THEME ARTICLE: QUANTUM COMPUTING

Quantum Codesign

Teague Tomesh ® and Margaret Martonosi ®, princeton University, Princeton, NJ, 08544-5263, USA

Codesign has been an integral part of computer architecture since the very first
systems were brought online. From the early days of the field until now, end-user
applications inevitably shape the design and capabilities of subsequent
generations of hardware. Likewise, the characteristics and capabilities of new
computational hardware and systems often impact the algorithms and software
that run on them. Quantum computing (QC) is similarly reliant on codesign
approaches, particularly now in its resource constrained early days. This article
discusses what codesign means in a QC setting, gives examples of its value to QC,
and proposes key attributes of QC codesign approaches going forward.

The development of quantum computers has rap-
idly accelerated over the course of the last 5
years. The capability of quantum systems—i.e.,
the number of qubits and the accuracy of gate opera-
tions—has increased dramatically. However, despite
the significant progress made in this short period of
time, today's quantum computers are still highly
resource-limited and error-prone. This has limited the
domain of solvable problems for near-term computers
compared to the envisioned fault-tolerant (FT) systems
capable of running arbitrarily long programs. Hard-
ware-software codesign approaches offer the potential
to efficiently and effectively achieve the best mappings
of challenging applications onto constrained hardware.

QC and Resource Constraints: The term noisy
intermediate-scale quantum (NISQ) was coined to
refer to today's QC implementations, which are grow-
ing quickly in capabilities, but are still severely
resource constrained.! At one end of the stack, quan-
tum hardware continues to scale to greater and
greater numbers of physical qubits, but the depth (i.e.,
operation count) of successfully executable programs
is still limited by qubit coherence time and high opera-
tion error rates. Similarly, current hardware typically
presents only very limited communication between
qubits within a small neighborhood since the required
swapping operation is dominated by expensive and
error-prone entangling gates. Despite these consider-
able challenges, current work has shown 10x or more
benefits in program success rates if the compiler is

0272-1732 © 2021 IEEE

Digital Object Identifier 10.1109/MM.2021.3094461
Date of publication 2 July 2021; date of current version
14 September 2021.

September/October 2021

Published by the IEEE Computer Society

designed to make use of information about its target's
gate error rates and connection topologies.

At the other end of the stack, quantum algorithms
are intrinsically written to assume certain capabilities
of the quantum hardware. Success lies in good
matches between what the algorithm assumes, and
what a given implementation can actually offer. As an
extreme example, for Shor's algorithm to run on “inter-
esting” numbers, it will require thousands of high-qual-
ity error-corrected qubits; this is far beyond any
current implementation. On the other hand, as we will
show here, for QC applications whose resource
requirements are closer to current-day systems, code-
sign techniques can “bridge the gap” and ensure a suc-
cessful mapping.

What does Codesign for QC Mean? Codesign refers
to the flow of information between different hardware
and software stack layers, in order to (in individual runs
or over entire design cycles) improve the overall appli-
cation execution and hardware design. The information
flow might include: key hardware parameters, design
specifications, and resource requirements up and
down the stack. Codesign for QC is about incorporat-
ing this information into the techniques and system
designs at every layer of the stack to make optimal use
of limited resources (see Figure 1). There is a natural
tension between the designer’s desire for abstraction
(i.e., information hiding) and codesign’s push for infor-
mation flow. This article discusses good options for
striking a strategic balance between abstraction and
information flow, in order to support both short-term
and long-term goals for QC systems.

The state-of-the-art in terms of both quantum algo-
rithms and hardware is rapidly evolving. This creates a
situation where successfully mapping algorithms to
hardware first requires answering a set of questions:

IEEE Micro

https://orcid.org/0000-0003-2610-8661
https://orcid.org/0000-0003-2610-8661
https://orcid.org/0000-0003-2610-8661
https://orcid.org/0000-0003-2610-8661
https://orcid.org/0000-0003-2610-8661
https://orcid.org/0000-0001-9683-8032
https://orcid.org/0000-0001-9683-8032
https://orcid.org/0000-0001-9683-8032
https://orcid.org/0000-0001-9683-8032
https://orcid.org/0000-0001-9683-8032

-QUANTUM COMPUTING

34

Algorithms

- Qubit coherence time
- Gate error rates
- Connection topology

- Qubit & gate requirements
- Natural gate operations
- Program profiling

Compilers

- Native gate operations
- Qubit counts
- Crosstalk characterization

- Variational
accelerator/optimizer
- QPU/CPU Location

- Application connectivity
- Common subroutines
- Degree of parallelism

Physical Qubits

FIGURE 1. The free flow of information up and down the hardware-software stack is an integral part of codesign. The systems at

each layer (algorithms, compilers, and hardware) face an inevitable tension between abstraction and complexity. Given the con-

strained nature of quantum resources, codesign is necessary to successfully map applications to hardware.

1) What resources does the application require?

2) What is the capacity and capability of the
hardware?

3) How will the computation be divided between
classical and quantum resources?

The answers to these questions constrain the
space of solvable problems. They present challenges
to the design and application of quantum systems,
and taking a narrow-minded approach may hinder the
effectiveness of those systems. Codesign is about
considering these constraints at every layer of the
stack and using the details available in the layers
above and below to develop informed techniques to
reach efficient and effective solutions.

WE SEE THE CODESIGN AND
INTEGRATION OF THE ENTIRE STACK
AS A VIABLE ROUTE TOWARD USEFUL
QUANTUM COMPUTATION IN THE
NISQ ERA AND BEYOND.

Every layer of the hardware-software stack con-
tains certain parameters and information, which can
be relevant to designers at higher and lower layers.
Developing techniques and designs which exploit
these parameters is the essence of codesign. Figure 1
shows the flow of information relevant to near-term
NISQ systems. By mapping out the parameters which
are relevant now, we can begin to understand what

IEEE Micro

will be important to focus on in the near term, what is
important in the long term, and what will remain rele-
vant throughout. Some details, such as the connec-
tion topology between qubits, may be abstracted
away once gate error rates become low enough. Other
parameters, such as qubit count, may continue to be
relevant throughout the NISQ and FT eras.

Concurrent with the incredible growth and activity
in quantum computing, codesign techniques are
already being developed that exploit these parameters.
In this article, we provide an overview of the applica-
tions of codesign to the quantum computing stack.
From the algorithms through the compiler down to the
hardware, there are ample opportunities for significant
efficiency gains by exploiting application and hardware
specific knowledge. A general trend in classical com-
puting is the growing levels of abstraction between
layers of the stack. While this has benefited classical
computing in myriad ways, the current state of QC
requires the opposite approach. Exposing more detail,
more parameters, between layers will allow system
designers to better meet the constraints imposed by
the NISQ technology. We see the codesign and integra-
tion of the entire stack as a viable route toward useful
quantum computation in the NISQ era and beyond.

QC BACKGROUND

Quantum programs are expressed as quantum cir-
cuits, where time runs from left to right and each hori-
zontal line designates a different qubit. A quantum
circuit implements a given program by acting on the
qubits with a set of different operations, also known

September/October 2021

QUANTUM COMPUTING

Circuit Depth
A
r)
= 9% [H]e ’ R(268) [AfF————
=l
= o @Rl + ' R A——
?_ 92 - @ % ‘Rz(z N I * RX(Qﬁ) @7
S Las: [H] (R.(27)] = Rz(zy)kLRX(w) A
meas : =~
Optimization 0o 1 2 3
& 032
Circuit Mapping

Construction

Application:

FIGURE 2. Example of QC execution flow.

as quantum gates. Figure 2 shows an example of a
4-qubit circuit containing H, R;, Ry, and CNOT gates
and measurements of all four qubits at the very end.

A typical model for QC execution begins with the
programmer using a high-level programming language
to construct a quantum circuit. In Figure 2 an example
application, solving the MAXCUT problem on a 4-node
graph, is used to illustrate the QC execution model.
The compiler will then take this circuit and compile it
down to a set of native gates supported by the
hardware. In addition to the transpilation from high
level to native gates, the quantum compiler will also
perform optimizations to reduce the circuit depth and
provide a mapping from the logical qubits to the physi-
cal qubits on the hardware. The mapping process may
also require inserting swap operations to satisfy the
hardware’s connection topology. It is also important
to note that this compilation process is usually per-
formed prior to every program execution. This is critical
for NISQ computing because the latest hardware cali-
bration data must be taken into account to map the
logical circuit to the physical qubits, which currently
have the lowest noise and highest fidelity operations.

Once the program is compiled into an executable
form, it is run N times on the hardware and the result
of each run, called a shot, is recorded. The N shots
form a distribution over the set of measured answers
and the quality of the execution can be characterized
by the success rate.

The theory of quantum computing, manifesting as algo-
rithms and applications, has had a long head start over

September/October 2021

Execution

Probabilities
° ° o °
S ° [4
8 8 5 X
00, -—
010, [——————
02, —

the hardware. As a result, the design of QC hardware has
been shaped by applications that were designed even
before the first, fully integrated systems were built. The
feedback loop between hardware and software was
finally completed when the first quantum systems were
made available to application designers. The NISQ algo-
rithms designed for these machines have opened the
door to further development of application-specific hard-
ware tailored to near-term applications.

The impact of early quantum algorithms and appli-
cations can be seen in the design of current hardware.
Error-correcting codes are a critical class of quantum
applications that have shaped the qubit connectivity
of many of today’s quantum computers. Nearest-
neighbor 2-D lattices are a natural connection topol-
ogy for superconducting hardware targeting surface-
codes whereas sparser connectivities are preferable
for heavy-hexagon or heavy-square codes.? Having a
range of codes to choose from allows hardware
designers to make tradeoffs in design complexity
between sparser and more densely connected qubits.
Additionally, the operations that are used to express
algorithms have influenced the gate sets supported
by hardware. A recent example is the mid-circuit
measurement operation, used in textbook quantum
algorithms like teleportation and error-correction to
provide control-flow within programs, which is now
available in commercial systems.®> Supporting new
operations in hardware can also affect the way algo-
rithms are implemented in software. IBM recently
demonstrated the possible resource tradeoffs by
implementing an algorithm using either 12-qubits or
only 2-qubit plus mid-circuit measurement.”

The development of near-term applications and
algorithms has also shaped the design of quantum

IEEE Micro

35

QUANTUM COMPUTING

36

hardware. Hybrid quantum-classical variational algo-
rithms were developed in response to the limited
capabilities of NISQ devices. This new class of applica-
tions raises interesting architectural questions such
as: where should the classical coprocessor be located,
and how will it interface with the quantum processor?
Ideally the computational resources should be placed
as close together as possible to minimize the time
that the data are in flight since the variational algo-
rithms contain inner loops, which may execute many
thousands of times. However, in the case of supercon-
ducting quantum computers, this would require that
the classical coprocessor function at temperatures
near absolute zero while dissipating minimal heat to
minimize the chance of qubit decoherence. Research
efforts to solve these issues are already under way,
including a new cryogenic control chip “Horseridge”
announced by Intel.® Variational algorithms are also
distinguished by their use of parameterized quantum
gates, which are the knobs that the classical optimizer
uses to traverse the cost function landscape. These
parameters are angles from [0, 27), which are input to
different rotation gates within the quantum circuit.
This introduces a dilemma since quantum gates are
usually calibrated only once or twice per day and every
value in the interval cannot be tuned as an individual
gate in the hardware. Therefore, architectures which
natively support continuously tunable gates or are
able to provide high fidelity approximations using a
small subset of pretuned gates will be better suited to
executing these types of algorithms. These examples
show the advantage that can be gained by designing
the capabilities of the hardware to support specific
applications like variational algorithms.

APPLICATION-SPECIFIC
ARCHITECTURES ARE A PROMISING
STRATEGY FOR DEALING WITH THE
LIMITED QUANTUM RESOURCES OF
THE NISQ ERA.

Application-specific architectures are a promising
strategy for dealing with the limited quantum resour-
ces of the NISQ era. Similar to the use of GPUs in clas-
sical computing, quantum chips may be designed as
dedicated accelerators, which provide additional
computational resources to process running on a clas-
sical CPU. This is already the role played by the QPU in
today's variational algorithms, and could provide a

IEEE Micro

path to quantum advantage. Such application-specific
designs are already being studied in the case of super-
conducting architectures.® The design of accelerator
based quantum computers can take place alongside
efforts toward reaching fault-tolerance, and simulta-
neously exploring both design spaces would also be
beneficial for both.

The design of quantum algorithms has already been
deeply influenced by the capabilities of NISQ
hardware.

The rise in popularity of variational algorithms is a
direct result of the limited coherence times and low
gate fidelities of current quantum computers. These
algorithms make a tradeoff between qubit coherence
requirements and the number of circuit executions.
Instead of running a single, deep circuit to find a solu-
tion for a target application, the same problem can be
solved by running many shallow circuits. Variational
algorithms also utilize classical computational resour-
ces running an optimization algorithm in an outer
loop. In this paradigm, the quantum processor func-
tions more like an accelerator are used to compute
the classically difficult objective function. The struc-
ture of variational algorithms introduces interesting
questions concerning circuit structure, compilation
optimizations, and data communication between
computational resources.

The circuit or "ansatz” structure of variational algo-
rithms is a clear example of codesign. Some of the first
proposed ansatzes were labelled as hardware-efficient
because they were structured to perfectly match the
connectivity of the underlying hardware. This type of
design is advantageous because it does not require
the insertion of any swap operations, however, the
expressivity and trainability of hardware-efficient
ansatzes can be limited. These issues can be allevi-
ated by taking the codesign process one step further
and incorporating application-specific information
into the design of the variational ansatz to better
match the structure of the problem. These parameter-
ized circuits are easier to train at the cost of requiring
a few more swap gates. Designing optimal variational
ansatzes with respect to the application and hardware
topology is currently an open and important area of
future research.

Hamiltonian simulation is an example of an impor-
tant quantum application, which has benefited from
the codesign of algorithms with respect to the capa-
bilities of NISQ hardware. Hamiltonian simulation was

September/October 2021

one of the first known applications for quantum com-
puters with an exponential speedup. However, until very
recently, the best quantum algorithms for this task
required a prohibitive number of quantum gates such
that any implementation would require error correction.
New variational algorithms for Hamiltonian simulation
have been developed, which lower these gate require-
ments by orders of magnitude.” These new algorithms
reduce circuit depth by changing the relationship
between the quantum and classical computational
resources. Rather than carrying out the Hamiltonian sim-
ulation with a single run of a deep, fixed quantum circuit,
we can allow the classical computer to shoulder some of
the computation and repeatedly execute many different
shallow quantum circuits.

Compilers, situated between the application and hard-
ware layers are in a prime position to take full advan-
tage of codesign techniques. Quantum compilers
have focused their attention on developing techni-
ques to mitigate the limitations of hardware while
accommodating the demands of algorithms. Because
resources such as qubit and gate counts are so lim-
ited, quantum compilers must exploit information
from the algorithms above and the hardware below to
ensure good performance. In fact, this necessity is the
biggest difference between classical and quantum
compilation. The effectiveness of classical compilers
is usually measured by the speed up they provide, but
for quantum compilers performance can be measured

QUANTUM COMPUTING

by the probability of whether a program runs at all.
The critical reliance of quantum programs on good
compilers points to the necessity of application and
hardware specific optimizations.

Application level information can provide the com-
piler with context so it can be more aggressive and
strategic in its optimizations. As an example, the
structure of variational algorithms is quite different
from other typical algorithms. Variational algorithms
utilize parameterized quantum circuits, which are exe-
cuted many times with different parameter values but
the overall layout of the circuits remains fixed
between runs. The compiler can exploit this informa-
tion to reduce overall runtime by storing the fixed
parts of the circuit across executions and only updat-
ing the portions, which contain the parameterized
gates.® Application-specific information can also
reveal symmetries and opportunities for gate cancella-
tion that would otherwise be invisible to optimizations
performed at lower levels of the stack. Applications
like Hamiltonian simulation contain a large amount
contextual information because they are concerned
with simulating some physical system. This knowledge
can be used to optimize the program'’s order of execu-
tion to mitigate certain types of errors—analogous to
how the order of operations for floating point compu-
tations can impact accuracy.®

In the current NISQ era, mitigating the effects of
noise has become a major focus for compiler develop-
ment. Noise levels vary not only between QPUs, but
also across qubits and time within the same device.
Noise-aware compiler optimizations tailored to spe-
cific hardware and utilizing the most up-to-date cali-
bration data have increased program success rates

TABLE 1. Summary of the codesign parameters and examples covered in this article. (Top) Codesign parameters.

(Bottom) Codesign examples (the numbers in the parenthesis show which parameters are relevant to that example).

Hardware
N 1. Coherence times 2. Gate fidelities 3. Native operations 4. Qubit connectivity
Characteristics
Program . L . . . - ..
Profiling 5. Resource requirements 6. Application symmetries 7. Hybrid computation 8. Circuit connectivity

Variational Algorithms: 100x
reduction in gate counts [7]
(1, 2)

Ansatz design
(1,3,4,6)

Noise-aware compilation: 28x
increase in success rate [10]
(1,2,3,4)

Program Ordering [9]

Connectivity Design [2], [16]

Mid-circuit Measurement:
6x reduction in qubit cost [3], [4]

(5,6,7)

5,6 6, 8
5. 6) ©, 8) &
L Estimating correct .
Pulse-level optimization [14], [15] program output [12], [13] Readout classifiers [11]
(1,3,6) 126 (1,2,3)
Partial compilation: .
3x runtime speedup [8] Co-locating %5PU7)and QPU [5]

September/October 2021

IEEE Micro

37

QUANTUM COMPUTING

38

and are now a standard part of IBM's Qiskit quantum
software package.’® Exposing pulse-level access to
higher layers in the stack has led to the development
of readout classifiers, trained on low-level hardware
data, which are better able to distinguish between |0)
and [1) states.” Noise-aware approaches have also
been adapted to methodologies, which estimate the
true output of a quantum circuit by incorporating the
error characteristics and noisy outputs of multiple
quantum devices.'? Other works exploit the reversibil-
ity of quantum circuits for the purposes of output veri-
fication and debugging.”® Furthermore, compilers
which operate at the pulse level, converting applica-
tions (specified at the circuit level) directly into the
native pulse operations of the hardware, have been
shown to reduce program runtime and increase
fidelity."*®

Even in the FT era, the compiler will still play a criti-
cal role in mapping particular applications to specific
architectures. Recent work from Intel studied the
simultaneous impact of qubit encoding (an algorith-
mic level consideration) and hardware connection
topology on qubit and gate counts for the specific
application of Hamiltonian simulation.’® They found
that different encodings can result in different com-
munication requirements between qubits which sug-
gests that, given a particular qubit layout, one
encoding may incur fewer swaps than another. Look-
ing at different hardware connectivities, they found
that the performance gap between square grid and
ladder topologies was not as great as the gap between
linear and ladder connectivities. This sort of insight
may be beneficial to hardware designers since it is a
more difficult task to fabricate full, 2-D square grids
versus a ladder layout.

The examples in the preceding sections have demon-
strated how hardware-software information flow is
already influencing QC. Codesign relies on such informa-
tion flow, but on the other hand, abstraction remains
valuable too. So it is essential to identify the limited and
specific information that offers the most leverage up and
down the stack. These parameters and characteristics
will form the key for QC codesign, while also allowing
other details to be abstracted away.

Table 1 summarizes attributes that were key to the
codesign examples previously covered. We saw how
many of the design choices made at the algorithmic
level were influenced by low-level hardware character-
istics. Applications can make more efficient use of

IEEE Micro

quantum resources by incorporating knowledge of the
underlying connection topology and native gate set.
Taking the opposite view, high-level program profiling
can lead to more effective and efficient hardware
designs. Between these layers, the compiler can take
full advantage of both the low- and high-level informa-
tion to map applications to hardware in the most effi-
cient way possible.

Finally, we note how the set of key codesign
parameters convey information that is portable across
quantum architectures. QC implementations come in
a variety of forms between superconducting circuits,
photonic chips, and ion traps. Although specific
details may vary across architectures, certain charac-
teristics remain relevant: how noisy are the qubits?
Which operations are supported? How error-prone are
they? What is the connection topology? Different QC
implementations will have different answers to these
questions and will therefore be better suited for cer-
tain applications over others. Codesign combining
hardware characterization and program profiling pro-
vides a principled approach to quantum computation
across architectures.

AS TIME PROGRESSES AND THE
QUALITY OF QUANTUM HARDWARE
IMPROVES, WE MAY FIND THAT THE
DESIGN COMPLEXITY INTRODUCED
BY EXPOSING CERTAIN LOW-LEVEL
PARAMETERS IS NO LONGER
BENEFICIAL. THESE DETAILS CAN BE
ABSTRACTED AWAY TO SIMPLIFY
DESIGN, BUTIT IS LIKELY THAT SOME
PARAMETERS WILL MAINTAIN THEIR
RELEVANCE.

In today's world of classical computing, only a small
subset of people need to actively consider the func-
tion of individual transistors when designing new sys-
tems. This is in contrast to the current state of quantum
computing where successful program execution can rely
on the effective utilization of each qubit. In the near-
term, abstraction is a luxury that quantum systems can-
not afford. Utilizing low-level details will be critical for the
efficient usage of limited quantum resources, and as the
quality of quantum hardware improves the benefits of

September/October 2021

abstraction will increase. This creates tension between
system designs tailored to the near term and those built
around the capabilities of long-term FT architectures.
One may ask: is there any point to considering near-term
applications and techniques if the hardware they are built
on will be irrelevant in the future? Classical architects
caught in the mid of Moore’s Law faced similar questions
such as these, but even then it was clear that only design-
ing systems for hardware which would be built decades
in the future was a nonviable strategy. The key issue for
QC is understanding and mapping out the timeline to
fault-tolerance. No one can say for certain when, or if,
fault-tolerant error-corrected quantum computers will
arrive, but the work done today on the codesign of cur-
rent applications and hardware will help to shed light on
this question and provide a path forward.

Without interesting near-term applications, there
are no examples between small toy problems and
large FT applications to serve as a guide for hardware
designers. The QC systems which are being built today
are nearing the boundaries of classical computation
for certain problems, but they only possess a fraction
of the resources required to run Shor's algorithm on
2048 bit numbers. Harnessing the capabilities, limited
though they may be, of near-term devices and apply-
ing them to useful applications requires a full-stack,
codesign approach. This will help to inform the design
of subsequent generations of QC hardware and pro-
vide insights into the types of problems which are
suited to quantum computation.

FRAMING THE DESIGN OF NEAR-TERM
QUANTUM COMPUTERS AROUND THE
ARCHITECTURE OF ACCELERATORS IS
A PROMISING PATH TOWARD NEAR-
TERM USEFULNESS. THIS DOES NOT
REPLACE THE QUEST FOR FAULT-
TOLERANCE. INSTEAD, THESE TWO
PATHS ARE MUTUALLY BENEFICIAL
TO ONE ANOTHER.

As time progresses and the quality of quantum
hardware improves, we may find that the design
complexity introduced by exposing certain low-level
parameters is no longer beneficial. These details
can be abstracted away to simplify design, but it is
likely that some parameters will maintain their rele-
vance. For example, although the abstraction
between physical and logical qubits will become

September/October 2021

QUANTUM COMPUTING

useful after error-correction is achieved, qubits are
likely to remain expensive resources and this must
be considered in application and compiler design.
Therefore, techniques developed today which opti-
mize qubit usage will remain relevant far into the
future. Qubit count is just one example of a low-
level design parameter, which may be relevant
across timescales. Quantum computer architecture
is still a relatively new field and there is much work
to be done in mapping out the codesign parameter
space and incorporating that knowledge into near-
and long-term architectures.

Looking forward there are plentiful opportunities for
codesign of the quantum computing stack. Further-
more, the performance and efficiency gained through
such codesign will be a prerequisite for achieving
guantum advantage in the NISQ era. The key to effec-
tive codesign is the open flow of information through-
out the layers of the hardware and software stacks. In
the context of QC, this will require breaking abstrac-
tions to allow for application- and hardware-specific
optimizations.

Framing the design of near-term quantum com-
puters around the architecture of accelerators is a
promising path toward near-term usefulness. This
does not replace the quest for fault-tolerance.
Instead, these two paths are mutually beneficial to
one another. Application-specific accelerators are
much more likely to solve useful problems before
their more general counterparts, which will allow
the quantum ecosystem to grow sooner and faster.
A growing ecosystem will benefit the error correc-
tion research track and the subsequent reductions
in gate errors and increases in qubit counts will
also lead to better accelerators. Codesign is crucial
to this task and there is still much interesting work
left to be done.

Much of the work done now will still be relevant in
the fault-tolerant era and shape the path toward that
goal. A suite of quantum benchmarks including near-
term as well as the smaller subroutines for far-term
algorithms would be useful for analyzing the perfor-
mance of current NISQ hardware and informing the
design of subsequent generations. As the develop-
ment of both quantum hardware and algorithms con-
tinues, coherence times will increase, gate costs will
decrease, and the number of qubits will multiply, but
the same architectural questions will remain. What
is the connection topology between qubits and how
do they match the communication requirements of

IEEE Micro

39

QUANTUM COMPUTING

the algorithm? What are the natural operations used
to express the algorithm and how close are they to
the native gates supported by the hardware? Current
research is pursuing answers to these questions,
which will help to shape the design of next generation
quantum systems. In fact, it is likely they will need to
be revisited time and time again as we seek to build
better ever more powerful quantum computers.

1. J. Preskill, “Quantum computing in the NISQ era and
beyond,” Quantum, vol. 2, pp. 79, 2018.

2. C.Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and
A.W. Cross, “Topological and subsystem codes on
low-degree graphs with flag qubits,” Phys. Rev. X.,
vol. 10, no. 1, 2020, Art. no. 011022.

3. S.K. Moore, "Honeywell's ion trap quantum computer
makes big leap,” IEEE Spectr. Technol., Eng., Sci. News,
Mar. 3, 2020. [Online]. Available: spectrum.ieee.org/
tech-talk/computing/hardware/honeywells-ion-trap-
quantum-computer-makes-big-leap

4. P.Nation and B. Johnson, “How to measure and reset a
qubit in the middle of a circuit execution,” IBM Res.
Blog, Feb. 11, 2021.

5. Intel PR, “Intel debuts 2nd-Gen horse ridge cryogenic
quantum control chip,” Intel Newsroom, Dec. 3, 2020.

6. G.Li Y.Ding, and Y. Xie, “Towards efficient
superconducting quantum processor architecture
design,” in Proc. 25th Int. Conf. Archit. Support
Program. Lang. Oper. Syst., 2020, pp. 1031-1045.

7. Y.-X.Yao et al., "Adaptive variational quantum
dynamics simulations,” PRX Quantum, Amer. Physi.
Soc., vol. 2, no. 3, p. 030307, Jul. 2021. [Online]. Available:
https://link.aps.org/doi/10.1103/PRXQuantum.2.030307

8. P.Gokhale et al.,, “Partial compilation of variational
algorithms for noisy intermediate-scale quantum
machines.” In Proc. 52nd Annu. IEEE/ACM Int. Symp.
Microarchit., 2019, pp. 266-278.

9. K.Guiet al, “Circuit optimization for simulations of
quantum systems,” Bulletin Amer. Physi. Soc., APS, 2021.

10. P.Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H.
Nguyen, and C. H. Alderete, “Architecting noisy
intermediate-scale quantum computers: A real-system
study,” IEEE Micro, vol. 40, no. 3, pp. 73-80, May/Jun. 2020.

IEEE Micro

—_

1. T.Patel and D. Tiwari, “DisQ: A novel quantum output
state classification method on IBM quantum
computers using openpulse,” in Proc. 39th Int. Conf.
Comput.-Aided Des., 2020, pp. 1-9.

12. T. Patel and D. Tiwari, “Veritas: Accurately
estimating the correct output on noisy intermediate-
scale quantum computers,” in Proc. SC20: Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2020,
pp. 188-203.

13. T.Patel and D. Tiwari, “Qraft: Reverse your quantum
circuit and know the correct program output,” In Proc.
26th ACM Int. Conf. Archit. Support Program. Lang.
Oper. Syst., 2021, pp. 443-455.

14. Y. Shi et al., "Optimized compilation of aggregated
instructions for realistic quantum computers,” in Proc.
24th Int. Conf. Archit. Support Program. Lang. Oper.
Syst., 2019, pp. 1031-1044, Harvard

15. J. Cheng, H. Deng, and X. Qia, "Accqoc: Accelerating
quantum optimal control based pulse generation,” in
Proc. ACM/IEEE 47th Annu. Int. Symp. Comput. Archit.,
2020, pp. 543-555.

16. N. P. D. Sawaya, G. G. Guerreschi, and A. Holmes,

“On connectivity-dependent resource requirements

for digital quantum simulation of d-level particles,”

in Proc. IEEE Int. Conf. Quantum Comput. Eng., 2020,

pp. 180-190.

TEAGUE TOMESH is currently working toward a Ph.D. degree
in the Computer Science Department, Princeton University.
His research interests include closing the gap between quan-
tum hardware and practical applications by applying com-
puter architecture and compilation techniques. He is a
member of IEEE and the Association for Computing Machin-
ery (ACM). Contact him at ttomesh@princeton.edu.

MARGARET MARTONOSI is the Hugh Trumbull Adams 35
Professor of Computer Science with Princeton University,
Princeton, NJ, USA. Her research interests include computer
architecture and hardware-software interface issues in both
classical and quantum systems. Martonosi received a Ph.D.
degree in electrical engineering from Stanford University. She
is a Fellow of IEEE and the Association for Computing

Machinery. Contact her at mrm@princeton.edu.

September/October 2021

spectrum.ieee.org/tech-talk/computing/hardware/honeywells-ion-trap-quantum-computer-makes-big-leap
spectrum.ieee.org/tech-talk/computing/hardware/honeywells-ion-trap-quantum-computer-makes-big-leap
spectrum.ieee.org/tech-talk/computing/hardware/honeywells-ion-trap-quantum-computer-makes-big-leap
https://link.aps.org/doi/10.1103/PRXQuantum.2.030307

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

