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Abstract—Graphics processing units (GPUs) are in increas-
ingly wide use, but significant hurdles lie in selecting the ap-
propriate algorithms, runtime parameter settings, and hardware
configurations to achieve power and performance goals with
them. Exploring hardware and software choices requires time-
consuming simulations or extensive real-system measurements.
While some auto-tuning support has been proposed, it is often
narrow in scope and heuristic in operation.

This paper proposes and evaluates a statistical analysis
technique, Starchart, that partitions the GPU hardware/software
tuning space by automatically discerning important inflection
points in design parameter values. Unlike prior methods, Star-
chart can identify the best parameter choices within different
regions of the space. Our tool is efficient—evaluating at most
0.3% of the tuning space, and often much less—and is robust
enough to analyze highly variable real-system measurements, not
just simulation. In one case study, we use it to automatically
find platform-specific parameter settings that are 6.3× faster
(for AMD) and 1.3× faster (for NVIDIA) than a single general
setting. We also show how power-optimized parameter settings
can save 47W (26% of total GPU power) with little performance
loss. Overall, Starchart can serve as a foundation for a range of
GPU compiler optimizations, auto-tuners, and programmer tools.
Furthermore, because Starchart does not rely on specific GPU
features, we expect it to be useful for broader CPU/GPU studies
as well.

Keywords—GPU, auto-tuning, design space exploration, regres-
sion tree, decision tree.

I. INTRODUCTION

Modern processors employ increasing amounts of hetero-
geneity and specialization to reach their power-performance
targets. With CPU and GPU cores available, along with
accelerators and complex, configurable memory hierarchies,
the multitude of resource combinations and subtle software-
hardware interactions create challenges to those optimizing
either software performance on a given platform or hardware
design choices for a future one. Traditional manual exploration
techniques such as exhaustive search or center design point
approaches are either not scalable or are prone to missing
important parts of the increasingly large design spaces.

As one example, in recent computing systems, CPU-GPU
pairs have emerged as a popular form of heterogeneous paral-
lelism. While GPUs offer extremely high performance at good
performance-per-watt, vexing challenges exist in mapping ap-
plications onto a GPU and in finding the best configurations
and parameter choices. Unfortunately, little support exists for
GPU performance or power tuning. Extensive programmer

intuition and hours if not days of simulation or experimen-
tation are often required, given the large number of possible
hardware-software combinations and interactions.

For GPU applications, poor configuration choices have
severe consequences. For example, the choice between optimal
and off-optimal parameter settings for the swap kernel in
the Rodinia kmeans benchmark changes performance by
100× depending on a single parameter value (Section II).
In another case, judicious choice of parameter settings can
save application power usage by nearly 50W with almost no
performance loss (Figure 10c).

Clearly, finding the “right” parameter settings can be very
beneficial; the key is to do this design space exploration effi-
ciently. While some linear regression-based automatic design
space exploration methods have been proposed for simulation-
based experiments [11,12,14], a major issue is that they eval-
uate parameters based on their importance globally across the
entire design space, rather than locally within particular sub-
regions. This reduces both their accuracy and their applicability
in real-system environments (Section VI-B).

This paper proposes and evaluates Starchart1, a fully-
automated design space optimizer using a statistical tree-based
partitioning approach. It analyzes parameter influences in local
subspaces in addition to across the entire parameter space.
The subspace analysis capability allows Starchart to accurately
model complex design spaces and thus expands its usage
scenarios. We have applied our approach to several metrics
including power and performance. Starchart is robust enough
to be used with real-system measurements, despite their higher
variability than simulations. For design spaces with thousands
to millions of possible designs, much less than 0.3% of the
points need to be sampled, resulting in more than 300×
productivity improvement. We present results from real-system
measurements on two distinct GPU platforms (NVIDIA Tesla
C2070 and AMD Radeon HD 7970) and via multiple metrics
(performance, power, and combinations of the two). This paper
makes the following contributions.

First, Starchart’s novel partitioned tree approach can pro-
vide accurate performance or power estimates for complex
hardware or software design spaces, even with the variations
of real-system measurements. It only uses the original appli-
cation design parameter values, without the need for auxiliary
variables such as performance counter measurements.

1Starchart stands for Statistical Tuning via Automatically- and Recursively-
Constructed, Hierarchically-Applied Regression Trees, a follow-up tool to our
prior work Stargazer [11].



Second, we present case studies that offer useful GPU
insights as well as demonstrate the value of subspace-based
exploration. For GPU designers and users, Starchart enables
cross-platform and cross-input program optimizations, im-
proving performance by up to 6.3×. Starchart can also be
used to do power-guided performance optimizations; for our
benchmarks, it identifies a parameter setting that saves up to
47W with little performance loss. Our examples show how
Starchart can be used to identify influential design parameters
near a particular power budget, to select between different
hardware platforms (e.g. NVIDIA vs. AMD), and to estimate
performance across a range of input data sizes.

Third, even though this paper focuses on GPU scenarios,
Starchart does not rely on any GPU-specific features. Thus,
it is applicable to a broader range of architectures including
CPU-only and CPU-GPU systems.

The rest of the paper is organized as follows. Section II uses
an example to motivate our tool. Section III introduces prior
related work. The main algorithm of Starchart is presented in
Section IV. Section V describes our experimental methodol-
ogy, and Section VI evaluates the accuracy of Starchart. A
number of case studies of using Starchart are presented in
Section VII. Finally, Section VIII concludes the paper.

II. MOTIVATION: DESIGN SPACE PARTITIONING

To motivate our work, we present a walkthrough example
based on the swap kernel in the kmeans program from the
Rodinia benchmark suite, using data collected via real-system
measurements on the AMD platform described in Section V.

Figure 1a shows the swap kernel from kmeans, but
with additional parameterizations added to allow possible
optimizations. (This code template approach is frequently used
by auto-tuning optimizers.) The code is a matrix transpose
operation from an array F of M multidimensional points,
each having N features, into an array Ft of N lists, each
having M features. Key optimization parameters include: (i)
tpp, the number of parallel threads per point; (ii) ppb,
the number of points per block; and (iii) consec, which
is a binary flag controlling thread organization and memory
access striding. When consec is 0, features accessed by a
single thread are numbered consecutively, but from the point
of view of the whole thread block, they are issuing strided
accesses. When consec is 1, features accessed by a single
thread are in strides, but from the point of view of the whole
thread block, all threads are issuing consecutive and coalesced
accesses. Although there are only three parameters discussed
in this example, selecting parameter values is difficult and
subtle. Selecting the wrong parameter values can lead to
100× performance penalties. Selecting the correct parameter
settings is difficult, however, because the parameters interact
in complex ways to affect parallelism, memory bandwidth
and coalescing, and—ultimately—performance. For example,
tpp and ppb represent orthogonal forms of parallelism, but
together their product is limited by the thread parallelism of the
GPU platform. Without automation, design space exploration
would either require near-exhaustive experimental runs or rely
on the error-prone selection of a “center point” design.

To begin the walkthrough example, Figure 1b plots the
kernel runtime for varying selections of ppb values, when tpp

and consec are both set to 1 (the default Rodinia code). If,
for some reason, the program cannot use tpp parallelism, then
Figure 1b shows that selecting a good value of ppb will make a
large difference. A ppb of 8 is a sweet spot, with performance
nearly 6× better than some other options. However, Figure 1c
shows that tpp is usually a more effective form of parallelism.
When tpp can take values higher than 1 (indicating that some
threads-per-point parallelism is being exploited), the runtimes
are consistently better than those in Figure 1b. Furthermore,
for larger tpp values, runtime varies very little with increasing
ppb, indicating ppb is not the preferred form of parallelism
in these situations. Finally, Figure 1c also shows that while the
consec parameter does affect performance, this is primarily
for small tpp values.

Clearly, even what seems to be a fairly simple 3-parameter
tuning space displays considerable subtlety. Parallelism and
memory striding parameters interact differently in different
parts of the tuning space, making it a nontrivial task to
determine the best parameter settings under varying program
runtime environments and constraints. Our paper proposes and
evaluates Starchart, a statistical technique that automatically
determines the relative importance of parameters both globally
across the entire design space, as well as locally to particular
subspaces. Starchart’s ability to explore subspaces enables a
wide range of use cases (Section VII) beyond those handled
well by previous regression approaches.

Figure 2 illustrates a regression tree automatically gen-
erated by our statistical regression process for the same
kernel. Each branch in the tree divides the design space
where a particular parameter value has been shown to be
an important determinant for program performance (or any
other metric). The topmost branch point indicates the most
important parameter value. Each subsequent level of the tree
shows the next most important parameter decision, contingent
on the ones above it. Furthermore, each rectangle gives the
number of experimental sample points in that particular design
space partition and their average performance. Reading the
automatically-generated tree, a GPU application developer or
tuning tool can identify which parameters are most influential
on a given metric and can see when parameters may be
important within a local subregion of the tuning space. In
contrast, existing approaches would not distinguish between
the different consec values when tpp ≤ 8 because tpp
> 8 is the optimal global solution and consec is irrelevant
under that subspace. Starchart can easily capture and express
arbitrarily high levels of interactions (such as the three-way in-
teraction between tpp, ppb, and consec) simply by adding
levels to the tree. Existing design explorers based on linear
regression miss many such interactions, because they either
only consider manually specified parameter interactions [14]
or limit themselves to pairwise interactions [11].

III. RELATED WORK

GPU auto-tuning work [5–7, 15] typically optimizes the
performance of a particular application or algorithm. Con-
siderable human intuition and experience are, however, still
needed to select tuning parameters, prune their values, and
build performance models, in order to find a small enough
region of the design space that contains the optimal design and
on which exhaustive experiments are feasible. Our work can



// Launch M/ppb thread blocks,
// each having tpp*ppb threads
tid = global thread ID;
pid = tid / tpp;
for (i = 0; i < N/tpp; i++) {
if (consec > 0)

k = tpp*i + tid%tpp;
else

k = N/tpp * (tid%tpp) + i;
Ft[k*M + pid] = F[pid*N + k];

}

(a) Parameterized code
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(b) tpp = 1, consec = 1 (original kernel)
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(c) ppb–tpp–consec interactions

Fig. 1: For the swap kernel in kmeans, ppb is an important performance lever for the original kernel. Higher tpp improves
performance while reducing ppb’s influence. consec also affects performance, but only for smaller tpp values.

Fig. 2: Design space partitions represented as a tree efficiently
summarize performance trends.

automate this part of creating a new auto-tuner. With Starchart,
auto-tuners can simply use a large number of unpruned tuning
parameters, and our method will automatically detect the
important ones and their interactions, guiding users directly
to the optimal design or the region that contains it.

Various statistical and machine learning methods have been
applied to prune the usually vast auto-tuning or compiler
optimization space of a program. Triantafyllis et al. propose a
compiler framework that uses heuristics learned offline from
a set of representative code segments and a compile-time
performance estimator to iteratively prune program optimiza-
tions [22]. However, their goal is to assess a set of common
compiler optimizations identical across all applications, while
our tool aims to build performance models generated from
application-specific design parameters. In a few other more
focused case studies, Bergstra et al. use a timing model
built with boosted regression trees to predictively auto-tune
a single kernel, filterbank [2], and Ganapathi et al. tune stencil
code using kernel canonical-correlation analysis [8]. One key
distinction between these prior studies and our work is that
their main purpose is to find the globally optimal program
configuration, while Starchart not only finds the global opti-
mum but also reveals subspace structures and local optima.

Apart from the methods mentioned above, some linear
regression-based design space explorers [11, 12, 14] are worth
particular attention because they adopt a similar workflow
as our tool. These design space explorers offer cost-effective
performance-prediction alternatives to simulation. However,
like the methods mentioned above, none of the linear regres-
sion model-based approaches can distinguish a parameter’s
effect in local regions of a design space. This means they
cannot be used to solve problems that involve comparing
designs in different subspaces, which is the basis of many
useful tasks (e.g. nearly all case studies in Section VII).
Furthermore, these prior approaches do not handle well the
variability that arises in real-system measurements. In contrast,
Starchart’s subspace approach and its ability to account for
high-order parameter interactions make it amenable to real-
system data (Section VI-B).

Other GPU performance models (such as those based
on program analysis [9, 20, 21]) and power models (such
as those based on performance counters [4, 17]) exist. The
former impose strong limits on the types of programs that
can be analyzed and require users to have intimate knowledge
about the programs. The latter can be used as the power
measurement component of our framework when real-system
power measurements are physically infeasible.

Formally, our algorithm builds a type of decision tree [13],
which is studied extensively in data mining and machine
learning fields. Some current studies [16] improve on the
classic method we use. They can be easily applied to our core
algorithm to improve its accuracy, efficiency, or both.

IV. AUTOMATED DESIGN SPACE PARTITIONING

This section gives the overall flow of Starchart, our statisti-
cal hardware and software tuning space partitioning approach,
as well as details about its design issues.

A. Design Sample Collection

Parameter Selection: For an application or a group of
applications, a set of parameters must be identified which
define the dimensions of the tuning space. Parameters may
relate to software (e.g. blocking factor, thread count, etc.) or
to hardware (e.g. active core count, system clock rates, etc.).



Parameters can either be binary in nature (e.g. whether to
turn on or off an optimization), or they can take numeric
values across a possible range. Parameters can even be choices,
such as including “NVIDIA vs. AMD” as a design option
(Section VII-B). Our statistical partitioning is effective at
automatically pruning design spaces and identifying interesting
subspaces. As a result, one can be generous in including any
tuning parameters that may matter.

Sampling Program Designs: In traditional auto-tuning,
a designer or programmer might run evaluations for a large
number of possible points within the fully-enumerated set of
design possibilities. Exhaustively evaluating all design points
is rare and time-consuming. The other common technique—
selecting a “center point” design and evaluating a range
of parameter settings around it—relies heavily on designer
intuition and may miss promising regions of the design space.

In contrast to exhaustive or center-point based explorations,
our approach rests only on a small set of designs sampled from
the space uniformly at random (UAR). UAR sampling is easy
to perform and offers good coverage of the space. Section VI-A
shows that less than 0.3% of all possible design points are
needed to accurately characterize the whole space, resulting in
a more than 300× productivity improvement.

Evaluations: Each randomly-selected sample point repre-
sents a specific design which must be evaluated. This could
be either performance or power measurements, and it could be
either real-system measurements or simulation. In this paper,
we use real-system power and performance measurements on
NVIDIA and AMD platforms (Section V). Thus, the input to
our partitioning algorithm is a set of UAR sampled design
points (i.e. their parameter settings) and the resulting perfor-
mance or power measurements.

B. Automated Partitioning Algorithm

Figure 3 shows the pseudocode for Starchart’s design
space exploration algorithm. Its partitioning algorithm seeks
to determine which of the many parameters, Pi, strongly
influence a metric such as performance and to determine how
these different parameters interact with one another. As input,
Starchart takes a list of all possible value settings, Vi, for
each parameter, Pi, as well as a set of randomly generated
design samples whose performance has been measured. In
this section, we use performance as an example metric; other
metrics such as power can be modeled similarly.

In order to develop intuition about the importance of a
parameter setting, we need to analyze how performance of
the samples changes with respect to values of this particular
parameter. We can do this by setting a threshold value for
a parameter, dividing the sample set into two groups based
on each sample’s value for the specified parameter relative to
the threshold value, and then comparing and contrasting the
groups to each other. For example, in Figure 2, we can divide
the initial sample space based on whether the parameter tpp
is equal to 1 or not, resulting in sample subsets with 18 and
52 samples respectively.

The goal for this subdivision is to determine split points
where the samples in the two sets fall into distinct, mostly non-
overlapping groups. If two distinct subsets exist, this implies

that the setting of that parameter has a clear influence on
performance. If the subsets are widely overlapping, this implies
that the parameter setting does not have a clear influence on
performance. Starchart uses the average values of samples as
well as the sum of squared errors (SSE, the squared sum of
differences between samples and the average) to compare two
sample sets to each other, though other metrics could also be
used. The average provides an overview for the set of samples
while the SSE describes how much variance the set has.

In Figure 2, we see that the subdivision of the original
set creates two subsets with widely disparate mean runtimes,
5.8ms vs. 0.76ms. This implies that the tpp setting can
strongly influence performance. However, to ensure that these
two numbers do a better job describing the samples than the
average of the entire set, we compare the SSE of the initial
samples to the combined SSE values of the two subsets. If
the initial set’s SSE is larger than the sum of the SSEs of the
subsets, we can conclude that this parameter value is a good
distinguisher of performance.

As shown in Figure 3, Starchart tentatively divides the
initial sample space into two groups for every possible pa-
rameter value setting. For each chosen parameter setting, it
calculates the average value and sum of the SSEs for each
of the two tentative sample subsets created (lines 9-20). It
then sorts all of the different sample splitting choices by the
sum of the SSEs of their respective subsets. The parameter
setting that results in the smallest sum of the SSEs divides
the initial sample into the most distinct and internally similar
subsets. That is, the choice of this parameter setting creates
the greatest distinction in performance and, therefore, has the
highest impact on performance. Starchart thus splits the initial
set based on this parameter setting as long as the reduction in
error is greater than some threshold value (lines 21-32).

After the split of the initial set into two distinct subsets,
each of the two sets may still have samples that vary greatly
internally. Consequently, Starchart recursively applies its algo-
rithm to each of the two subsets which results in a total of
four subsets. Further precision can be gained by continuing
to apply Starchart to these four subsets and so on until the
appropriate level of error is reached (lines 3-34).

Starchart’s end product is a tree where nodes are design
space partitions, and the edges out of them specify the values
assigned to a particular parameter in each of the two subtrees.
There are two key characteristics about these trees. First,
parameter splits highest in the tree have the highest overall
influence on performance. This is because Starchart greedily
selects the parameter setting that reduces SSE the most first.
Second, for each partitioned subspace, independent choices can
be made regarding subsequent further partitions. This is key,
because it means we can find parameters of crucial importance
within a particular subregion, even if they are only of modest
global importance across the full design space. The ability to
find key parameters within a subregion is central to the efficacy
of our technique and differentiates it from existing work which
can only recognize globally important parameters [11, 14].

C. Algorithm Options

Tree Node Models: We use average and SSE values in
each tree node in our implementation of Starchart because



Input: D: design space specified with n design parameters P1, P2, . . . , Pn

Input: Vi: set of values that may be taken by each parameter Pi

Input: Set S composed of m sampled designs in the space, s1, s2, . . . , sm,
with their parameter values known and resulting performance, r1, r2, . . . ,
rm, measured

List of pending partitions C = {S}
Partitioning history H = {}
repeat

for all partition c in C do
5: r̄ = the average performance of all points sj in c

r̄ is used as the modeled performance of all points in c
rj is the performance of sj
sum of squared errors SSE0 =

∑
j
(rj − r̄)2

for all parameter Pk do
10: for all possible parameter value vl in Vk do

split c into two partitions c1 and c2
c1 has the samples from c with Pk ≤ vl
c2 has the samples from c with Pk > vl
r̄1 = the average performance of points in c1

15: r̄2 = the average performance of points in c2
SSE1 =

∑
j
(rj − r̄1)2 for sj ∈ c1

SSE2 =
∑

j
(rj − r̄2)2 for sj ∈ c2

SSE12 = SSE1 + SSE2

end for
20: end for

remove c from C
find the smallest SSE12 across all (Pk , vl) pairs
SSEmin = this smallest SSE12

(Pmin, vmin) = the param-value pair that produces SSEmin

25: SSE0 − SSEmin is the reduction in error
if SSE0 − SSEmin > threshold then

split c into two partitions cl and ch
cl has the samples from c with Pmin ≤ vmin

ch has the samples from c with Pmin > vmin

30: add cl and ch to C
add ((Pmin, vmin), (c, cl, ch)) to H as part of the final tree

end if
end for

until C is empty

Output: Partitioning history stored in H represented as a tree

Fig. 3: Recursively partition a program design space. The
metric here is performance; power can be modeled similarly.

they are easy to compute, have clear meanings, and are
widely used in traditional regression tree theories. However,
different models can be used. For example, we could use linear
regression models such as those in Stargazer [11] inside each
tree node. Because these models are more descriptive than a
simple average value, we might expect fewer tree levels before
SSE stops reducing. However, these models are also much
more computationally expensive to build. Exploring the trade-
offs between different tree models in terms of accuracy and
efficiency could be an interesting study in future work.

Stopping Criteria: In Figure 3, splitting might continue
until there is only one point per set. This level of detail is
rarely necessary. In general, we set the threshold value to 0
or a small value, meaning we stop splitting a partition when
further splits do not improve the tree’s capability to distinguish
designs. This has a clear physical meaning: when a partition
stops getting split, it means the natural variation in samples in
this partition cannot be attributed to any particular parameter’s
choice of value. (Recall that real-systems measurements incur
timing variations even in cases of repeated runs with identical
parameter settings.)

In our experiments, 200 samples result in 40–50 final
partitions with the above stopping criterion. Section VI-A
shows this offers good model accuracy. Meanwhile, because
parameters are ranked by importance top-down in the tree,
users do not need to read or understand all those splits. They
can focus on the top or the sub-trees of greatest interest. Other
stopping criteria are also possible to further limit tree height.
For example, we can put a limit on the maximum height of the
tree, or we can stop splitting a partition when its data variance
is below some threshold.

V. METHODOLOGY

Benchmarks Studied: As shown in Table I, we use
6 GPU kernels from the Rodinia suite [3] and NVIDIA
GPU SDK [19]. The kernels exhibit diverse behavior and use
various GPU functional units. For each kernel, relevant design
parameters are substituted by C macros, so that our design
sampler can easily modify them and generate appropriate code
at compile time. Some of these parameters already exist in
the kernels; others are our own addition to explore further
optimizations. Every kernel is run on two platforms. The
NVIDIA platform runs CUDA versions of the programs, and
the AMD platform runs OpenCL versions, but they differ
only syntactically. Because NVIDIA and AMD platforms have
various differences (thread block size limit, shared memory
size difference, etc.), the parameter values listed are the union
of all possible values on both platforms. In addition, there are 3
parameter choices available only on NVIDIA (Table II). When
a UAR-sampled configuration cannot be run on a particular
platform, it is not counted toward its sampled design points.

Performance and Power Measurement Platforms: We
experiment on two systems: (i) an NVIDIA Tesla C2070 GPU
and (ii) an AMD Radeon HD 7970 GPU. Both run the Ubuntu
10.04 operating system with all unnecessary system services
turned off. The AMD GPU is newer than the NVIDIA GPU,
but except for Section VII-B, we use results only within the
scope of each platform. In Section VII-B, one of the goals is
to select the appropriate platform for a given design scenario,
and having two systems with distinct capabilities is useful for
comparison, despite disparate technologies.

To collect kernel execution times, vendor-supplied NVIDIA
and AMD profiling tools are used [1,18]. The runtime exper-
iments are run separately from the power experiments. Each
kernel is executed at least 10 times and the average execution
time taken. Only the GPU time of each kernel execution is
measured and used, excluding any CPU work, data transfer,
or kernel launch overhead. When the input size may change
across different runs (bfs and matrix in Section VII-C and
nbody), the runtimes are normalized against input size.

For our real-system power measurements, we use the
same methodology as Hong and Kim [10]: a Wattsup Pro
power meter connected to a logging machine to record whole-
system power consumption at 1-second intervals. We report
the power reading at the sustained and prominent power surge
that indicates kernel execution. For each kernel, this produces
repeatable measurements with only 2–3 watt variance (about
1% of total power). To report GPU power alone, we subtract
baseline system power (about 100W with GPUs unplugged).



Kernel Parameter Value Category Comment

bfs

block 32–1024 thread block size The number of threads in each thread block
npt 1–64 work allocation The number of nodes processed by each thread (nodes per thread)

consec 0 / 1 coalescing Whether a single thread processes consecutive nodes
pa-attrib 0 / 1 data layout Whether node attributes are broken apart and stored in parallel arrays
pa-status 0 / 1 data layout Whether node status flags are broken apart and stored in parallel arrays

hotspot

x 1–1024 thread block size The X dimension size of each thread block
y 1–1024 thread block size The Y dimension size of each thread block

t-temp 0 / 1 data layout Whether to transpose the temperature array in shared memory
t-power 0 / 1 data layout Whether to transpose the power array in shared memory
t-buffer 0 / 1 data layout Whether to transpose the intermediate buffer array in shared memory

kmeans
ppb 32–1024 thread block size The number of points processed by each thread block (points per block)
tpp 1–32 work allocation The number of threads cooperating on each point (threads per point)

consec 0 / 1 coalescing Whether consecutive threads process consecutive features

matrix

x 1–1024 thread block size The X dimension size of each thread block
y 1–1024 thread block size The Y dimension size of each thread block

tiling 1–1024 work allocation The number of elements processed by each thread in one iteration
unroll 1–16 compiler option The degree to which the innermost loop is unrolled
t-a 0 / 1 data layout Whether to transpose the A array in shared memory
t-b 0 / 1 data layout Whether to transpose the B array in shared memory

use-smem 0 / 1 shared memory Whether to buffer matrix tiles in shared memory

nbody

x 1–1024 thread block size The X dimension size of each thread block
y 1–1024 thread block size The Y dimension size of each thread block

unroll 1–8 compiler option The degree to which the innermost loop is unrolled
n 1024–32768 input size The number of bodies in the input data

streamcluster

block 32–1024 thread block size The number of threads in each thread block
ppt 1–16 work allocation The number of points processed by each thread (points per thread)

pa-point 0 / 1 data layout Whether point structures are broken apart and stored in parallel arrays
use-smem 0 / 1 shared memory Whether to buffer point structures in shared memory

TABLE I: Configurable GPU kernel software parameters and their possible values common on both NVIDIA and AMD platforms.

Parameter Value Comment
nreg 4–32 The maximum number of registers each

thread can use before register spilling
use-l1 0 / 1 Whether to enable L1 caches

large-l1 0 / 1 Whether to use 48 KB L1 caches and
16 KB shared memory (versus 16 KB
L1 caches and 48 KB shared memory)

TABLE II: Hardware parameters available only on the
NVIDIA platform and their value ranges.

VI. EVALUATING THE PARTITIONING ALGORITHM

A. Training Sample Size and Prediction Accuracy

A detailed regression tree has many uses (see Sections II
and VII), but here we use its function as a performance
predictor to demonstrate its accuracy. With an increasing
number of training samples, trees converge toward a highly
accurate description of the space, proving the validity of this
partition-based approach. More important, users of our method
can also use the accuracy vs. training sample size relationship
to adaptively determine how many training samples to collect.

To use a regression tree to predict the performance (or
power) of an arbitrary design, start at the root of the tree and
follow the branches based on how the parameter settings of
the given design compare to the division values. When a leaf
node is reached, the average power or performance of sampled
designs in that partition is used to predict the queried design.

Traditionally, in statistics, validation samples are used to
decide how many sample points are needed to build regression
trees. In this method, users/tools initially select some number
of UAR samples from the design space to be considered as
the validation set. These are used to test tree accuracy, but are

never used in the tree forming or partitioning process. (We use
200 validation samples in our results.) Then users select a small
initial number of UAR-sampled designs from which to form
an initial regression tree. (We use 20 samples as our starting
point.) After forming a regression tree for these samples, one
can test the performance prediction accuracy of the tree for the
200 validation points. If the prediction accuracy is sufficient,
the process stops. If insufficient, additional UAR samples are
collected and the regression tree is adjusted to include them.
Validation against the reserved samples is repeated. When the
prediction accuracy reaches a predetermined level, it means
the training samples have had a good coverage of the entire
space, and users can stop collecting more samples.

Figure 4 shows the median relative prediction accuracy of
trees built using an increasing number of training samples.
Except matrix and nbody, which have the largest design
spaces, most benchmarks achieve good prediction accuracy
with 200 samples: 4% average error for power and 8% average
error for performance. To achieve a target 15% prediction
accuracy, matrix on NVIDIA needs 3200 samples, and
nbody on AMD needs 400 samples. Even 3200 and 400
samples are still much less than 0.1% of the size of matrix’s
and nbody’s design spaces. Among all scenarios, kmeans
on AMD requires the most samples relative to its design
space size: 0.3%. In the remainder of the paper, all trees are
built using these sample sizes (3200 for NVIDIA-matrix’s
performance, 400 for AMD-nbody’s performance, and 200
for all else). Finally, we note that this method is highly
adaptable to particular usage needs. When only the top levels
of the trees are used to interpret the most salient design criteria
for a space, as in Section VII, fewer samples and validation
points are needed.



20 50 100 200 500 1000 5000

0
10

20
30

40
50

Number of training samples

M
ed

ia
n 

re
la

tiv
e 

pr
ed

ic
tio

n 
er

ro
r 

(%
)

(a) Performance

20 50 100 200

0
2

4
6

8
10

12

Number of training samples

M
ed

ia
n 

re
la

tiv
e 

pr
ed

ic
tio

n 
er

ro
r 

(%
)

(b) Power

bfs / AMD
bfs / NVIDIA
hotspot / AMD
hotspot / NVIDIA
kmeans / AMD
kmeans / NVIDIA
matrix / AMD
matrix / NVIDIA
nbody / AMD
nbody / NVIDIA
streamcluster / AMD
streamcluster / NVIDIA

Fig. 4: Prediction accuracy vs. training set size. Users can adaptively compare against the validation set to decide the number
of training samples to collect.
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Fig. 5: Starchart outperforms prior work, particularly for
modeling performance. Each bar is averaged over validation
samples from all benchmarks.

B. Comparison against Prior Work

In this section, we compare Starchart’s model accuracy to
our previous work Stargazer [11]. Both methods use the same
training samples and the same validation samples. All samples
are obtained from real systems as described in Section V.
Training and validation set sizes are described in Section VI-A.

Previous statistical techniques [11, 12, 14] including
Stargazer have only been applied to simulations, where the
environment is carefully controlled and results are highly
repeatable. In contrast, Starchart handles complex high-order
parameter interactions, which frequently arise in real-system
environments. As a result, when we compare Starchart to
Stargazer, the former clearly outperforms the latter in terms
of prediction accuracy (Figure 5). In particular, Stargazer is
unable to model matrix’s and nbody’s performance with
acceptable accuracy, resulting in high average prediction error
for performance models.

While we also want to compare the “best” parameter
configurations found by both methods, in practice it is difficult
to do so. For some programs (e.g. matrix and nbody), the
subspace structures in their design spaces are very prominent.
As a result, Stargazer fails to build a global, additive linear
model that is statistically valid across the whole design space.
Thus, the best parameter setting found by these statistically

invalid models has little meaning, and it should not be used
for comparison. For example, for AMD–nbody, the baseline
runtime is 497.4 µs. The best design found by Starchart has
a predicted runtime of 31.9 µs, versus an actual runtime of
29.3 µs (a 8.8% prediction error and a 17× improvement over
baseline). In contrast, the best design found by Stargazer has a
predicted runtime of 57.8 µs, and an actual runtime of 85.2 µs
(a 32% prediction error and a mere 5.8× improvement over
baseline). In summary, for the programs we tested, the “best”
configuration found by Starchart always performs better or at
least as well as the one found by Stargazer, even though both
methods use identical training data.

Overall, while our method is able to characterize real-
system evaluation results more accurately than prior work, its
true strength is the ability to do subspace-based exploration.
This is not offered by any prior work, and it serves as the basis
for many novel and practical tool uses (Section VII).

C. Algorithm Efficiency

Starchart is highly efficient. For 200 training samples,
on a moderately configured laptop computer, it takes only a
few seconds for our unoptimized implementation to generate
a tree with about 50 partitions. From Figure 3, assuming
constant time cost for computing averages, our algorithm’s
time complexity is O(m × n × ¯‖V ‖), in which ¯‖V ‖ =
(‖V1‖+ ‖V2‖+ ...+ ‖Vn‖)/n is the average number of values
a parameter may take. Note that n× ¯‖V ‖ is much less than the
design space size ‖V1‖ × ‖V2‖ × ...× ‖Vn‖. In summary, the
algorithm’s complexity is linear in the number of samples and
linear in the number of parameters and their choices, ensuring
good scalability as more parameters are added.

Starchart can account for interactions among as many
parameters as the tree height (easily 6 or more for 40–50
final partitions). In contrast, an iterative approach such as [11]
will have exponential growth in complexity when it starts
exploring higher-order interactions. In those algorithms, every
additional level of interactions (e.g from two-way to three-
way) extends the algorithm time cost by n (the number of
parameters). The multiplicative complexity growth in time
complexity (instead of the linear growth like our approach)
is one of the reasons why linear regression approaches are
often limited to accounting for only pairwise interactions.



// Launch a thread block with block threads
tid = global thread ID
bid = tid / block
for (i = 0; i < npt; i++) {

if (consec) nodeid = npt * tid + i;
else nodeid = bid * block * npt + block * i

+ tid % block;
if (pa-attrib) next = destinations[nodeid];
else next = nodes[nodeid].destination;

if (pa-status) {visited[nodeid] = 1;
tovisit[next] = 1;}

else {status[nodeid].visited = 1;
status[next].tovisit = 1;}

}

Fig. 6: The core bfs kernel has five parameters. Our technique
eases the process of selecting good parameter values.

VII. CASE STUDIES

This section presents case studies that demonstrate how
our statistical technique efficiently solves practical GPU per-
formance and power optimization problems.

A. Design Space Pruning

When GPU developers optimize their applications for
power or performance, they rely largely on developer intuition
to select optimizations, a process called “design space prun-
ing”. Such approaches can erroneously omit important portions
of the design space from potential optimization. For bfs, a
breadth-first search graph algorithm, this case study shows how
our approach differs substantially from prior work in its ability
to reveal important and local parameter interactions in order
to efficiently and accurately optimize parameter settings and
prune uninteresting portions of the design space.

As Table I shows, bfs on the AMD platform has five
tunable parameters. Figure 6 shows the pseudocode for the
main kernel.2 block is the number of threads per block,
and npt controls the number of nodes processed by each
thread. consec decides whether a single thread processes
nodes consecutively, versus at even strides. The remaining pa-
rameters, pa-attrib and pa-status, control data layout,
i.e. whether attributes of a node are closely packed or spread
out over different arrays. bfs is a memory-bound application
because it generates many scattered global memory requests
to access node attributes and status flags, easily saturating
memory bandwidth. Given the possible settings of these five
parameters, 98,816 design points are possible. Using only 200
random samples, Starchart is able to gain an accurate picture
of localized performance trends in different design subspaces.
Figure 7a shows the resulting regression tree.

Without our method, programmers might have hunches or
intuitions about how parameters will behave, but these can be
quite inaccurate. For example:

Hunch 1: block should be the most important parameter.
Increasing threads per block usually helps hide memory la-
tency, important for memory-bound applications such as bfs.

2For simplicity, nodes in the code have only one outgoing edge. Another
smaller kernel—not shown or tuned—does cleanup for this kernel.

Reality: The regression tree shows that block is actually
almost never important anywhere in the design space. This is
because for bfs, only 64 threads are enough to saturate mem-
ory bandwidth. Figure 7b shows this by plotting performance
versus block for all gathered samples. Clearly there is no
strong relationship between these two.

Hunch 2: npt should not affect performance. High npt
can potentially increase data-reuse, but bfs’s large memory
footprint is unlikely to benefit from the small GPU caches.

Reality: Actually the regression tree illustrates that npt
has significant impact on performance, especially when
consec = 1. To further confirm this, Figure 7c shows
performance versus varying npt. It shows caches can still be
helpful for some small npt values.

Hunch 3: The 3 memory locality parameters (consec,
pa-attrib, and pa-status) should be equally important
or equally unimportant, because they are similar optimizations.

Reality: Contrary to the third hunch, the 3 parameters
related to memory locality are not of equal importance. In
particular, Figure 7a’s regression tree shows consec as
fairly important and pa-status as conditionally important
based on the value of consec. The third locality parameter,
pa-attrib, is not important enough to appear. Figure 7c
gives the data behind these trends. The consec parameter is
clearly important because the two clusters that correspond to
consec=0 are mostly separated from those where consec =
1. Likewise, the group where pa-status = 1 is distinct from
the group where pa-status = 0 for consec = 1. Careful
code analysis shows accesses to node status arrays are more
scattered than accesses to node attributes, hence the difference
in parameter importance.

This example demonstrates how Starchart builds designer
intuition about the design space overall, as well as about rela-
tive parameter importance. Prior work has used regression or
clustering techniques to group points with similar performance
results using hardware performance counter values [17], rather
than using input parameters or hardware configurations. As a
result, prior clustering techniques might tie low cache miss
counter values to high performance, but could not directly
guide the designer towards the hardware or software design
decisions to achieve this. In contrast, our approach’s output is
tied directly to controllable parameters. The tree partitions we
identify can lead directly to software optimizations or hardware
design decisions.

B. Cross-Platform Program Optimization

GPU developers frequently need to optimize their appli-
cations for more than one platform, but each platform’s dis-
tinct power and performance characteristics influence the best
configuration choices and how well the best settings can do.
Developers may need to (i) optimize the power or performance
of an application on each of many different platforms, (ii)
select which platform to run an application on according to
some power or performance criteria, or (iii) optimize the power
or performance of an application simultaneously for several
platforms. Starchart supports all three of these.

We collect 200 samples for each application on two distinct
GPU platforms: NVIDIA’s Tesla C2070 and AMD’s Radeon
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Fig. 7: The performance tree of bfs on AMD reveals that performance does not have strong dependence on block. In addition,
performance indeed depends on npt, and consec and pa-status further partition points into fairly separate groups.

Fig. 8: The cross-platform tree of hotspot identifies partic-
ularly good designs for AMD and NVIDIA respectively.

HD 7970. Each sample is tagged with a binary parameter,
nvidia, which takes 1 for NVIDIA runs and 0 otherwise.
Our tool then analyzes all of these samples simultaneously,
producing the regression tree in Figure 8.

In Figure 8, the highest-performing design subspaces for
each platform are shaded in gray. Most notably, our parti-
tioning approach helps a developer see that they are non-
overlapping and arise from very different parameter choices
on each platform. The best subspace occurs on AMD when
blocking factor values are x ≤ 15 and y ≤ 5. On NVIDIA,
the best options are x > 7 and y > 5. The reason the
subspaces do not overlap is because these platforms contain
different amounts of thread resources. The best configurations
of hotspot for AMD and NVIDIA are 6.3× and 1.3× faster,
respectively, than the default parameter configuration provided
with the Rodinia distribution, which uses parameter values x
and y that are suboptimal for both platforms. Thus, an auto-
tuner developer seeking to identify the best platform-specific
settings could use our regression trees to quickly guide design
choices based on the hardware encountered.

Cross-platform analysis becomes even more complex when
trade-offs vary depending on other parameter choices. For

example, Figure 8 indicates that the best NVIDIA sub-
space is 1.98× faster than the best AMD subspace, but
the worst NVIDIA subspace is 1.85× slower than the best
AMD subspace. The kmeans design space (not shown due
to space limits) exhibits a similar issue. The best subspace
on the AMD platform is 8.42× faster than the best NVIDIA
subspace, but the worst AMD subspace is 1.29× slower than
the best NVIDIA subspace. Starchart helps developers consider
a platform choice in concert with the entire configuration of
the application’s parameter design space.

Finally, developers may want to optimize applications
for multiple platforms simultaneously. Our partitioning tool
enables developers to recognize which software parameters
are so important that they impact power or performance on
multiple platforms. For example, the kmeans regression tree
(not shown) indicates that the most important parameter for
performance optimization is tpp. The subspace where tpp >
1 is 3.93× faster than the subspace where tpp = 1, regardless
of platform. For developers trying to create a generically
optimized application, our tool helps identify parameters that
impact power or performance on multiple platforms.

In summary, this case study has shown how Starchart’s
regression trees give developers the insight needed to optimize
an application in a platform-dependent or -independent manner
or to choose the best possible platform for a given application.

C. Characterizing Program Input Sensitivity

A program’s runtime almost always scales with input data.
For this reason, performance tuning generally requires the
use of “typical” input data, and the resulting conclusions can
be highly input-dependent. Clearly, optimizations may vary
in complex ways with input characteristics. Thus, this case
study shows that our method cleanly handles scaling program
input sizes. We treat input size/characteristics as additional
design parameters in addition to parameters in Table I; our
algorithm then automatically discovers the importance of these
parameters and how they interact with other design parameters.
Because some input characteristics (e.g. graph connectivity
or matrix shape) inevitably affect input size, all performance
numbers in this case study are normalized against their respec-



Fig. 9: The bfs performance tree on the AMD platform shows
its input-sensitivity.

tive input sizes, i.e. we study computational throughput instead
of absolute runtime.

For some programs, such as matrix, computational
throughput is relatively unaffected by input characteristics. We
run matrix over a range of differently sized and shaped input
matrices (from 400×400 up to 3200×3200 elements), and we
find that these input parameters do not appear anywhere in
the top portion of the generated trees (not shown due to space
constraints). This demonstrates that matrix scales well with
a wide range of input sizes. It also indicates that optimizations
based on the parameter settings that do appear in the regression
trees will be applicable across a wide range of inputs.

For bfs, we use a random input graph generator that takes
in two parameters: (i) the number of nodes, size, which
varies from 50K to 1M, and (ii) the average number of edges
a node connects to, conn, which varies from 1 to 32. The
generated tree is shown in Figure 9 and leads to the following
observations. First, a graph’s size is overall a more important
performance determinant than graph connectivity (conn). This
is because graphs with more nodes require more resources
(more threads) to process than graphs with more edges (no
extra threads). Second, smaller graphs (≤ 100K nodes) and
high npt values significantly reduce bfs’s throughput. This
is because when npt is high, each thread processes so many
nodes that very few thread blocks are launched, not enough
to keep all GPU multiprocessors occupied. Our method auto-
matically and clearly spots such abnormal performance issues.
Finally, consec improves performance for large graphs with
low connectivity (conn ≤ 8). Unlike prior work, Starchart’s
focus on local subspaces helps identify optimizations that are
conditionally important for certain input sizes/characteristics.

D. Exploring Power/Performance Trade-offs

GPU system and application designers are increasingly
subject to power constraints when optimizing the performance
of their designs. However, few systematic approaches have
been proposed to tackle power-aware performance optimiza-
tion. Most prior design space exploration studies [4, 9, 11, 14,
17] can only model one metric at a time. One study proposes
modeling power and performance in conjunction [10], but their
approach requires extensive user knowledge about the program

and imposes strong limits on the types of programs that can
be analyzed (e.g. they must saturate memory bandwidth).

Because Starchart breaks down an application’s design
space into partitions with distinct power and performance char-
acteristics, users can naturally and efficiently explore design
space power/performance trade-offs. Furthermore, because our
partitions are derived from the original program parameters,
users can immediately know how to set parameters to achieve
the power/performance of the partitions that meet their goals.

Figure 10c shows power and performance of the 200
kmeans design samples on the NVIDIA platform. Ignoring
the different plot symbols, designers would generally have no
clue which parameter settings have caused such a wide range
of power and performance variation. If, for example, they must
limit the GPU power consumption to below 150W and meet
the runtime target of 10ms (indicated by dotted lines), it is very
difficult to know which particular parameter settings would
result in designs likely to achieve these goals.

The trees generated by Starchart can easily help answer
these questions. Figure 10a shows the power tree of kmeans.
Clearly, the design subspace with tpp ≤ 8 and use-l1 = 1
has a power consumption generally below 150W. This is due
to less intense thread activities (tpp ≤ 8) and the use of
caches (use-l1 = 1). Likewise, kmeans’s performance tree
(Figure 10b) shows that the design subspace with tpp > 1
can generally meet the performance goal, due to increased
inter-thread parallelism. By intersecting these two sets and
plotting them using different symbols (triangles and circles
in Figure 10c), we see these designs occupy most of the
targeted power/performance region. Deeper partitioning can
better sharpen adherence to certain power or performance
constraints. Additionally, per-partition power or performance
summary values can be based on the “worst” value for samples
in the region (e.g. max power/runtime) instead of the average.

Sometimes, the power or performance goals of a system
change dynamically at runtime, due to events such as low
battery state, reduced power budget, etc. In these situations, our
method can help adaptively determine the necessary program
state transitions. For example, assume the program runtime
target becomes more stringent from 10ms to 5ms, without
changing the power budget. Users can look at Figure 10b
and decide that tpp must be increased to greater than 3.
Because the performance target is being tightened rather than
relaxed, users just need to go deeper into the tree instead of
backtracking. Figure 10c shows designs with tpp > 3 (circles)
are very likely to achieve the new power/performance goal.
Compared to a high-performance high-power design, designs
within this region can save up to 47W (or 26% of total power)
with less than 10% performance slowdown.

As a final note, we describe some interesting power tun-
ing observations encountered in our experiments. For some
benchmarks such as bfs, kmeans, and matrix, program
design choices significantly influence power usage. In par-
ticular, global memory traffic is very power-consuming. For
example, for matrix, buffering content in shared memory
saves considerable power versus always fetching content from
global memory; for bfs, effective use of L1 caches can
lower power usage regardless of whether runtime is improved.
Additionally, the same program over the same range of op-
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Fig. 10: Power/performance trade-offs of kmeans on the NVIDIA GPU. Dashed lines mark power and performance targets.

timizations has more power variation on the AMD platform
than on the NVIDIA platform, presumably because the AMD
platform is newer and can better power gate various system
components. All power trends described above are easy to spot
in the power trees generated by Starchart. As performance-per-
watt becomes an increasingly important metric, a power-aware
tuning tool like Starchart has high potential to be useful to a
large group of users.

VIII. CONCLUSION

This paper presents a novel partition-based approach for
viewing GPU application tuning spaces and an automated
algorithm for generating such partitions. The partition-based
view is proven to be effective at visualizing and representing
a GPU program’s complex tuning process and can be utilized
to tackle many practical application tuning tasks in a holistic
fashion. Experiments show that on two different platforms,
for six diverse GPU kernels, and with two different metrics,
our method uses samples less than 0.3% of the entire tuning
space to build accurate and compact trees representing the
inherent hierarchical structure of these spaces. Detailed case
studies are presented to show how this algorithm can help
solve application tuning problems such as pruning program
design parameters, comparing GPU platforms, characterizing
program input sensitivity, and doing power-aware performance
optimization.
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