashing due to segmentation
faults or going into an unresponsive state, all memory address-
ing and loop back-edges are considered as error-intolerant.
Transitively, all control and data dependencies for intolerant
instructions must be considered error-intolerant as well.
Given the likelihood of these dependence chains of error-

intolerance, we first characterized the error-intolerant instruc-
tions in StreamIt applications. Using LLVM [8], we marked
the error-intolerant instructions and transitively their data and
control dependencies. Figure 1 shows that as many as 65%
of all instructions are error intolerant in these benchmarks
and thus need some protection to avoid crashes and hangs.
The predominance of error-intolerant instructions motivates
our work to mitigate control and memory addressing errors
to improve application success rates on error-prone fabrics.
Further, our error-control mechanisms must work well and
incur low overheads despite this predominance.
Minimal Requirements For Error-Tolerant Systems: Over-

all, in order to provide acceptable error-tolerant application
operation on error-prone fabrics, there are four design require-
ments that a system must meet. First, the program should
not hang or run indefinitely. Control flow errors that result in
infinite loops or other failures to terminate must be addressed.
Second, the application should only be allowed to access
information that it is allowed to. Memory addressing errors
that cause the program to access off-limits areas must be
handled. Third, application input/output sequences must not
cause external device corruption such as filesystem errors.
This is related to the second requirement, but calls for proper
I/O controls. Fourth and very important, the accuracy of the
computation as viewed in terms of the end-result data values
stored in the program outputs must be acceptable, i.e., errors
should result in only acceptably-small changes to these output
data. Acceptability is defined via an appropriate application-
level metric, such as SNR [14]. Thus, errors that result in
small changes in calculation data, or even small (within-
range) memory addressing errors or control flow errors, are all
acceptable, as long as the above four requirements are met.

III. PROPOSED DESIGN

Figure 2 shows the key components of our proposed ap-
proach, with the five reliable modules in dashed boxes. The

Fig. 2. Our low-overhead support for an application to eliminate crashes,
hangs and device corruptions includes five reliable components (dashed
outline, only conceptually separated from the core). The macro instruction
sequencer (MIS) with a timer ensures forward progress. The memory fence
unit (MFU) constrains memory accesses. Streamed I/O manages bounded
data streams. Application initiator/terminator (AIT) communicates with the
components and external devices/processors on application initiation or ter-
mination, and Bus control handles correct communication with the external
devices/processors. The rest of the system (solid outline) can be unreliable
with best-effort operation.

Fig. 3. Macro instruction sequencer guides the control flow of an application
by enforcing bounds on nested scopes. The table stores information regarding
the scopes of a program and the FSM uses and updates this information to
handle application hangs or other exceptions.

three bounds modules—MIS, MFU and the streamed I/O—
constrain execution based on application profile information,
and are described in the following subsections. The AIT and
bus control communicate with external devices/processors.

A. Macro Instruction Sequencer

The Macro Instruction Sequencer (MIS) has primary re-
sponsibility for constraining the control-flow behavior of the
system. Central to the MIS design is the observation that
a single-threaded streaming application can be viewed as a
series of coarse-grained chunks of computation. Thus, we can
constrain coarse-grained control flow by bounding the allowed
operation count per chunk, and by retaining information about
legal or likely series of chunks. Figure 3 shows the MIS
implementation—primarily a state machine and a sequencer
table. The sequencer table stores the needed application profile
information, and the MIS state machine uses this information
in the sequencer table to bound each chunk’s run-time, and to
restart chunk execution from known points when needed.

To guide control flow, we introduce the concept of a scope
(i.e. the “chunks” referred to in the previous paragraph). A
scope is a region of code denoted by S BEGIN and S END
markers (placed by the compiler). Each scope has an associ-
ated bound on the operation count. During normal operation,
the operation count for the active scope is incremented on
each retiring instruction. If the current operation count exceeds
the scope’s allowed bound, the MIS causes this scope to
be exited, according to the scope recovery process discussed
below. Scopes have some of the attributes of procedure call
interfaces—known clean-slate starting points for regions of
code—but without the actual stack changes or non-sequential
PC values. Normally, scopes enclose straight-line code that
the PC sequences through instruction by instruction; other
nesting and function call cases are handled in the paragraph
below. Their purpose is to delineate chunks of execution whose
execution time can be bounded. This is used to constrain
the impact of error-prone fabrics in causing major program
derailments as noted in Section II’s requirement 1.
Figure 3 illustrates an MIS that achieves the described

functionality. The sequencer table consists of six columns for
every scope. The scope pc and the exit pc are program counter
values for the S BEGIN and S END instructions, i.e., markers
for a scope. The instruction limit is the per-scope bound on
instruction count. The current count of instructions executed
in this scope thus far is stored in instruction count. The parent
scope is used to pass control back to the parent scope when the
active scope terminates, and to check for a legal child when
a new scope begins, as discussed below. The final column
manages information for the application call frame, which is
used when an execution reset must occur.
When an S BEGIN is encountered, the MIS first checks if

its PC corresponds to an allowed child of the active scope,
and if the active scope has enough instructions to execute the
child scope. This scope check first uses the PC to perform a
sequencer table lookup to find the child scope entry. If the
active scope is indeed a parent, then the instruction limits are
checked. If allowed to proceed, the “active scope” is updated
to start tracking instruction count and other key information
of the new scope. If the current PC is not a legal child scope,
then control flow must have erroneously jumped due to errors,
eventually encountering this incorrect S BEGIN. For such
cases, a scope recovery is executed as discussed below.
When an S END is encountered, the MIS similarly checks

if the current PC corresponds to the correct exit pc of the
active scope. If it does, then the active scope is updated to
be the parent scope, and execution continues. As part of this
scope transfer, the parent scope’s instruction counter is updated
and the child scope’s is zeroed out. One can either update
by the amount of instructions actually executed by the child
scope (i.e. the counter value) or by the child’s limit. These
options have subtle tradeoffs in analyzability; for this paper’s
results, we use the limit value. If the scope check fails, the
MIS executes a scope recovery as discussed below.
The final possible event is instruction retirement. Here it

simply checks if the active scope has any instructions left in
its limit. If so, it retires the instruction and increments. If not,
it cancels the retirement and performs scope recovery. While
naively this check adds latency on retiring instructions, we
hide this latency by batch retirements. Alternatively, the check
can be performed while instructions wait in the reorder buffer.
Profiling for Instruction Count Bounds: Our approach

rests on having reasonable instruction count bounds for each
scope. For streaming applications, this is fairly tractable be-
cause the control flow includes few dynamic conditions and
the longest execution paths are easily seen at compile-time.
When programs have high variability or even in some cases
no finite overall bound (e.g. infinitely running data processing)
the application or compiler can use blocking transformations to
place bounds on groups of loop iterations without bounding the
whole. We use static profiling to obtain useful bounds for our
benchmarks, but many other dynamic or adaptive techniques
are possible and there is prior work to draw from [16].
Scope Recovery Process: When scope recovery is needed,

the MIS updates the PC to be the exit pc of the active scope.
In the case of infinite loops, control may have remained
within this scope, but exceeded the allowed instruction count.
Forcing execution to the exit pc breaks this loop. In the case
of bit errors that cause misdirected jumps, control may have
transferred to an incorrect scope. In these cases, we “reset”
execution by going to the exit pc and resuming from there.
This may entail some number of incorrect instructions being
executed, but again the goal is to reduce hardware overhead
and extend generality by constraining the extent and side
effects of such behavior, rather than disallowing it entirely.
Nesting, Function Calls and Other Scope Issues: Scope

annotations in the program should be cleanly nested, meaning
that scope regions can only intersect if they have a parent-
child relationship. Further, S BEGINs should dominate the
closing S ENDs and the S ENDs should post-dominate these
S BEGINS (e.g., a loop can contain a scope and/or can be
contained in a scope but not cross one). Function calls should
be fully contained by S BEGIN and S END statements at
matching scope depth. Since recovery from a scope violation
involves jumping to the current scope’s exit pc, further infor-
mation is needed for scopes that include a function call. For
these, we record the stack and base pointers (last column of
the sequencer table) so that when the recovery routine jumps
to the scope’s exit pc, it also resets the call frame. The frame
information is statically known if the function’s call depth is
statically known (as in our applications and many others), but
one could also record the frame information dynamically at
scope start, for possible use at scope recovery. Recursive calls
should be enclosed at the outermost caller location and the
recursive functions should not contain scopes in them.
Hardware Overheads: The MIS manages only one scope at

a time to keep the hardware overhead low. The most common
operation, bounds checking and increment, only requires one
comparator and one adder. The S END and S BEGIN events
are less frequent, and only require a lookup to the sequencer
table, a condition check, and possibly an addition. At S ENDs,
a lookup in the sequencer table is necessary for the parent
scope, whose index is stored with the active scope entry. For
S BEGIN current pc is used to get the information for the new
scope and check if it is a valid child. Identifying a scope by
the pc of its S BEGIN instruction makes it possible to avoid
storing the children of a scope in the sequencer table.
The sequencer table can be implemented either as a single

table, or as a combination of the full table and a cache for
some of the entries. For StreamIt programs, scope counts vary
from 12 for jpegdecoder to 124 for mp3decoder; this number
determines the size of the full table. If a cache is used instead,
then three cached entries suffice, i.e., the parent scope, the
current scope and the child scope. Having these entries ready

in the cache requires a prefetcher and since the scope tree is
trivial for StreamIt applications (main scope with sequential
children), implementation of the prefetcher would be trivial.

B. Memory Fence Unit

In addition to control errors, our four fundamental design
requirements also require us to mitigate the effects of memory
access errors. For full general usage, such access errors can
cause segmentation faults which crash the program. Even in
constrained no-Operating-System scenarios considered here,
such errors can influence output accuracy. To mitigate error
effects, we propose a memory fencing unit (MFU). The MFU
checks accesses against the legal address range allowed for a
particular scope or instruction. The MFU can be implemented
similarly to earlier segmentation schemes [2], [3] with the
addition of designated error handlers for different error condi-
tions. In this work, we partition memory to be execute&read
and read&write regions, although further programming lan-
guage support can be used to obtain finer grain ranges [5].
If a memory access is out-of-range, the MFU’s response

depends on what type of access it was. For read or write
accesses (i.e. data references) we silence the fault either
by skipping this memory instruction or by referencing a
dummy physical location instead. While perhaps surprising,
this response is simple to implement and abides by the four
requirements in Section II—our goal is simply to prevent
memory accesses to disallowed ranges. The third memory
access type is execute which applies to fetches intended for
instruction memory. Execute failures are illegal instruction
fetches where the program counter points to a disallowed
region of memory: either this region does not contain program
code or perhaps the PC is pointing outside the application’s
allowed memory range entirely. Simply silencing the current
instruction (as we do for reads and writes) does not work for
execute failures, since advancing the program counter typically
leads to yet another illegal execute access. Instead, for execute
failures, the MFU signals the MIS to end the current scope
and begin scope recovery from a known point in the code. For
example, this would be the next filter in StreamIt applications.
(Other exceptions are handled similarly.)

C. Streamed I/O Constraints

Finally, requirement 3 from Section II calls for I/O con-
straints. Real-world applications must read and/or write data
from/to external devices; prior work has not substantively
covered this issue. Even if the use of data may be error
tolerant, its transfer should not cause crashes or corrupt the
file system. To achieve this, we use streamed I/O which only
performs fixed-sized, streamed read and write operations, and
we limit the number of I/O operations allowed per file or
scope. Constraining I/O to bounded sequential access gives
an error-prone processor access to data, but not to arbitrary
addresses or file system data structures. This approach works
well for StreamIt and similar benchmarks. Future work can
explore additional variants.

IV. EXPERIMENTAL METHODOLOGY

A. Simulation Infrastructure

To study how errors percolate from hardware through ISA
to the application, we built a simulation infrastructure based on
the detailed Virtutech Simics functional architecture simulator
[11]. Our baseline system is the 32-bit Intel x86 architecture.

The MIS is simulated as a snooping device that observes
the retiring instructions. It implements the scope table and
the scope FSM shown in Figure 3. The MFU is implemented
as a modified TLB module. Based on the access address and
request type, it checks if the application has the required access
permission for that memory region. For read/write access
violations, this module returns a physical dummy location. For
execute access failures, it instructs the MIS to initiate a scope
termination and recovery. Finally, we simulate Streamed I/O
by transforming the I/O calls in the StreamIt applications to
certain x86 instructions that our simulator uses as markers for
initiating emulated streamed I/O accesses.

Error Injection The simulator models hardware errors by
flipping bits in the register file. Error events occur randomly
following a uniform distribution for a given mean time be-
tween errors (MTBE). When an error occurs, the simulator
randomly selects a bit in a randomly-selected register and
flips it. The random bit-flips in random registers model the
architectural visibility of underlying hardware faults [12]. The
32-bit x86 architecture has a small number of general purpose
registers. Arithmetic registers are used for complex operations
that use a larger state space compared to the operations on
ESP, EBP and EIP registers, thus they should experience
more errors. As a result, this module injects errors directly
to the following six registers: E[A-D]X, ESI, and EDI. Other
state, including registers like ESP, EBP or EIP, can become
corrupted transitively. For example, since these registers are
written to/from the stack at procedure calls, they are corrupted
via memory addressing errors. Thus, our protection and system
recovery mechanisms apply to ESP, EBP and EIP errors also.

B. Benchmarks

Our experiments use seven benchmarks from the StreamIt
benchmark suite [15]. These are either multimedia processing
applications or kernels for such applications. These bench-
marks were primarily selected due to the suitability of multi-
media applications for error-tolerant computation. In this work,
we insert the S BEGIN and S END instructions around the
location of each StreamIt filter function call. After profiling the
applications in error-free runs to determine the scope execution
bounds and other static scope information, we run them with
our modules activated for error-prone operation.

The StreamIt compiler produces corresponding C++
code. An open-source MP3 encoder/decoder library
(http://lame.sourceforge.net/) compresses a recorded signal
and decodes it to the StreamIt C++ back-end’s preferred
format. The StreamIt java implementations provide the JPEG
encoder/decoder; we use these implementations to encode a
raw image and decode it to the preferred back-end format.
We run the benchmarks with varying MTBEs to see how the
corresponding application output changes and which error
types are prominent for the acceptable ranges of the output
quality. For each MTBE, we do 10 runs using different
seeds for the random number generator of the error injector.
The simulation runs to measure end-to-end error impact on
program output use full length of application runs on the
simulated machine, while other error characterizations use a
truncated version (the first 50ms measured on the machine)
due to long simulation times.

1e-01

1e+01

1e+03

1e+05

1e+07

1e+09

audiobeamformer jpegdecoder fft filterbank fmradio matrixmult mp3decoder

N
u

m
b

e
r

o
f
E

v
e

n
ts

write accesses
write errors

read accesses
read errors

all scope exits
forced scope exits

frame unrecovered
injected errors

Fig. 4. At an MTBE of 256k instructions, the most common error types are memory address errors (read and write accesses to non-permitted
memory regions) and, in some benchmarks, forced scope exits (due to execute access errors, processor exceptions, or exceeding an instruction
count limit). Shaded bars show total event counts (e.g. memory accesses) and patterned bars indicate the number of events experiencing an
error. The last bar per application shows the average number of bit flips injected to the architectural registers.

(a) 2048k instrs (18dB) (b) 32k instrs (7dB)

Fig. 5. Image outputs from the JPEG decoder benchmark at different
MTBEs from the same seed for the random number generator.

V. EXPERIMENTAL RESULTS

Here, we first characterize catastrophic errors in terms of
their frequency and execution impact. Second, we study the
efficacy of the proposed protection mechanisms on application
output quality for JPEG and MP3.

A. Characterization of Catastrophic Errors

Prominent Error Types Handled By Protection Modules:
Figure 4 shows how often different protection handlers are
invoked for each type of error. An MTBE of 256k instrs is
high enough to maintain acceptable output quality and low
enough to analyze the effects of errors (see Section V-B). The
figure shows that memory write and read failures are the most
common failures experienced—up to an order of magnitude
more frequent than architectural bit flips themselves (Consider
for example if a bit flip occurs in a pointer used for several
memory accesses). Write failures are more frequent than read
failures, because an application usually has read permissions
for address ranges that it can write to, but the converse is
not true. For applications with more complicated control flow,
forced scope exits are also prominent.
Effects of Illegal Instruction Fetch: As Section III discusses,

an execute failure occurs due to an illegal instruction fetch.
Without the MFU, trying to execute the correspondingmemory
location would likely fail and the next memory location would
be illegal too. This would effectively be a program crash and
Figure 6(a) shows results related to this issue. Only two of
our applications ever experience execute access failures. The
failures for fft start for MTBE≈ 10

6 instrs and for mp3decoder
they start for MTBE ≈ 10

5 instrs. In our system, the MFU
detects such accesses and the MIS initiates scope recovery.
Even though this may cause data errors for the computation
on the current block of data, the streaming application can use
scope recovery to withstand this error and continue execution
with useful results (see Section V-B).
Errors Causing Application Hangs: While the MFU could

enable some error-tolerant operation, it would be insufficient
without the MIS. In particular, without the MIS’s ability to

keep control flow on track, errors not only affect program and
address values, but they also cause the programs to hang and
fail to reach the end of the computation. Figure 6(b) shows
that fft, jpegdecoder and mp3decoder would hang (run-time
higher than 20x) at an MTBE as infrequent as ≈ 10

6 instrs.
As Section V-B shows, our modules enable computation with
acceptable outputs for even more frequent errors executing
strictly fewer instructions than the given limit.
The MIS guarantees that the scopes do not exceed their

instruction limits, however it cannot eliminate all performance
overheads that may be caused by errors. For example, an error-
free run may exercise shorter paths of the control flow, whereas
an error-prone run may erroneously choose longer paths, hence
causing a performance overhead. StreamIt applications do not
exhibit this behavior in our experiments. In contrast, for high
error rates, applications tend to exit loops early, causing the
application to complete faster but with degraded output quality.
This degradation is reflected in our results.

B. Effects of Errors on Application-level Quality Metrics

Our second set of experiments assess how low-level hard-
ware errors affect application-level quality metrics with the
protection modules in place. We focus on two important appli-
cations due to their wide adoption and ability to tolerate errors.
JPEG is a widely used lossy image compression standard and
MPEG-2 Audio Layer III (MP3) is a widely used lossy audio
compression standard. For a given raw signal X , they define
a compression algorithm to produce a smaller file Y and also
a decompression algorithm to reproduce the output signal Z .
However, due to information loss in the compression stage, the
output Z is not the same as input X . SNR [14] is a common
metric to quantify this difference. We use SNR to quantify the
change lossy compression introduces, even assuming error-free
hardware. Next, we run the decompression stage through our
simulator and calculate the SNRe of the output from error-
prone hardware, Ze. Comparing SNR with SNRe provides
a useful metric for the quality of the output of the error-prone
run for a given MTBE. As before, we perform 10 runs to
capture the statistical variation of SNRe across runs.
Figure 7(a) shows JPEG benchmark results. With very

frequent errors, SNRe is close to 0dB, meaning that output
error is as prominent as the signal itself. As errors become
less frequent, however, SNRe improves and reaches SNR.
Figure 5 presents images for two SNRe values. With an

MTBE of 2048k instrs on average, there is little visible error.
In fact, SNRe matches SNR even though the protection
mechanism has actually handled 19k memory errors. When
the MTBE reaches 32k the image is visibly corrupted, but
still quite recognizable. At this point, the program has with-

0 %

20 %

40 %

60 %

80 %

100 %

 1000 100000 1e+07

P
e

rc
e

n
ta

g
e

 o
f

C
ra

s
h

e
s

Mean Time Between Errors (instructions)

fft
mp3decoder

(a) MFU disabled to characterize execute failures

0 %

20 %

40 %

60 %

80 %

100 %

 1000 100000 1e+07

P
e

rc
e

n
ta

g
e

 o
f

T
im

e
d

-O
u

t
R

u
n

s

Mean Time Between Errors (instructions)

fft
mp3decoder
jpegdecoder

(b) MIS disabled to characterize hangs

Fig. 6. (a) Applications experience hangs (infinite looping) with the MTBE as high as every ≈ 10
6 instrs. Hangs are more common

with increasing error rates. (b) Without the MFU, we define an illegal instruction fetch as a crash. fft and mp3decoder experience crashes,
particularly for MTBEs of 128K instrs or less.

-10

 0

 10

 20

 30

1e+01 1e+03 1e+05 1e+07(a
)

J
P

E
G

 D
e

c
o

d
e

r

A
v
e

ra
g

e
 S

N
R

 (
d

B
)

Mean Time Between Errors (instructions)

-10

 0

 10

 20

1e+01 1e+03 1e+05 1e+07

(b
)

M
P

3
 D

e
c
o

d
e

r

A
v
e

ra
g

e
 S

N
R

 (
d

B
)

Mean Time Between Errors (instructions)

Fig. 7. Output quality of the (a) JPEG and (b) MP3 decoder algorithms running at different MTBEs. The flat line in each graph corresponds
to the output quality when the decoder is run without any errors.

stood ≈ 10
6 memory errors, 10 forced scope exits due to

instruction limits, 1 illegal instruction fetch, and 2 processor
exceptions. Note that due to the streaming nature of these
applications the errors show up as lines in the image. Since
a StreamIt application works on a block of data per iteration
and crucial variables such as buffer pointers are re-initialized
every iteration, a corruption burst is cleared in the following
iteration. Interestingly, we did not alter the application to have
this behavior; this “partial restore” of buffer indices is natural
to StreamIt. These experiments highlight how our lightweight
hardware additions enable programs to withstand and recover
from error, in order to produce useful results.
Figure 7(b) for MP3 decoder shows similar trends. However,

in contrast with JPEG, here the SNR can go to negative
values. This is because of data representation. JPEG appli-
cation efficiently uses the 8-bit each of Red-Green-Blue per
output pixel, so even the highest error power is comparable to
the original signal power. However, MP3 represents the audio
output signal as pulse code modulated, so the bit utilization
depends on sound volume. Since an error can make arbitrary
output signal changes, our output can have higher power than
the original, resulting in negative SNR. More frequent errors
can improve the SNR value (to zero) because with lower
MTBEs, the application produces a zero output signal, silence
is better than noise. The reader can listen to different sounds
for different error rates here: http://youtu.be/2XhZxbNz7Lk.

VI. CONCLUSIONS

This work has explored the design and utilization of future
programmable processors that may be error-prone due to
hardware faults expected in future technology generations. The
abstraction of an error-free hardware-software interface comes
at considerable area/energy cost; it important to consider cases
where errors may cross this interface. We classify possible
catastrophic errors as control flow errors, memory errors and
I/O errors. We then propose and evaluate a microarchitecture
with low-overhead protection mechanisms that mitigate error
effects so execution can proceed.
Our experimental results characterize the frequency and

type of catastrophic errors and the efficacy of the proposed

protection mechanisms. Our output quality analysis on JPEG
and MP3 shows that for MTBE less than ≈ 10

7 instructions,
the output SNR is on par with the quality effects seen by
mildly-lossy compression. The output quality is 14dB and 7dB
respectively if the mean is 256k instructions, and the example
visual and aural datasets provide further subjective support.
Overall, this study is the first to demonstrate that error-tolerant
applications can be deployed on error-prone processors using
relatively simple protection mechanisms.

REFERENCES

[1] M. Carbin et al. Detecting and escaping infinite loops with Jolt. In
ECOOP, 2011.

[2] R. C. Daley and J. B. Dennis. Virtual memory, processes, and sharing
in MULTICS. Commun. ACM, 11(5):306–312, 1968.

[3] J. B. Dennis. Segmentation and the design of multiprogrammed
computer systems. J. ACM, 12(4):589–602, 1965.

[4] D. Ernst et al. Razor: A low-power pipeline based on circuit-level timing
speculation. In MICRO, 2003.

[5] C. S. Gordon et al. Uniqueness and reference immutability for safe
parallelism. In OOPSLA, 2012.

[6] R. Hegde and N. R. Shanbhag. Energy-efficient signal processing via
algorithmic noise-tolerance. In ISLPED, 1999.

[7] ITRS. ITRS process integration, devices, and structures, 2011.
[8] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. In CGO, 2004.
[9] L. Leem et al. Error resilient system architecture (ERSA) for proba-

bilistic applications. In DATE, 2010.
[10] S. Liu et al. Flikker: saving dram refresh-power through critical data

partitioning. In ASPLOS, 2011.
[11] P. S. Magnusson et al. Simics: A full system simulation platform.

Computer, 35(2), 2002.
[12] S. S. Mukherjee et al. Measuring architectural vulnerability factors.

IEEE Computer Society, 2003.
[13] A. Sampson et al. EnerJ: approximate data types for safe and general

low-power computation. In PLDI, 2011.
[14] T. Stathaki. Image Fusion: Algorithms and Applications. Academic

Press, 2008.
[15] W. Thies et al. StreamIt: A language for streaming applications. In

ICCC, 2002.
[16] R. Wilhelm et al. The worst-case execution-time problem – overview

of methods and survey of tools. ACM Trans. Embed. Comput. Syst.,
7(3):36:1–36:53, 2008.

