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Abstract

As microprocessos becomeincreasingly comple, the
techniquesusedo analyzeandpredicttheir behaviormustbe-
comeincreasinglyrigorous. Thispaperapplieswaveletanal-
ysistechniquesto the problemof dl/dt estimationand control
in modernmicroprocessos. While prior work hasconsideed
Bayesianphaseanalysis, Markov analysis,and other tech-
niguesto characterizehardware and softwae behavior we
knowof no prior work usingwaveletdor characterizingcom-
putersystems.

The dl/dt problemhas beenincreasinglyvexing in recent
years, becauseof aggressivedropsin supplyvoltage and in-
creasinglylarge relativefluctuationan CPU currentdissipa-
tion. Becausehe dl/dt problemhasa natural frequencyde-
pendencdit is worst in the mid-frequencyrange of roughly
50-200MHz)it is natural to apply frequency-orientedech-
nigueslike waveletsto undesstandit. Our work proposeqi)
an off-line wavelet-basecestimationtechniquethat can ac-
curately predicta bendhimark’s likelihood of causingvoltage
emepgencies,and (i) an on-line wavelet-basedontmol tech-
nigue that useskey waveletcoeficientsto predictand avert
impendingvoltage emepgencies.Theoff-line estimationtech-
nigue works with roughly 0.94%error. The on-line control
techniquereducesfalse positivesin dl/dt prediction, allow-
ing voltage control to occurwith lessthan2.5%performance
overheadon the SPECbendmarksuite

1 Intr oduction

The dl/dt problem—eacerbatedboth by ongoing in-
creasesn CPU currentfluctuationsand by decreasingCPU
supplyvoltages—haseenncreasingttentionfrom computer
architectsover the pasttwo to threeyears. This attentionis
largely dueto theincreasingdifficulties projectedfor produc-
ing cost-efective power supply and voltage regulation sys-
temsin upcominggenerationsof high-performancemicro-
processorsWith aninadequatgower delivery system large
swingsin currentcauseipplesonthesupplyvoltagelinesthat
may causecircuitsto fail [2].
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The severity of thesevoltageripples are sensitve to the
frequeng at which the currentchangesaswell asthe abso-
lute magnitudeof the swings. Parasiticinductancesn the
power supplynetwork amplify certaintypesof currentvaria-
tions, makingtheirimpactparticularlyharmful [19]. For cur
rentelectronicpackagingmaterials,currentvariationswithin
the rangeof 50-200MHzhave the mostimpact[10]. At the
sametime variationsat much lower and higher frequencies
have lessimpact.

Dueto thefrequeng sensitie natureof thedl/dt problem,
it is temptingto consideffrequeny basedanalysigechniques
to characterizdts effects on high performanceprocessors.
One such frequeny basedapproach,waveletanalysishas
becomean indispensabléool in mary scientific disciplines
becausef its ability to identify how frequeny components
of a waveform changeover time. In this paper we demon-
stratethatwaveletanalysiscanbe usedin computerarchitec-
turestudiesmorespecificallywe demonstratéhatthesetech-
niquesareideally suitedfor analyzingthedl/dt problem.The
mary strengthsof wavelet analysisinclude: a capability for
unified time-frequeng analysis rigorousmathematicatefi-
nition, and computationakfficiency (algorithmiccomplexity
O(n) for basicwaveletoperations) Thesequalitiesarekey to
thetwo distinctapplicationswe explore.

First, we presentwavelet basedanalysistechniquesthat
provide both efficient waysat characterizinghe currentvari-
ationsof real programsand expressve meansof quantifying
theeffectthatthesevariationscanhave onaprocessos power
supply Dueto the growing importanceof the dl/dt problem,
architectsneedto understandvhattypesof currentvariations
appearin typical applications,what microarchitecturaland
programcharacteristicareresponsibldor thevariations,and
how thesevariationstranslateinto voltageripples.

Second,we proposean accurateand hardware efficient
mechanismfor monitoring voltage levels at runtime. This
mechanismuseswavelet convolution methodsto efficiently
track the instantaneougrocessowroltagelevel basedon the
utilization of executionresourcesBecausehe waveletbased
methodsare attunedto representingvariation over different
time scalesthe numerousomputationghatwould ordinarily
be necessaryo computevoltageat run-time dovetail into a



reducednumberof operationswith wavelets. Our approach
malesit easierto implementmicroarchitecturaloltagemon-
itoring in hardware.

Overall, the contributionsof this work areasfollows:

e To ourknowledge,we arethefirst to presentanapplica-
tion of wavelettransformsfor microarchitecturahnaly-
sisanddesign.

e We introducewaveletanalysisn the context of thedl/dt
problem,andwe shav how waveletrepresentationsan
be usedto automaticallyclassify a programs suscepti-
bility to dI/dt-inducedsupplyvoltagefluctuations.

e \We shawv how wavelet-basedharacterizationglustrate
the interplay of architecturaleventsand power dissipa-
tion on differenttime scales. The presenceof cache
missesand othereventsare germanenot just to perfor
manceissues but alsoto the di/dt problem. This work

representsomeof thefirst findingsonthesephenomena.

e We presenta wavelet-basedapproachfor identifying
voltagelevelsat run-time. Thewaveletfactorizationthat
weproposellowsfor effectivevoltagecomputatiorwith
modesthardware costduring execution. Wavelet-based
control reducescomplexity over previous full convolu-
tion methodswhile offering superiorperformanceom-
paredto existing pipelinecontrolschemes.

The remainderof this paperis structuredasfollows. Sec-
tion 2 givesan overview of waveletanalysisandtransforms,
and Section3 gives the neededbackgroundon our models
for power supply networks andthe processombeing studied.
Section4 thenpresentur methodfor off-line estimationof
voltageemepgenciesisingwaveletanalysis.Sections follows
thiswith anonline methodfor estimatingvoltagelevelsusing
a streamlinedversionof wavelet corvolution. In Section6,
we discussour work andrelateit to otherprior work, andin
Section7, we offer conclusions.

2 WaveletBackground

Wavelet analysisis a powerful methodfor decomposing
and representingsignalsthat has proven useful in a broad
rangeof fields. Waveletbasedechniquesiave beenshavn to
asymptoticallyapproachthe optimal solutionsfor important
typesof problemsincluding signal de-noisingand compres-
sion [5]. Despitetheir widespreadusein scienceand engi-
neering,no onehasusedwaveletanalysisfor computerarchi-
tecturestudies.We shav thatmary key propertiesof wavelet
analysisarebeneficialto dl/dt analysis.

Wavelettransformsaresomevhatsimilar to Fouriertrans-
forms, in that they exposea function’s frequeng content.
Fourier analysisbegins with a waveform, a sequencef val-
uesindexedby time, andtransformghis waveforminto a se-
guenceof coeficientswhich areindexed by frequeng. In a

similar manney wavelettechniquesanalsobe usedto ana-
lyze a time indexed function and represenit asa group of

frequeng componentsin addition,waveletanalysisalsoin-

cludesbenefitsthat make it suitablefor analysisof the dl/dt

problem. A thoroughcomparisonof wavelet and Fourier
analysistechniquess beyond the scopeof this paper but in

this brief overview we identify two key differencesbetween
waveletanalysisandFourieranalysis:

¢ AnalysisFunctions- Fourier analysisusesa singletype
of analysisfunction, the sinusoid,to represent wave-
form and identify all of its frequeng content, rang-
ing from low-frequeng oscillationsto high-frequeng
noise.In contrastwaveletanalysisusesa pair of analy-
sisfunctions: ¢(t), the scalingfunction interpretslow-
frequeny information, and ¢(¢), the waveletfunction
identifieshigh frequeng information. Wavelet analysis
allows oneto chosethe pair of analysisfunctionsthat
bestrepresenthe signalratherthanconstraininganaly-
sisto asingletypeof function(e.g.sinusoid).

e Time-Frequeng Localization- While Fourier analysis
providesa singlefrequeng decompositiorfor an entire
signal, wavelet analysisalso shavs how frequeny de-
compositionchangesover time. While a Fourier rep-
resentationof a signal F'(w) is indexed solely by fre-
queng, w, the wavelet representationf a signalis in-
dexed by time-scale(inversefrequeng) and by time-
interval. With thesetwo indicesone can explore how
frequeng contentevolvesovertime.

Someof the key characteristic®f wavelet analysismake
it ideally suitedto dl/dt analysis.In particular the choiceof
analysisfunctionsandthetime-frequeng localizationarein-
strumentalo effectively representingll/dt variationand de-
terminingwhatimpactit will have on supply voltagenoise.
We briefly discusshow thesequalitiesaffect our characteriza-
tions.

Ratherthandetermininga fixed functionfor analysis(e.qg.
sinusoid),wavelet analysisallows oneto choosethe pair of
scaling¢(t) andwavelety)(t) functions,collectively calleda
waveletbasisfrom aninfinite setof functions.For di/dt anal-
ysis, this allows us to choosefunctionsthat bestcapturethe
variationsseenin processorcurrentconsumption.We found
thatthe Haaranalysisfunctionspicturedin Figure1 wereat-
tunedto thesharpdiscontinuitiegshatappeain processocur-
rentconsumptiorwaveforms,sowe usethemexclusively in
this paper

Time-frequeng localizationis alsoimportantin accurately
gaugingthe dl/dt severity of real programs.In general pro-
gramsexhibit non-stationarybehavior, where programmet-
rics including IPC, cachemiss rates,branchpredictionac-
curag/, and power consumptionvary over time as the pro-
gramprogressethroughlong-livedphaseg$18]. For thedl/dt
problemmuchsmallertime scalesareimportant(tensto hun-
dredsof cycles),andit is importantto identify how variations



Figure 1. Haar scaling function ¢(t) (left) and
Haar wavelet function (t) (right).
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Figure 2. The wavelet coefficient matrix. A[K]'s
are approximation coefficients and D[j,k]' s are
detail coefficients.

changeduring execution. Wavelet analysismakesthis possi-
ble by introducingtime-frequeng localization. In addition
to quantifying how large currentvariationsare at different
frequencieswavelet analysisalsotells how thesevariations
changewith respecto time. For example,this would allow
one to distinguishintervals that are stressfulfor di/dt from
executionregionswhich arenot.
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Thewavelettransformoperationgpresentedh Equationsl
and 2 producetwo typesof coeficients. Approximationco-
efficients,A[k] ascomputecdby Equation(1), capturecoarse-
grainedfeatures.Detail coeficients,D[j,k], ascomputedby
Equation(2), isolatefine-graineccharacteristics.

Thescalingfunction, ¢(t), is usedto computethe approx-
imation coeficients. The approximationcoeficientsarein-
dexed by a singlevariable, k, which correspondso time re-
gionsin the original signalz(t). Eachapproximationcoef-
ficient canbe thoughtof asa weightedaverageof z(t) over
awindow of size2°. Theresolutionlevel j, allows oneto
chosea maximumgranularityfor wavelet analysis. For ex-
ample,settingjo = 2 would meanthatapproximationcoefi-
cientswould captureactivities spanningho morethan4 time
units,while j, = 3 would extendthe analysisto windows of
8 time units.

While the scalingfunction andapproximationcoeficients
isolatelow frequeny behavior, thewaveletfunction,+(t) and

the detail coeficientsisolate higher frequengy components.

The calculationdescribedin Equation2 shows that the de-
tail coeficientsareindexedby two variables:j, which corre-
sponddo frequeng, andk, which correspond$o time. The j

index isolatesime scales Increasingvaluesof j identify fine
granularitychangesn z(t), dueto the 2’ time scalingfactor
In addition, the k index isolatesthesefrequeny effectswith
respecto time windows which correspondo 27 .

Togetherthe detailandapproximatiorcoeficientscapture
localizedfrequeng informationabouttheoriginal signalz(t).
Figure 2 shavs oneway to think aboutthe relationbetween
wavelet detail and approximationcoeficients. First, the ap-
proximationcoeficientscoverlargewindows. Secondasthe
scaleindex j increasesmorecoeficientsareneedeecause
the granularitybecomediner. Analysiscanbe focusedon a
specificinstantin time, animportantpropertywhendealing
with bursty signals.Togetherthe waveletdetailandapproxi-
mationcoeficientscanrepreseniocalizedtime andfrequengy
effects.

The discretewavelet transformhasan extremely efficient
implementationthe fastwavelettransform(FWT) hasanal-
gorithmiccompleity of O(n) [5]. Furthermorewaveletrep-
resentationsire quite sparse.In otherwords, the majority of
the termsin the coeficient matrices(e.g. Figure 2) are ei-
ther zeroor nearlyzero. This is a useful propertyfor mary
applicationssuchascompressiomndde-noising5].

The brief overvien presentedn this sectionis intended
to familiarize the readerwith generalconceptsinvolved in
waveletanalysis,andit providesbackgroundor the wavelet
applicationswe discussin Sections4 and 5. For an even
morethoroughdescriptiorof themathematicshatunderscore
waveletanalysiswe referreadergo otherresource$5, 1, 6].

3 Power Supply and ProcessorModels

Pawversupplydesignfor high-performancerocessorss an
extremely difficult task, andlooming technologytrendsdic-
tate that it will only becomemore taxing in termsof cost,
designtime, and overall compleity [17]. However, recent
researchhas shavn that microarchitecturalvoltage control
can reducethe burden of traditional power supply design
[8, 11, 14, 16]. Ourresearcthereextendson this prior work
by using wavelet analysisto estimatevoltagesand predict
voltageemegenciesln this sectionwe first describemodels
for the power supplynetwork andmicroprocessothathelpus
to explore how programcharacteristicand hardware design
impactcurrentdissipationandvoltageoscillations.

3.1 Power Supply Model

If notadequatelyaddressedparasiticinductancefoundin
power supplynetworks canproducearge voltageripplesthat
haveanadwerseeffectonreliability andperformancé2]. Typ-
ically, a CPU’s supply voltage must be maintainedwithin a
+/-5% Vpp operatingrangeto preventcircuits from encoun-
teringtiming or noise-inducee@rror. We terminstancesvhere
thevoltagestaysbeyondthe allowed operatingevelsvoltage
faults While the impactof inductive noisecan be reduced



someavhatby decouplingcapacitorg10, 19], trends[17] sug-
gestthatit may be difficult andcostlyto protectagainstvolt-
agefaultswith traditionalmitigationapproaches.

In this paper we modelthe power supply systemandthe
inductive noiseit generatesvith a linear systemanodel[9].
Thesecondrderlinearsystenmodelthatwe usecaptureshe
mid-frequeng effects that are most pressingfor di/dt [10].
Figure 3 shows the frequeng profile for a secondorderlin-
ear system. Our supply model hasa resonanfrequeng of
50MHz, which matchesempirically measurediatafor a re-
cent high-performancemicroprocessof20]. As a starting
point for animpedancevalue,we createda worst-casedl/dt
executionsequenceasin [11] andchosethe largestvalue of
peakimpedancethat would maintainthe processowoltage
within +/-5% Vpp underthatworstcasescenarioFor sucha
systemno runtimedl/dt controlis necessarybut the costand
compleity of designinghesystencouldbeproblematic Mi-
croarchitecturadil/dt controlmechanismssuchas[8, 11], are
meantto work with lesscomplicatedoower supplynetworks
which may have larger peakimpedances.For the studiesin
this paper we choseanimpedancevhich is 50% largerthan
the maximumallowedimpedancewithout dl/dt control. This
is areasonablehallengefor the di/dt controlmechanisnbe-
causehis lesssophisticatgpower supplycould allow voltage
ripplesaslargeas+/-7.5%Vpp.
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Figure 3. Frequency response of a second-
order linear system, which models a typical
power suppl y system.

3.2 ProcessorModel and Benchmarks

For our processomodel, we usedWattch [3], a widely
usedarchitecturapower simulatorbasedn Simplescalaf4].
We modified Wattchto simulatea 3.0GHz processomwith a
nominal Vpp of 1.0V executingthe Alpha 21264 architec-
ture. Table 1 presentshe parametersve used. We mod-
ified Wattch/Simplescalato model the performance/engy
impactof deeppipelinesincludingmultiple fetchanddecode
stages. We also updatedWattch to spreadthe power usage
of pipelinedstructuresover multiple stages.To computeper
cycle current,we divided the percycle power from Wattch
by the supply voltage. For our choiceof Vpp = 1.0V, one
watt of power consumectorrespondso one ampereof cur
rentdrained.Whenthe supplyvoltagedrops,the currentcon-

sumedby deviceson chip decreasesso the active elements
on chip may actually dampenthe voltageripples somavhat.
However, the sameassumptionareusedby power supplyde-
signersin early stageplanning[2], andare consideredjood,
consenrative estimates.

For evaluationswe useall 26 SPECinteger andfloating-
point benchmarks. To ensurethat we obsened representa-
tive behaior, we usedsimulation points presentedn [18].
Thesesimulationpointswereautomaticallychoserto capture
asmuchof thetrue programbehaior aspossiblewhile reduc-
ing simulationtime.

ExecutionCore
Clock Rate 3.0GHz
InstructionWindow 80-RUU, 40-LSQ

FunctionalUnits 4 IntALU, 1 IntMult/IntDiv
2 FRALU, 1 FPMult/FPDv

2 MemoryPorts

FrontEnd
Fetch/Decod#&Vidth | 4inst,4inst
BranchPenalty 12cycles

Combined:4K Bimod Chooser
4K Bimodw/ 4K 12-bit Gshare
BTB 1K Entry, 2-way
RAS 32Entry

MemoryHierarchy

BranchPredictor

L1 I-Cache 64KB, 2-way, 3 cyclelateny
L1 D-Cache 64KB, 2-way, 3 cycle lateny
L2 I/D-Cache 2MB, 4-way, 16 cycle lateny

Main Memory 250cycle lateny

Table 1. Processor Parameters

4 WaveletVariance Characterization

We describea wavelet basedapproachto quantifyingthe
severity of currentvariationsanda statisticalmodelthat de-
terminestheir likely impact on voltage variations. Our ap-
proachuseswavelettransformsandpropertiesof the wavelet
coeficientsto characterize currentconsumptiorpatternand
assestheimpactof di/dt noiseonthepower supplyasafunc-
tion of variance.Varianceis a commonstatisticalmetric that
measureghe “spread” of data points arounda meanvalue
[13], andit is usefulin expressinghow muchof a dl/dt stres-
soranindividual benchmarkis. Furthermorewe shav how
probabilityanalysiscanusethesevarianceestimatego quan-
tify how lik ely the voltageis to approactanextremelevel.

4.1 Representingdl/dt Severity with Wavelets

Our waveletcharacterizatiomndvariationmodelis based
ontwo key obsenations.First, patternan the wavelet coefi-
cientsdescribecurrentvariationwith respecto bothtime and
frequeng, and canbe usedto determinethe impacton volt-
agefluctuations.Secondlymostof thelocalizedcurrentcon-
sumptionpatternsan programsfollow a Gaussiamprobability
distribution and as a resultthe majority of localizedvoltage
variation patternsalso follow a Gaussiardistribution. Both
of theseobsenationsareimportantto effectively characterize
thedl/dt behavior of aprogramsowe discusgheirindividual



impactbeforedescribingour full approachto dl/dt character
ization.

Becausehe power supplynetwork is a linear systemthe
magnitudeof the voltagevariation (the outputof the system)
is proportionato themagnitudeof currentvariation(theinput
of thesystem)[7]. With this insight,we developedanempiri-
calmodelthatrelatedqualitiesof currentconsumptiorto volt-
agevariancevia wavelets. Thewaveletrepresentatioallows
usto isolatethedifferentfrequengy componentsf thecurrent
consumptiorwaveform. This is animportantstepsinceeach
wavelet scalecorresponddo a distinct frequeng rangeand
hasits own impacton voltagevariations.

Our empiricalmodeldetermineshow much eachwavelet
scalelevel contributesto the total voltagevarianceand adds
thoseindividual contributions to assesghe severity of the
dl/dt noise. We found the correlation betweenadjacent
wavelet coeficientsto be helpful at identifying the oscilla-
tory behaior which is mostharmfulfor di/dt [11]. For each
waveletlevel, we constructedh tablethatrelatedthe correla-
tion of adjacentvaveletcoeficientsto total voltagevariance.
Thistablewasconstructedy calculatingthevoltagevariance
on the power supply underseveral input currentwaveforms
whosewavelet coeficients had different correlationfactors.
Figure4(a) shows the effect thatadjacentcoeficient correla-
tion canhave on voltagevariance. A strongcorrelationbe-
tweenwaveletcoeficientsappearsndis indicative of a pulse
patterrwhichcanbemoresevere.Little to nocorrelationsug-
gestdack of a pattern(i.e. white noise).

While the correlationanalysisdentifiesthe effect thatpat-
ternswithin ascalelevel have ondl/dt noise waveletvariance
(the sumof squaredvavelet coeficients)quantifiesthe mag-
nitude of the currentswings. Becausehe power supply net-
work is alinearsystemyariancan theamountof currentcon-
sumeds proportionalto the varianceon voltagelevel. Figure
4(b)shavshow waveletvariancas relatedto voltagevariance
in our model. The sumof squaredwavelet coeficientson a
scalelevel, j, is the waveletvarianceof current,o¢, for that
scalelevel. We usethe correlationfactordescribedabove and
thescalelevel, 7, to index alookuptablethatdetermineshow
waveletvariancescalesto voltagevarianceoy. Thelookup
table placesheavier weightingson scalelevels closeto the
resonanfrequeng of the supply network andto correlation
factorsthatindicateresonancés occurring.

To relatethe magnitudeof thevoltagevariationto thelik e-
lihood thatthe voltagedropsor risesbelow of a givenvalue,
we fit voltageprofilesto statisticaldistributions. Specifically
we obsenedthatwithin localizedregions(lastingtensto hun-
dredsof cycles),the currentconsumedy the processoand
thesupplyvoltagelevel seerby the CPUwereapproximately
Gaussian.

Ourwaveletcharacterizatioschemaiseshekey obsena-
tionswe describedo identify theseverity of dI/dt currentvari-
ationandprojectits impacton voltagelevels. Figure5 shavs
pseudocodéhatoutlinesthe stepsusedto performdl/dt anal-
ysis. Firstthediscretewavelettransformis appliedto a cycle-
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Figure 4. Computations for modeling the volt-
age variation contrib uted by wavelet scale level
n. The top (a) shows correlation analysis and
how two diff erent adjacent coefficient correla-
tion factor s can influence voltage. The bottom
(b) shows how one can compute the contrib u-
tion to voltage variation, o, using wavelet vari-
ance, o2 and the adjacency correlation, r.

by-cycle currentwaveformwhich is readfrom a microarchi-
tecturalpower simulator(e.g. Wattch). In our studieswe used
awindow size of 256 cyclesbecausét waslong enoughto
captureimportantdl/dt variationswhich typically spantens
of cycles. However, this window sizewasalsoshortenough
to capturelocalized currentconsumptionpatterns. We used
eight scalelevels in our analysis,the maximumnumberal-
lowedunderthiswindow sizing. After performingthewavelet
transformto collectapproximatioranddetailcoeficients,the
procedurghendetermineshow mucheachscalecontritutes
to voltagevarianceusingthewaveletvariance adjaceng cor-
relation,andlookuptable. Thentheindividual scalecontribu-
tions areaddedto producea total voltagevarianceestimate.
To calculatethe meanvoltagelevel, we averagethe approxi-
mationcoeficients,and multiply resultby the DC resistance
of the power supply network. In a linear system,the mean
outputvalue (voltage)is the productof the meaninput value
(current)andthe DC valueof thesystems frequeng response
(resistance)7]. Finally, the procedureprojectsthe estimated
voltagemeanandvarianceontoa Gaussiarprobabilitymodel
to asseshiow oftenthevoltagewill achieve anextremelevel.




characterize_wi ndow(current_wi ndow]) {
/* performwavel et transform */

[approx[], detail[][]] =
di screte_wavel et _transfornm{ current_w ndow] )

/* conpute contribution of all scales */

for(i=1 to max_scale) {
/* conpute adjacent coefficient correlations */
reil =

adj acent _coefficient_correlation(

detail[i][] )
/* conpute wavel et variance */
wave_var[i] =0
for(j=1 to max_conponents( detail[i][] ) {
wave_var[i] += detail[i][j] * detail[i][]j]

/* find scale’s voltage variance */
volt_var_contrib[i] =
correlation_lookup( r[i] ) * wave_var[i]
}

/* add all variances */
volt_var_total =0
for(i=1 to max_scale) {
volt_var_total += volt_var_contrib[i]

}

/* fit to Gaussian distribution */

volt _nmean = average( approx ) *
power _suppl y_dc_resi stance

volt_prob_distrib = gaussian_distrib( volt_mean
volt_var_total)

Figure 5. Pseudocode outlining the dl/dt char-
acterization process.

4.2 Results: Voltage Characterization

Usingthevoltageestimationschemeoutlinedin the previ-
oussection,we profiled SPEC2000benchmarkgo estimate
theimpactof dl/dtinducedvoltagevariation.Oneof theuses
of voltageprofiling is to gaugethe severity of voltageoscilla-
tions sothatwe canestimatehow oftena given programwill
requiredl/dt control. Throughexperimentatiorwe foundthat
0.97Vwasareasonabléhresholdsettingfor adl/dt controller,
andhencevoltagelevelsbelon 0.97V would needto be con-
trolled to preventvoltagelow faults.In Figure6, we compare
thepercentagef executioncyclesactuallyspentbelon 0.97V
to the estimatedpercentagef cycles spentbelow that point
usingthe schemedescribedn Section4.1. Overall the root
meansquareor erroris 0.94%.Figure6 shavs thatwhile our
estimateslo notexactly determinghenumberof cyclesspent
belov 0.97V, they do a good job at determiningwhetheror
notabenchmarkmight be problematidor dl/dt. For example
it identifiesmgrid, gcc, galgel, and apsias benchmarkghat
spendat least3% percentof their executionbelow 0.97V. It
alsoidentifiesbenchmarksuchasvpr, mcf, equale, andgap
which spendessthan0.5%of their executiontime below this
control point. Overall, wavelet voltage estimatesare useful
for identifying the severity of voltagevariations.

4.3 Results: Relating Voltage Variation to Archi-
tectural Events

One of the interestingaspectsof off-line, wavelet-based
estimateds that they canbe usedto offer insightsasto the
impactof differentmicroarchitecturabventson voltagelev-
els andvoltagevariability. As an exampleof this, we char
acterized26 SPEChenchmarksegardingtheir voltagevari-
anceandwe comparedt to severalmicroarchitecturaévents.
The clearestrelationshipwas betweenL2 cachemissesand
voltagevariance. Our varianceanalysisof wavelet window
sggmentsshaws thatlow L2 cachemissescorrelatesstrongly
with Gaussiarvoltagedistributions.

In particulay Figure 7 shows voltage histogramstwo
benchmarkscrafty andmcf. Crafty hasfew L2 cachemisses.
Visually, one seeghatthe voltageprofile for this benchmark
is approximatelyGaussian. In contrast,the histogramsfor
mcf, which hasa high L2 missrateshavs a prominentspike
atthenominalsupplyvoltagelevel 1.0V, anddoesnot exhibit
aGaussiarshape.
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Figure 7. Histogram of cycles spent at diff erent
voltage levels for two SPEC benc hmarks: crafty
(top) and mcf (bottom).

Moving from a visual level to a statisticallevel, Figure 8
shaws a statisticaltestof “Gaussian-nessappliedto execu-
tion windows from the 26 SPECbenchmarks.In particular
we useda Chi-Squaretest at 95% significanceto checkfor
Gaussiarbehaior in executionwindows of 64-¢yclesin each
benchmark.The benchmarksvith high L2 cachemissesare
theleastlikely to shov Gaussiarbehaior in voltage. Thisis
intuitive because¢hesebenchmarkdendto spendlong peri-
odsof time waiting for L2 missesbeingservicedfollowedby
spikesof activity whenthedatareturns.In contrastprograms
with fewer cachemisseshave smootheexecutionprofilesand
thusare closerto Gaussiarin their currentand voltage pro-
files.
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Figure 6. Estimated percent of cycles below contr ol point compared to obser ved number of cycles.

Figure 8. Percentage of 64 cycle execution win-
dows in whic h the cycle-by-cycle current con-
sumption was determined to be Gaussian un-
der the Chi-Square 95% significant test. We
present SPEC integer (top) and floating-point

(bottom).

5 WaveletBaseddl/dt Control

In the previous section, we demonstratedhat off-line
waveletbasedstatisticaimodelscanhelpto characterizeall/dt
behaior anddeterminavhenproblematiccurrentfluctuations
will influencevoltagelevelsinsidethe processarin this sec-
tion, we focusour attentionon on-line dl/dt control. In par
ticular, we demonstrate wavelet-basedoltagemonitor that
candeterminehow closethe processors to a voltagefault by
trackingcurrentvariations.

Previous work on architecturakcontrol techniquego limit
inductive noisehave had one of two fundamentaktrategies:
(2) directly or indirectly monitorthe voltage level andusethe
voltagelevel to trigger a reactve microarchitecturatontrol
mechanisn8, 11] or (2) estimatethe current consumedy
theprocessoby trackingmicroarchitecturatventsandmain-
taining invariantson the allowable changein current over
a relevant time window [15, 16]. Under both of theseap-
proachesnormalexecutionoperationamustbe suspendedo
avoid a voltagefault, but this may have an adwerseeffect on
performanceandenepgy-eficiency. For example,if a control
point is reached both typesof control mechanismstall in-
structionissueto preventthevoltagefrom droppingbelow the
minimumvalue. This decreasethe currentdraw, sothatthe
voltagewill not sink further, but it may reduceperformance
sincereadyinstructionsarenot beingissued.Corversely ris-
ing voltagesarethe resultof very low currentdraws. In this
case both control stratgiesissueno-opsto increasethe cur-
rentconsumption.



Control techniqueshasedon voltage monitors can have
relatively small performanceand enegy impacts,but accu-
rate voltagemonitoring canbe difficult to implement. Since
voltage-basednonitorsdirectly track the quantity that ulti-
matelydeterminesvhetheror not an errorcanoccur, voltage
monitoring schemesare unlikely to induce a false positive,
e.g. stall instructionissuewhen a voltageemegeng is not
imminent. Due to this, controlis only likely to be initiated
whenit is necessaryminimizing performancendenegy im-
pact. On the otherhand,the compleity of previous voltage
sensingproposalss high. In [11] the authorssuggesusing
ananalogcircuit to sensevoltagelevels. While today’s chips
have increasingamountsof analogcircuits, the addedcom-
plexity of integrating a mixed analog/digitaldesignon die
might be problematic. Anotherrecentproposalusinga con-
volution basedvoltagemonitor, suffers from implementation
difficultiesaswell. The problemwith this approachs thata
large numberof convolution termsare neededo accurately
trackvoltagelevel andsuchhardwareis difficult to build with
1-2 cycledelays.

Controlschemesghatmonitorcurrentconsumptiorareeas-
ier to build. For example,in[16], theauthorgproposea mech-
anism called pipeline damping where the hardware main-
tains the currentconsumedover a sufficiently long history.
They imposearestrictiononthedifferencen currentbetween
cycles of a specifiedwindow length. By choosinga suffi-
ciently smalldelta,they canboundthe maximumdl/dt swing.
The hardwarecompleity to implementthis is small, but this
schememay producea significanthumberof falsepositives.

The wavelet-basedaontrol schemehatwe presenthereis
designedo have few falsepositvesandto have an efficient
implementationlt allows the microarchitectureo efficiently
trackvoltagelevelsatrun-time,allowing for adl/dt controller
that avoids voltageemepgencieswithout compromisingper
formanceor enegy-efiiciengy. The wavelet representation
significantly decreasesiardware complexity so that we can
achieve the higheraccurag of a voltagemonitor, but with a
morefeasibleimplementatiorthanpreviously proposecton-
volution voltagemonitors[8].

5.1 Wavelet-BasedVoltage Monitors

The convolution operationis a standardsignal processing
techniquethatis fundamentato the microarchitecturalolt-
agemonitorpresentedn [8]. Equation3 shavs how instanta-
neousvoltagecanbe computedasa functionof theamperage
consumedaverpreviouscycles. Thetime shiftedvaluesof the
current;(t) areweightedoy theimpulseresponsé(t), which
captureghe completebehaior of alinear system[12]. The
proposedvoltagemonitor presentedn [8] tracksthe current
consumption;(t) and performsthe multiplication and addi-
tionin hardware.

o(t) = it — k) * h(k) ?3)

k=0

In principle the wavelet voltagemonitorsthat we propose
aresimilarto standardconvolution voltagemonitors,but they
can drastically reducethe amountof on-line computation,
which simplifiesthe hardware implementation. The voltage
monitor we proposeis basedon waveletcorvolution which
canoperateon areducechumberof waveletcoeficients[21].
For our studies,we found that approximationcoeficients
weremosthelpful for estimatingvoltagelevels, so we focus
on wavelet corvolution which works solely with approxima-
tion coeficients.

Ratherthan multiplying cycle-by-g/cle currentconsump-
tion againstthe full impulseresponsewavelet voltagemon-
itors track wavelet coeficients of currentconsumptionand
multiply againstwaveletcoeficientsof theimpulseresponse.
The wavelet representatiorallows neighboringtermsto be
factoredtogethey effectively reducingthe numberof terms
neededn thefull convolution.

The reducednumberof cornvolution termscould alsode-
creaseéheaccurag of the voltagemonitor, which meanghat
a realimplementatiorwould have to balancehardwarecom-
plexity with errorrate.Largeamountf errorareintolerable
becausehey dictatethat control thresholdsbe moved closer
to Vpp to ensurethatthe controlmechanismsanrespondo
animpendingvoltageemegeng. This hurtsperformancend
enegy-efficiency becauséalsepositivesareintroduced.

To help assesshe relationshipbetweerthe numberof co-
efficienttermsanderror, Figure9 plotsthemaximumpossible
errorversughe numberof coeficientsunderdifferentresolu-
tion levels. We foundthatresolutionlevels 2 to 5 offeredthe
besttrade-ofs betweenthe numberof coeficientsanderror,
sowe focusonthisrange.Theresolutionlevelsdeterminghe
numberof cycle by cycle currenttermsrepresenteih eachco-
efficient. For example,underresolutionlevel 5, a total of 2°
or 32 cycle termsarerepresenteth a singlecoeficient. Fig-
ure 9 shavsthatin generalincreasinghe numbercoeficient
termscanreducethe error. This is intuitive becausencreas-
ing thenumberof coeficientsessentiallyincreaseshehistory
of the currentbeingmonitored,allowing oneto capturemore
currentvariationin the past.For resolutionlevels4 and5, ad-
ditional coeficientsdo notimprove theerrorlevel beyond 11
and7 coeficients,respectiely. Essentiallytheseresolution
levelsfocusonvariationswhicharecoarse-grainedAs acon-
sequenceadditionalcoeficientsdo not help muchsincethe
existing coeficients alreadycapturea significantamountof
history. The coeficientsunderresolutionlevels2 and3 focus
on fine-graineddetail, so they achieve betterresultsif given
enoughcoeficientsto capturehistory.
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5.2 Implementation

The operationsn wavelet corvolution aresimilar to stan-
dard cornvolution since past current consumptionlevels are
multiplied by weighted constantsput the key differenceis
that approximationcoeficientsfor currentconsumptiorand
impulseresponseare used. Sincefewer termsare involved
in the corvolution, the hardwarecompleity is reduced.Fig-
ure10shovshow waveletcorvolutioncompareso astandard
convolutionimplementationAs in [8], we assumehatclock-
gatesignalsfrom executionunits can be usedto determine
theinstantaneousurrentconsumptionFor bothstandardand
wavelet corvolution implementationsthe currentconsump-
tion valuesarefed into a shift register In a standarcconvolu-
tion implementationgycle-by-g/cle currentconsumptiorval-
uesaremultiplied by theimpulseresponseandthe products
areaddedo computetheinstantaneousoltage.

Thekey differencen waveletcornvolutionis the useof ap-
proximationcoeficients. As Figure 10 shaws, the shift reg-
ister canbe usedto updatethe wavelet approximationcoef-
ficients. As the cycle-by-g/cle currentconsumptionvalues
move throughthe shift register their contributionsto coef-
ficients are addedand subtracted. This avoids the overhead
of directly performingthe wavelettransformeachcycle. The
currentconsumptiorapproximatiortermsarethenmultiplied
by approximationcoeficients of the impulseresponse.The
productsarethenaddedo computethe voltagelevel.

Wavelet corvolution significantly reducesthe amountof
hardware neededio monitor voltagelevels. For example,a
full corvolutionwith animpulseresponsef length N would
requirea total of N multiplicationsfollowed by the addition
of N terms.For aresolutionlevel of j, awaveletvoltagemoni-
tor would have k = [2%] convolutionterms.Thisreduceghe
numberof operationsneededfor corvolution multiplication
andadditionsteps,in exchangefor the 2k add/subtracbper
ationsneededo updatethe approximationcoeficients. We
believe thatthis canbe aneffective trade-of.
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Figure 10. Voltage monitor implementations
whic h use full convolution (top) and wavelet
convolution (bottom).

5.3 Results

To quantify the efficacy of the proposedcontrol scheme,
we evaluatedwavelet voltagemonitorsunderthreedifferent
parametechoiceswhich reflectvaryingamountsof hardware
compleity and consequenthdifferenterror levels. Specifi-
cally, we chosewavelet basedvoltage monitorswith 5, 10,
and15 coeficients.UsingFigure9 asaguideto minimizethe
errorfor agivennumberof coeficients,we chosearesolution
level of 5 for the 5 coeficient caseandaresolutionlevel of 3
for the10 and15 coeficient cases.

We foundthatunderafull corvolutionimplementatior(no
error),thresholdevelsof 0.96V for thelow controlpointand
1.04V for the high control point were sufficient to guarantee
effective dI/dt control underthe worst casewith the power
supplydescribedn Section3. Under SPEC2000the mean
performancdosscomparedo anuncontrolledprocessomwas
0.4%.

Usingthe estimatesn Figure9, we increasedhe voltage
low controlpointanddecreasethevoltagehigh controlpoint
to ensurethat di/dt control would be robust undererror for
the three wavelet monitor configurationsthat we examined.



Largererror movesthatthe control pointscloserto Vpp and
furtheraway from therealemegeng levels. Thuswe would
expectthat larger error valueswould imply morefalseposi-
tivesandhencegreatemperformancédoss.

Figure11 shavstheimpactthatwaveletbasedcontrolhad
on ourthreewaveletcontrol configurations As intuition sug-
geststhe configurationwith theleastamountof error, 15 co-
efficients,sufferstheleastperformancdoss. Cornverselythe5
coeficientcasewhich hadthelargesterror, alsowitnessedhe
greatesslovdowns. Neverthelesseventhe performancem-
pactunder5 coeficientsis very small,with a 2.2%meanper
formanceloss. This comparegavorably againsta recentpro-
posalwhich tracked differencedn currentconsumptiorover
a window of cycles[16]. This is possiblebecausevoltage
basedcontrol schemedirectly track the quantity of interest
to thedl/dt problem. Althougha full corvolutionimplemen-
tation could be expensve in termsof hardwarecost, wavelet
basedmonitorsarean efficient meango implementmicroar
chitecturalvoltagecalculation.

6 Discussionand RelatedWork

Thetopic of dI/dt controlbeganto seeattentionat the mi-
croarchitecturalevel only in the pasttwo to threeyears.Es-
sentially thereare two main partsto ary microarchitectural
dl/dt controller Thefirst partis the sensingnechanisnused
to determinevhentroubleis imminent. Thesecondartis the
actuatioror controlmechanisnusedto take actionin orderto
keepthe systems voltageundercontrol.

While the name*“dl/dt problem”refersto currentfluctua-
tions, it is ultimately the voltage fluctuationsinducedby cur-
rentchangeshatareproblematidn high-performancenicro-
processorsThus,in building a sensingmechanisnfor dl/dt,
one canchoosebetweensensingcurrent,sensingvoltage,or
sensingsomeproxy of the two and doing estimationcalcu-
lations. Currentor voltage sensorscan be built as analog
devices. Currentsensorsare more readily build-able, while
supplyvoltagesensorsare moredifficult dueto the factthat
they aretrying to measuréd/p p itself, thoughall otheron-chip
logic typically treatsVpp asthe bedrockreferencevalueon
thechip.

Someprior work haslooked at estimation-basegroxies
for currentandvoltage. In particular pipelinedamping[16]
proposesisingcurrentestimatiorovertime windowsto deter
minewhetherto engagevoltagecontrol. While this methodis
relatively simple to implement,it hasthe potentialfor high
false-positie rates. High false-positie ratesmeanthat volt-
age control mechanismsnust be engagednore frequently
which leadsto potentiallylarge performanceandenegy im-
pactaswell. (Their papermentionsperformanceslondowns
as large as 22% for SPEChenchmarkswhich are not sig-
nificantdl/dt stressors.)rhe corvolution-basednethodology
proposedy Grochavskietal. [8] hasthepotentialto bemore
accuraten its cycle-by-g/cle voltageestimatesandthushave
a lower falsepositive rate. On the otherhand, it is difficult

to build a single-g/cle implementatiorof the convolution cir-
cuit they propose.Our work offersthe low false-positie rate
of anaccuratesensingcircuit, with an easieimplementation
thanfull-blown corvolution hardware.

7 Summary

Waveletanalysids apowerful methodof decomposingind
representingignalsin boththe frequeng andtime domains.
Comparedo traditionalFourieranalysiswaveletanalysishas
thefollowing adwvantages:

¢ Waveletanalysiscananalyzesignalsthatcontaindiscon-

tinuitiesandsharpspikes.

e Wavelet analysis can analyze non-stationarysignals
whosefrequeng behavior varieswith time.

¢ Wavelet coeficient matricesaretypically sparse.Most
coeficientsarezeroor nearzero,sothata small group
of coeficientscanrepresena signalfairly well.

o Wavelet analysisis computationallyefficient. A fast

wavelettransformcanbe donein O(N) time.

While waveletanalysishasbeenwidely appliedin science
andengineeringno publishedwork hasshawn its application
in the computerarchitecturdield. In this paper we propose
the applicationof waveletanalysisin microprocessodesign,
andspecificallywe shov how to usewaveletsto characterize
andestimatevoltagevariationon chip.

Our first applicationof wavelet analysisis to character
ize the voltage varianceof a particular programworkload.
Voltage varianceis a measureof how cycle-by-g/cle volt-
agevaluesspreadaroundthe nominalvoltage. Large voltage
variancesare undesirabldecauséhey areindicative of dl/dt
problemswhich leadto reliability issues. To calculatevolt-
agevariancewe developedan empirical model that related
wavelet coeficientsto dl/dt noise. Wavelet analysisdecom-
posesthe original currentconsumptiorwaveform into time
andfrequengy componentsimakingit easierto identify varia-
tionsat key frequenciesvhich maybe harmfulfor di/dt.

Our secondapplicationof wavelet analysisis a wavelet-
basedvoltagemonitor thatis more computationallyefficient
thana full corvolution. This is possiblebecausenly a few
wavelet coeficients are neededto achieve a reasonableac-
curag. Onlinedl/dt controlbasedn awavelet-basedoltage
monitorcaneliminatevoltageemegencieswhile limiting per
formancelossto a few percent.Becauseof the regularity of
the Haarwavelet, the coeficientscanbe computedefficiently
usinga shift registerimplementation.

In summary this paperrepresents first attemptto apply
wavelet analysisto the computerarchitecturefield. Because
of its power to represenbursty signalsand sharpspikes, as
well asits computationakfficiency, wavelet analysiscanbe
a powerful aid to computerarchitectsin understandingand
analyzingcomplex programandmicroprocessobehavior.
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