Memory Referencing Behavior in
Compiler-Parallelized Applications

Evan Torrie, Margaret Martonosi, Mary W. Hall, and Chau-Wen Tseng

Abstract

Compiler-parallelized applications are increasing in importance as moderate-scale multi-
processors become common. This paper evaluates how features of advanced memory systems
(e.g., longer cache lines) impact memory system behavior for applications amenable to com-
piler parallelization. Using full-sized input data sets and applications taken from the SPEC,
NAS, PERFECT, and RICEPS benchmark suites, we measure statistics such as speedups,
memory costs, causes of cache misses, cache line utilization, and data traffic.

This exploration allows us to draw several conclusions. First, we find that larger gran-
ularity parallelism often correlates with good memory system behavior, good overall per-
formance, and high speedup in these applications. Second, we show that when long (512
byte) cache lines are used, many of these applications suffer from false sharing and low cache
line utilization. Third, we identify some of the common artifacts in compiler-parallelized
codes that can lead to false sharing or other types of poor memory system performance,
and we suggest methods for improving them. Overall, this study offers both an important
snapshot of the behavior of applications compiled by state-of-the-art compilers, as well as an
increased understanding of the interplay between cache line size, program granularity, and
memory performance in moderate-scale multiprocessors.

1 Introduction

Historically, parallel programming has been the domain of a relatively small group of highly
knowledgeable and dedicated supercomputer users. Recent architectural advances, however,
have propelled moderate-scale parallel computers into widespread use as general-purpose nu-
meric compute servers. Increased reliance on compiler-parallelized applications will not only be
a natural fallout from this transition to widespread moderate-scale parallel architectures; it will
also likely be one of the driving forces that help bring it about.

Although parallelizing compilers are not always successful, evidence indicates they are finally
reaching the stage where they can parallelize many interesting scientific codes. For application
domains where parallelizing compilers are successful, it opens parallel computing to a broad
spectrum of users since their parallel programs can be developed with much less effort than
what is required for hand-parallelized code. In a realm where parallel computers are widely
available, compiler-parallelized applications are likely to be the workload of choice for most
users. However, relatively little is known about their characteristics.

In particular, memory system behavior has been shown to have a significant impact on the
performance of scalable multiprocessors [8, 11, 17]. Because of the increasing disparity between

Evan Torrie is with the Computer Systems Lab at Stanford University (torrie@cs.stanford.edu). Margaret
Martonosi is with the Dept. of Electrical Engineering at Princeton University (martonosi@princeton.edu). Mary
Hall is with the Dept. of Computer Science at California Institute of Technology (mary@cs.caltech.edu). Chau-
Wen Tseng is with the Dept. of Computer Science at University of Maryland (tseng@cs.umd.edu).

processor and memory speeds, memory systems have been evolving towards longer cache lines in
order to hide memory latency. Researchers have studied how this trend affects carefully tuned
hand-parallelized programs [23, 26]. In this paper, we examine the memory system behavior of
a new class of applications—those amenable to compiler parallelization. Our goal is to evaluate
how these programs are impacted by advanced memory systems.

This paper makes several contributions:

e We provide the first detailed examination of the memory behavior of compiler-parallelized
applications. We use an extensive collection of real applications taken from well-known
benchmark suites such as SPEC, NAS, and PERFECT. We evaluate these benchmarks on
full-sized data sets, measuring the impact of memory behavior on the programs’ speedups.

For comparison, we also present statistics on a selection of hand-parallelized applications
from the SPLASH benchmark suite [23].

e Based on these measurements, we show that the granularity of application parallelism is
an important determinant of application memory behavior, and ultimately of application
performance. For many applications, we find granularity is a function of data set size.

e Finally, our research has led to a better understanding of the artifacts (e.g., small inner
parallel loops) that can cause excessive false and true sharing. We give examples demon-
strating that advanced compiler techniques designed to locate coarse-grain outer parallel
loops, such as array privatization and interprocedural parallelization analysis, can also
improve memory system performance.

Overall, this study benefits both architects and compiler writers for multiprocessors. Ar-
chitects can observe how an important class of programs with characteristics different from
hand-parallelized programs will behave in relationship to trends in architecture design. Com-
piler writers can apply these quantitative measurements to improve the behavior of compiler-
parallelized applications and avoid problematic patterns. In particular, the effect of parallelism
granularity on memory system behavior is vital for both architects and compiler writers to keep
in mind when attempting to exploit fine-grain parallelism on advanced memory systems.

In the following sections, we describe the compiler, applications, and simulation methodology
used in our experiments. We present our measurements for these programs, then examine the
behavior of the compiler in greater detail before concluding.

2 The SUIF Parallelizing Compiler

For our study we used the SUIF parallelizing compiler [25] to generate parallel versions of
our applications. SUIF takes as input sequential Fortran or C programs, producing as output
parallel C programs that execute according to a master-worker model. SUIF contains most of the
features found in commercial parallelizing compilers such as KAP; additionally, it performs both
array privatization and interprocedural analysis. Section 7.3 will demonstrate the importance
of these features.

Once SUIF identifies a parallel loop, its iterations are divided at compile time so that each
processor performs a roughly equal number of consecutive iterations. This simple static schedul-
ing heuristic maintains spatial locality and minimizes run-time overhead; measurements show it
does not lead to significant load imbalance for our application suite. SUIF programs rely on a
run-time system built from ANL macros for thread creation, barriers, and locks. The run-time

system has been tuned to eliminate false sharing and minimize true sharing; it has been ported
to the Stanford DASH [17], SGI Challenge, and KSR-1 multiprocessors.

References | Par. Par.
Program Suite Description Input Data Simulated | Covg. Gran.
(109) (%) | (108 cycles)
COMPILER-PARALLELIZED BENCHMARKS
appbt NAS block-tridiagonal PDEs 123 grid 48 100 5.73
appsp NAS scalar-pentadiagonal PDEs 123 grid 18 98 0.30
cgm NAS sparse conjugate gradient 1400 array elems. 37 98 1.02
erle64 MISC ADI integration 642 array elems. 18 100 14.59
flob2 PERFECT transonic inviscid flow 40x8 grid 92 98 0.23
hydro2d SPEC Navier-Stokes 102x40 grid 22 98 0.02
linpackd RICEPS Gaussian elimination 2562 array elems. 29 95 0.30
mgrid NAS multigrid solver 323 grid 74 94 3.05
ora SPEC ray tracing 650 array elems. 31 100 213.92
simple RICEPS Lagrangian hydrodynamics 203x183 grid 62 94 2.36
su2cor SPEC quantum physics 83x16 grid 240 98 0.05
swm256 SPEC shallow water model 2562 grid 44 100 5.34
tomcatv SPEC mesh generation 2562 grid 44 100 4.88
HAND-PARALLELIZED BENCHMARKS
barnes SPLASH | hierarchical n-body problem 8192 particles 598 100
cholesky | spPLAsH sparse block cholesky 39682 (tk15.0) 281 100
ocean SPLASH ocean model simulation 2582 grid 117 100
water SPLASH molecular dynamics 512 mols. 314 100

Table 1: Characteristics of scientific applications in study.

3 Parallel Applications

The applications used in our study consist of standard scientific codes taken from the SPEC,
NAS, PERFECT, and RICEPS benchmark suites; their characteristics are listed in Table 1.
Since we wish to evaluate their memory system behavior, and not the effectiveness of the SUIF
compiler at finding parallelism, we selected programs where SUIF successfully parallelizes most
of the code. We define parallel coverage as the percentage of sequential program execution time
spent inside parallel regions. Using pixie to instrument each program, we found parallel coverage
of our programs by the SUIF compiler was between 94 and 100%. Sufficient parallelism has thus
been uncovered; we can concentrate on evaluating the impact of memory system behavior on
performance.

Another measure of parallelism is granularity, the amount of computation enclosed in each
parallel region. We measured the size of each parallel loop as cycles per invocation using pixie,
then computed a weighted average of the number of cycles based on the percentage of sequential
execution time spent in each loop. The resulting granularities for each program are presented in
Table 1. As we will show in Section 6.4, for many applications the compiler’s ability to exploit
larger granularities of parallelism is correlated to good memory performance.

In order to provide a basis for comparison, we also include in our study hand-parallelized
programs from the SPLASH benchmarks [23, 26]. Their granularity was not computed because
they use different synchronization mechanisms. For brevity, in the remainder of the paper we
shall refer to these two groups of programs as the SUIF and SPLASH applications. Except for
linpackd, each program uses the standard data set provided, avoiding poor memory behavior

Speedup

16 []

12

D Ideal 16 procs - Real 16 procs

ora appbt tomcatv ~simple appsp flo52 hydro2d cholesky water
erle64 swm256 mgrid cgm linpackd su2cor barnes ocean

Figure 1: Application speedups for ideal and real memory systems.

caused by unrealistically small problem sizes. Where necessary we have reduced the number
of time steps in each application to limit simulation time. To compensate for this, we reset
statistics after initialization and cold start to avoid skewing results.

4 Experimental Methodology

For these experiments, we used an extended version of the MemSpy simulator [19, 20] and the
TangoLite simulation and tracing system [5, 9]. TangoLite allows simulation of parallel programs
by multiplexing their execution on a uniprocessor workstation. To fully capture potential shar-
ing between processors, we interleave threads after each memory reference. MemSpy supports
monitoring cold, replacement, and invalidation cache misses on a procedure and data item basis.
For our study we have further broken down the category of invalidation misses into true sharing
and false sharing misses using the scheme described by Dubois et al. [6]. In this definition, a
true sharing miss occurs if: during a lifetime of the line in the cache, the processor accesses a
word written by a different processor since the last true, cold or replacement miss by the same
processor to the same cache line. This classification captures the prefetching effect of multiword
lines in communicating newly defined values.

4.1 Memory Systems Simulated

For our study we simulated two basic memory systems. First, we used an “ideal” memory
system with 1-cycle memory access latencies to demonstrate potential application performance.
Speedups on the ideal memory system are limited only by the amount of parallelism discovered
by the compiler and load imbalance in the parallel code.

The bulk of our results are presented for an advanced memory system that more closely
resembles an aggressive next-generation multiprocessor. It has a directory-based cache-coherent
non-uniform memory access memory system with a high speed interconnect [15, 17]. We choose
a 200 MHgz processor, a 100 MHz 256-bit local memory bus, and a 200 MHz 16-bit wide mesh
network interconnect. Each processor has a single level LRU cache whose size, associativity, and
line size we vary. The penalty for a cache miss is dependent on the line size; Table 2 shows the
average penalties assuming no contention on a 16 processor system.

We model contention for the local memory bus and memory ports but not for the network,
since we believe network traffic is not a limiting factor. A round-robin page allocation policy is
employed to reduce contention. The memory system is write-buffered. Barrier synchronization
requires a round-trip on the mesh network; we assume that barriers bypass memory and that

Line size | Local miss | Remote clean | Dirty remote
32 bytes 82 288 406
64 bytes 84 306 444
128 bytes 88 342 484
256 bytes 96 414 564
512 bytes 112 558 724

Table 2: Cache miss penalties (cycles) vs. line size.

there is only light contention for the barrier.

For our study, we measure memory system performance over a range of cache line lengths
(32, 64, 128, 256, 512 bytes), set associativities (direct-mapped, 4-way, and fully-associative),
and cache sizes (32K, 128K, and 512K bytes). Due to space limitations, we choose to present
results mostly for a baseline memory system with a 128KB, 128 byte line 4-way set-associative
cache. The cache parameters were selected to model a forward-looking multiprocessor memory
hierarchy.

5 Overview of Application Behavior

We begin by presenting an overview of application performance (i.e., simulated wall clock time)
to motivate our paper. Figure 1 shows speedups for 16 processor simulations on two different
memory models, with each speedup being calculated relative to a uniprocessor run on the same
memory model. The SUIF applications are sorted with respect to their granularity, with the
largest granularity (ora) leftmost. SPLASH programs are displayed on the right. (As will
be shown in Section 6.4, there is a strong correlation between granularity and good memory
behavior.)

The models approximate (i) an ideal memory system and (ii) a more realistic NUMA memory
system, as described in Section 4. For the ideal memory system, SUIF applications achieve
average speedups of 11.8 on 16 processors while SPLASH applications realized speedups of 14.0
on 16 processors. These results clearly demonstrate that compilers can exploit reasonable levels
of parallelism for these scientific applications.

When we look at speedups for the more realistic baseline memory system, the picture is quite
different. We found speedups remain quite high for some applications, but most drop signifi-
cantly compared to the ideal memory system. At 16 processors, speedups for SUIF applications
range from 1.8 to 16.0 with an average speedup of 8.4. In comparison, SPLASH applications
maintained average speedups of 11.4 on 16 processors. (These simulated speedups correspond
well with actual speedups observed for these programs on the DASH and SGI Challenge multi-
processors [13, 25].)

These performance results suggest that memory system and synchronization costs are causing
a significant drop in performance particularly as the number of processors increases. To quantify
the effect of the memory system, we measured the miss cycles per instruction (MCPI) directly.
For our baseline memory system, average MCPI for SUIF applications jumps from 0.72 to 2.65
going from 1 to 16 processors. Since most instructions execute in one cycle, this result means that
SUIF applications spend over twice as much time on memory accesses as on useful computation!
In comparison, average MCPI for SPLASH applications only increases from 0.52 to 0.63 going
from 1 to 16 processors. Clearly memory system behavior significantly affects the performance

Performance
(normalized to 32 byte lines)
=
o

N
)
\

|:| 32 bytes D 64 bytes - 128 bytes |:| 256 bytes D 512 bytes

=
3
\

T

o
3]

o
o

ora appbt tomcatv simple appsp flo52 hydro2d cholesky water
erle64 swm256 mgrid cgm linpackd su2cor barnes ocean

Figure 2: Relative application performance vs. cache line size.

|:| 32 bytes
D 64 bytes
- 128 bytes
[] 256 bytes

Hﬁ WJ DSleytes
e, WFHHWHJ ‘ [[T e,

ora appbt tomcatv simple appsp flo52 hydro2d cholesky water
erle64 swm256 mgrid cgm linpackd su2cor barnes ocean

Figure 3: Miss cycles per instruction (MCPI) vs. cache line size.

of the SUIF applications and deserves closer examination.

6 Memory System Behavior

In this section, we examine the behavior of the cache and memory system as we vary three cache
parameters, line size, sel associalivity, and cache size. As we shall see in Sections 6.2 and 6.3,
for most of these applications, the important working set fits in realistic caches and thus set
associativity and cache size do not affect performance as much as cache line size for these input
data sets. Hence, we focus mainly on memory system sensitivity to cache line size.

6.1 Effect of Cache Line Size

As processor speeds continue to increase faster than memory speeds, there has been a corre-
sponding trend towards increasing the cache line size. This increase takes advantage of spatial
locality in applications in order to amortize latency over more data. It is important to note that
the decision to move to longer cache lines is being driven largely by uniprocessor system design.
In uniprocessors, cache miss rates behave predictably with increasing line size, decreasing at
first, eventually increasing as cache conflicts start to dominate.

Unfortunately, miss rates are not so predictable for multiprocessor caches [16, 24]. Longer

cache lines may prove problematic for parallel codes for several reasons. First, false sharing may
cause cache misses on logically separate data placed on the same cache line. Second, applications
may exhibit less spatial locality when executing in parallel, depending on how computation is
partitioned. Finally, longer cache lines may lead to increased data traflic, causing memory
contention. Previous research has shown false sharing to be a problem for hand-parallelized
applications [8]. Our study attempts to evaluate the effect of longer cache lines on applications
amenable to compiler parallelization.

Throughout this section, we present results for cache line sizes of 32, 64, 128, 256 and 512
bytes, but because of space limitations, we concentrate on the 32, 128 and 512 byte results.

6.1.1 Performance

Our experiments show that for one processor, the performance of SUIF applications improved
an average of 36% going from 32 to 128 byte lines and 8% going from 128 to 512 byte lines.
Remember that we define performance as the simulated wall clock time. However, we find their
multiprocessor performance does not uniformly improve as cache lines grow longer. Figure 2
displays the change in performance for 16 processor executions as cache line size varies. The
height of each bar is determined by the ratio of wall clock time to 32 byte cache lines, with
values above one indicating improvements. Results shows that 11 out of the 13 SUIF appli-
cations benefit when increasing the cache line size from 32 to 128 bytes, with an average 31%
improvement. However, in sharp contrast to uniprocessor results, SUIF application performance
on average degrades by 19% going from 128 to 512 byte cache lines. Three programs (simple,
su2cor, tomcatv) worsen significantly.

We discover a similar result when looking at the number of miss cycles per instruction
(MCPI). Figure 3 displays the MCPI of 16 processor executions for different cache line sizes.
Increasing the cache line size from 32 to 128 bytes reduces MCPI for all SUIF programs except
simple. Average MCPI decreases 18%, going from 3.24 to 2.65. In comparison, going from 128
to 512 byte cache lines increases MCPI for 10 of 13 programs, with average MCPI jumping back
up to 5.16. SPLASH programs fared similarly, with average MCPI of 0.82, 0.63, and 2.44 for
cache line lengths of 32, 128, and 512 bytes, respectively. It thus appears that for the given data
sets and cache configurations, both SUIF and SPLASH programs were able to exploit 128 but
not 512 byte lines.

Note the vital role memory system behavior plays in determining the performance of the
SUIF applications. For 128 byte cache lines, the average MCPI of 2.65 indicates over twice
as many cycles are spent on memory accesses as on useful computation. For 512 byte cache
lines SUIF applications spend over five times as many cycles on memory accesses as on useful
computation. For a few applications, MCPI is particularly high. In such cases poor memory
system behavior severely degrades performance and may even cause slowdowns compared to
sequential execution.

It is also important to point out that the compiler-parallelized SUIF applications experience
worse memory behavior than the hand-parallelized SPLASH applications. For 128 byte cache
lines, the average MCPI of SUIF applications is 4.2 times greater than the average of the
SPLASH suite.

Though suggestive, these high-level memory performance numbers do not really tell the
whole story. Ideally we would like to understand why these applications are not amenable to
very long cache lines when executing in parallel. That will allow us to understand the application,
compiler, and architectural characteristics that are needed to support efficient execution with

-~

long fetch and coherence units. We examine several factors, beginning with the rate of cache
misses and their causes.

6.1.2 Cache Miss Rate

Table 3 presents average cache miss rates for a four-way set associative 128 KB cache. They show
that for uniprocessors SUIF programs have sufficient spatial locality to reduce cache misses with
lines up to 512 bytes. However, with 16 processors these applications cannot take advantage
of 512 byte lines (for these data sets and cache organizations). Hand-parallelized applications
experience degradation on one processor with 512 byte lines due to a 120% jump in replacement
misses for ocean, but otherwise exhibit behavior similar to SUIF applications.

Figure 4 presents cache miss rates and their causes in more detail for our baseline system.
The overall miss rate of each application is indicated by the height of the bar. Within each bar,
shadings represent different causes of cache misses. The bars are broken down into four possible
types of cache misses: (i) replacement misses, (ii) cold (or compulsory) misses, (iii) misses due
to true sharing, and (iv) misses due to false sharing.

For programs that exhibit “perfect” spatial locality, increasing the line size by a factor of n
will decrease the number of cold and replacement misses by the same factor n, ignoring cache
conflicts. Increasing the line size four times can thus potentially reduce cache misses by 75%.
For the four SUIF programs (erle64, swm256, appsp and to a lesser degree tomcatv) which are
dominated by a large number of replacement misses, appsp has the poorest spatial locality with
the replacement miss staying constant or increasing as the line size is increased. Only two SUIF
applications, cgm and ora have close to ideal behavior for cold and replacement misses as the
line size is increased.

Even if an application has perfect spatial locality in a single processor reference stream,
the interleaving of references from multiple processors introduces the possibility of false sharing
misses. Figure 4 shows false sharing misses tend to increase as the line size is increased. In
general this increase is slow, and is more than compensated for by the corresponding decrease in
the other classes of misses. All SUIF applications except simple reduced miss rates going from
32 to 128 byte lines, and 9 of 13 continued to reduce misses going from 128 to 512 byte lines.
It is important to note that when false sharing is encountered, its effect is frequently drastic.
Section 7.1 discusses distinguishing access patterns in compiler-parallelized programs that lead
to excessive false sharing.

From Table 3, we see that cold misses come closest to ideal improvements. While true
sharing miss rates decrease as line size increases, the decrease is not as dramatic. This result
suggests that lines that are invalidated from the cache (i.e. actively shared lines) exhibit less
spatial locality than other cache lines. In the following section, we investigate this observation
further.

6.1.3 Cache Line Utilization and Data Traffic

Torrellas et al. have looked at the number of words actually touched in a cache line as a measure
of the spatial locality exploited by long cache lines [24]. We abstract this measure with a metric
that we call utilization: the percentage of bytes in a cache line actually referenced by a processor
from the initial cache miss on a line, until the time that line is evicted from the cache (either
due to replacement, invalidation, or end of the program.)

Figure 5 shows measured per-application utilization rates for different cache line sizes. It

Cache Miss Rate Change
Miss (vs. line size) 32B 128B
Programs || Type 32B 128B | 512B | —128B | —512B
SUIF:
1 Proc All | 4.44% | 1.88% | 1.30% | —58% -31%
All | 3.18% | 2.16% | 3.49% | —-32% +62%
False | 0.26% | 0.55% | 2.19% | +112% | +298%

SUIF": True | 1.03% | 0.52% | 0.34% | -50% -35%
16 Procs. || Cold | 0.21% | 0.07% | 0.03% | —67% -71%
Repl. | 1.68% | 1.02% | 0.93% | -39% -9%

SPLASH:

1 Proc All | 1.46% | 0.57% | 0.93% | —61% +63%
All | 0.70% | 0.32% | 0.68% | -54% +113%
False | 0.00% | 0.01% | 0.48% | +802% | +4200%
SPLASH: || True | 0.07% | 0.04% | 0.03% | —41% -20%
16 Proc. Cold | 0.08% | 0.03% | 0.01% | —68% —68%
Repl. | 0.55% | 0.24% | 0.16% | -56% -35%

Table 3: Average cache miss rates.

is apparent that utilization rates decrease as cache line sizes increase, sometimes very quickly.
The average utilization for SUIF programs drops 36% going from 32 to 128 byte lines and falls
an additional 67% going from 128 to 512 byte lines. Utilization for SPLASH applications drops
similarly. The low utilization results indicate much of the data fetched into cache for longer
cache lines is unused, raising concerns about how data traffic behaves with increasing line sizes.
Overall, our measurements indicated that SUIF applications averaged 115% and 412% increases
in data traffic per instruction for these two increases in line size.

Figure 6 displays data traffic for each program (in bytes per instruction, to adjust for varying
run times of the applications). Building on the definition of utilization, we can define a notion
of useful data traffic. If data traffic is considered to be the number of bytes transferred into
the cache on cache misses, then useful data traffic is the number of these bytes that actually
get referenced before the cache line is evicted. In general, one hopes that useful data traffic
is a roughly invariant indicator of application data requirements and caching effectiveness. In
practice, however, useful data traffic increases slightly with line size. If a word is referenced
multiple times but the line is invalidated before all accesses are complete, these additional cache
misses all count as useful traffic. Hence applications which have high false sharing miss rates
also have corresponding larger increases in useful traffic (e.g. simple, su2cor and tomcatv).

We found unused data traffic to be a function of both false sharing rates and spatial locality.
Applications with significant sharing misses and poor locality in those misses see large increases
in unused data traffic with increases in line size. Over the SUIF suite, unused data traffic
increased an average of 5.0 times when moving from 32 to 128 byte lines and 10.1 times when
going from 128 to 512 byte line sizes.

6.1.4 Classification of Utilization

As we have seen, low cache line utilization leads to large amounts of unused data traffic. In order
to focus on the causes of poor cache line utilization for these applications, we ran experiments
in which we further divided utilization statistics into two categories: lines that leave the cache
due to invalidation and the remaining cache lines. The results in Figure 7 show that invalidated

Miss Rate (%)

Miss Rate (%)

Miss Rate (%)

0.003 2.0 2.0 35 6 1.2

— ora erle64 appbt 3ol] swm256] tomcatv [] mgrid
- . 5 1.0
1.5 1.5 5
0.002 4 0.8
] 2.0]
1.0 o] 3 0.6
15
0.001 — 2 0.4
05 05 10 ||
DD DDQ | JLEE
0.000 0.0 0.0 L 0.0 0 0.0
32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512
20 . 1.2 12 1.5—— 25 8
simple 1 cgm appsp linpackd flo52 ; su2cor
1.0f— 0 | —— — 1l 12l 20l
15 L N || 6
0.8 8 .
0.9 15 5
10 0.6 6 4
0.6 1.0
0.4 4 -
> 0.3] 0.5 2
0.2 2h—= L] L : 1 =
0 0.0 0 -l 0.0 0
32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512 32 64 128 256 512
25 0.6 2.0— -
hydro2d barnes __cholesky ocean — water
5l 20 0.5 0.2
15
4 0.4
1.5
3 0.3 1.0
1.0 0.1
2 0.2
0.5
1 0.5 01 DD
0 0.0 0.0l= 0.0l 0.0

32 64 128 256512 " 32 64 128 256512 " 32 64 128 256512 " 32 64 128 256512 32 64 128 256 512

M False [JTrue []Cold [] Replacement

Figure 4: Cache misses vs. cache line size. Each box illustrates cache miss rate versus line size
for a different application. The SPLASH applications are the last four applications in the lower
right corner.

cache lines typically exhibit much lower utilization (the exception, appsp, is due to pathological
conflicts in the four-way associative cache). The intuitive explanation is that if lines are evicted
by invalidation, either true or false sharing may have led to the line being prematurely evicted
from the cache.

This observation is important, because the bimodal behavior suggests that special optimiza-
tions for each type of behavior may be possible. In systems allowing flexible protocols (such as
Tempest [22]), one could specialize handling for each type of data. Essentially, the protocol could
implement smaller coherence units for the previously-invalidated data, while maintaining coher-
ence units equal to the cache line size for the previously replaced data. Alternatively, prefetching
techniques could make use of this information to focus efforts on fetching non-invalidated cache
lines in order to exploit their higher degree of spatial locality.

10

100

Utilization (%)
N o) ®
o o o

N
o

o

|:| 32 bytes D 64 bytes - 128 bytes % 256 bytes D 512 bytes

ora

erle64

appbt

tomcatv simple

swm256 mgrid cgm

Figure 5: Fraction of cache line utilized vs. cache line size.

appsp

6.2 Effect of Cache Set Associativity

linpackd

flo52

hydro2d
su2cor

‘cholesk‘y

barnes

ocean

water

Up to this point we have considered a 4-way set-associative cache. To understand the effects
of associativity, we also measured performance with direct-mapped and fully-associative caches.
We found that performance improved between 10% and 50% for most programs when increasing
associativity from direct-mapped to four-way caches. Smaller gains result going from four-way to
fully-associative caches. Three applications, appsp, erle64, and su2cor demonstrated the greatest
gains; they all possess multiple large data arrays that conflict in a 128KB cache. For swm?256,
performance is better for a four-way rather than fully-associative cache. The access pattern
of swm256 is such that there are 30% more replacement misses in the fully-associative cache,
resulting in poorer performance. Overall, we found 4-way and fully-associative caches generally
yielded similar results.

6.3 Effect of Cache Size

As with associativity, until this point we have primarily focused on a single cache size of 128K
bytes. When measuring 32KB and 512KB caches as well, we find that only two SUIF programs,
erle64 and swm256, possess sufficiently large working sets to benefit from caches larger than
128KB. For tomcatv, overall cache miss rates decrease by 6% but performance also decreases
as cache size increases from 128KB to 512KB. Examining its behavior, we found the ratio of
remote to local misses increases by a factor of four and the number of false and true sharing
misses increases by a factor of two. These longer latencies and higher contention increase average
memory cost and reduce performance.

6.4 Summary

This section has provided a baseline characterization of the memory behavior of SUIF and
SPLASH applications running on multiprocessors. It is important to note that except for lin-
packd, we are using full-sized data sets. Our conclusions are thus being drawn not based on toy

data sets, but on the default data sets provided by SPEC, NAS, and other benchmark suites.

Overall, we observe a high correlation between granularity of parallelism and good memory
system behavior. To establish this trend, we have partitioned the SUIF programs in our study
into three groups, based on whether their granularity was in the top, middle, or bottom third
of our suite. Their memory system behavior is summarized in Table 4. We find that SUIF
applications with larger granularity have the best memory system performance, resulting in

11

7.6 9.2 30.9 6.112.6 9.3 8.2
L =} =51 5 51 2} g
4
. Useful Data
_ - I:] Unused Data
c 3
K] M
3]
=
@ -
=
I
82~ -
L2
=
o
'_
8
©
alr
II _I wil I I I I
| _-II = II —ll
0 _ -
o NN O N AN O N N 0NN O NN © o N O N N ©
S R B I S B B I B B B B S 35) 85 Y98
ora appbt tomcatv simple appsp flo52 hydro2d cholesky water
erle64 swm256 magrid cgm linpackd su2cor barnes ocean
Figure 6: Data traffic vs. cache line size.
100 —
- Invalidation Miss Lines
I:] Other Lines —
g
c
S
T
N
5
ora appbt tomcatv simple appsp flo52 hydro2d cholesky water
erle64 swm256 mgrid cgm linpackd su2cor barnes ocean

Figure 7: Utilization of invalidated and non-invalidated lines.

12

SUIF
Metric Larger | Med. | Smaller | SPLASH
Grain | Grain | Grain
Granularity
(10° cycles) 59.9 2.8 0.2
Parallel
Coverage 99.9% | 96.5% | 95.0% 100%
Ideal Speedup
(16 proc) 13.8 12.8 9.7 14.0
Sim’d. Speedup
(16 proc) 11.3 9.8 5.2 11.4
% Ideal Speedup
(16 proc) 82% 7% 54% 81%
Performance | 128B 1.42 1.29 1.24 1.11
vs. 32B lines | 512B 1.10 1.16 0.93 0.93
Cache Miss 32B 2.61 2.27 4.35 0.70
Rate 128B 1.01 1.93 3.27 0.32
(% of refs) | 512B 1.63 4.33 4.31 0.68
False Sh. 32B 0.07 0.41 0.29 0.00
Misses 128B 0.16 1.12 0.42 0.01
(% of refs) 512B 1.08 3.83 1.74 0.49
True Sh. 32B 0.44 0.69 1.79 0.07
Misses 128B 0.19 0.31 0.94 0.04
(% of refs) 512B 0.13 0.18 0.65 0.03
Cache 32B 83% 86% 70% 82%
Line 128B 57% 61% 38% 50%
Util. 512B 21% 21% 10% 25%

Table 4: Summary of memory system behavior.

both greater speedups and higher percentage of ideal speedups achieved. Medium granularity
SUIF applications have higher false sharing misses on average, skewed by the poor behavior
of simple. SUIF applications with smaller granularity have generally poor performance, with
especially high true sharing miss rates. Thus, while many compilers have so far striven for
coarse-grain parallelism in order to reduce synchronization overhead, we provide compelling
evidence of its importance for memory performance as well.

Unfortunately, we also find that that even coarse-grain SUIF applications have relatively
high memory system costs when compared to hand-tuned SPLASH applications. To focus
on the causes of higher memory system cost in greater detail, the following section examines
particular application and compiler characteristics that have a significant impact on memory
system behavior.

7 Characteristics of Compiler-Parallelized Applications

We have seen that SUIF applications with good speedup and memory behavior tend to have
coarse granularity and large data sets. Here we describe in greater detail properties of the
applications with poor memory behavior. Our simulator allows us to pinpoint parallel loops in
the program that cause false and true sharing misses. We examine these loops, show how these
problems are related to granularity and data set size, and discuss how new compiler technology
can improve these programs’ memory behavior.

13

7.1 Causes of False Sharing

Four of the programs, simple, su2cor, tomcatv and hydro2d have false sharing misses that account
for more than 0.45% of all references for the 128 byte cache line configuration. Most notably,
4.4% of references in simple are false sharing misses. The primary cause of false sharing in these
programs can be attributed to the following pattern of a parallel loop enclosing assignments to
contiguous array elements:

DOALL I
ACI)

1, N

Almost all such loops were innermost loops. The predominant false sharing problem arises when
N/P, the number of iterations divided by the number of processors, is fewer than the number
of elements that fit on a cache line. Under this scenario, a processor may share a cache line
with two or more processors. Though this example appears quite simple, it occurs frequently in
practice; we found it to be the major cause of false sharing misses in simple and hydro2d. Note
that this same pattern that has poor spatial locality on a multiprocessor would exhibit excellent
spatial locality in a uniprocessor setting.

In tomcatv and su2cor, the same pattern occurs, but N/P is greater than or equal to the
number of elements on a cache line. In this case, false sharing arises if the number of elements
accessed by a processor is not a multiple of the number of elements on a cache line, or the array
elements accessed are not aligned at a cache line boundary. When the loop strides through the
data in this way, a processor may share the first and last cache lines it is using with at most
one other processor; the other cache lines it uses are not shared. In all these programs, the loop
bounds are fairly small (at most 512), and are a function of the data set size.

7.2 Causes of True Sharing

For SUIF compiler-parallelized applications, false sharing misses can occur within a single par-
allel loop. True sharing misses, in contrast, usually occur when a memory location written in
one parallel loop is accessed in a subsequent parallel loop. The frequency of true sharing misses
thus decreases for programs with coarse-grained parallelism, since the computation advances
between parallel loops less frequently.

For four of the programs, hydro2d, appsp, flo52 and simple, true sharing misses account for
more than 0.5% of all references. In particular, about 2.7% of the references in hydro2d are true
sharing misses. We found that these misses are caused by parallelizing loops containing stencil
patterns for small arrays. The pattern for such loops in hydro2d is the following;:

DOALL J =1, N
DOI =1, M
ACL,T) = .
DOALL J =1, N
DOI =1, M
B(I,J) = A(I,J-1) + A(I,J+1)

The first loop nest computes values of A while the second loop nest consumes those values.
If the value of N is too small, each processor accesses large numbers of nonlocal elements of A
in the second loop nest. In hydro2d the value of N can be as low as 20, causing significant true
sharing for 16 processors.

14

Data Cache Miss Rate Cache

Set Parallel Parallel 16 Proc. (as % of all references) | Line

Application Size Coverage | Granularity | Speedup | MCPI | Total ‘ False ‘ True Util.

EFFECT OF ARRAY PRIVATIZATION AND INTERPROCEDURAL ANALYSIS
appbt-naive 123 84% 0.12 x10° 0.33 8.62 4.76 | 1.39 2.83 25.6%
appbt 123 100% 5.73 x10°8 6.04 0.88 0.67 | 0.11 0.41 52.2%
flob2-naive 40 x 8 97% 0.09 x10° 3.96 1.28 1.65 | 0.68 0.78 34.9%
flob2 40 x 8 98% 0.22 x10° 4.67 0.94 1.01 | 0.27 0.60 45.5%
EFFECT OF DATA SET SIZE

su2cor-small || 6 x 12 97% 0.03 x10° 1.98 3.78 5.74 | 4.22 0.89 21.3%
su2cor 83 x 16 99% 0.05 x10° 5.35 1.54 | 1.72 | 0.93 | 0.34 | 45.3%

Table 5: Effect of array privatization, interprocedural analysis, and data set size on memory
behavior.

7.3 Effect of Granularity

It is well accepted that parallelizing compilers should find the largest parallel loops possible,
since it increases the amount of parallel computation and reduces synchronization costs. What
our study shows is that finding coarse-grain parallelism can also have a very beneficial effect on
memory system behavior.

The SUIF compiler employs two techniques that enable detection of more outer parallel
loops than current commercial compilers [12]. First, array privatization locates arrays used
as temporary storage within a loop. By creating private copies of the array for each parallel
process, storage-related dependences associated with these arrays are eliminated. Second, all
of the parallelization analyses in the SUIF compiler are performed interprocedurally, so that
procedure boundaries do not affect the system’s ability to locate parallel loops. The combination
of these techniques enables the compiler to parallelize outer loops containing over a thousand
lines of code in some cases. A more detailed discussion of the implementation of these techniques
can be found in [13].

To illustrate how these techniques can impact memory behavior, consider the performance
of two SUIF applications, appbt and flo52. Table 5 displays their performance for the baseline
memory architecture. appbt and flo52 are the SUIF parallelized output that have been used
throughout this paper, while appbt-naive and flo52-naive represent versions of the programs
compiled without array privatization and interprocedural analysis. Parallel granularity increases
with advanced analysis. Although parallel coverage is high for both versions of each program,
memory behavior can be significantly different.

For the programs parallelized by SUIF with array privatization and interprocedural analysis,
MCPI are lower, false and true sharing misses comprise a smaller fraction of all references, and
cache line utilization increases. For appbt-naive, the impact of memory system effects overwhelms
any improvements due to parallelization, causing the program to run one-third as fast on 16
processors. The results are less dramatic for flo52, but the improvement in memory system
performance is noticeable. These results show that advanced compilation technology aimed at
detecting coarse-grain parallelism can be critical for improving memory system behavior.

15

7.4 Effect of Data Set Size

We also observe that for many SUIF programs, the data set size directly affects the parallelism
granularity and hence memory behavior. As we showed earlier, false and true sharing misses are
often caused by parallel loops with few iterations. For many SUIF applications, the number of
iterations in these parallel loops depends on the data set size. For example, consider su2cor, one
of the programs with moderate levels of false sharing. Table 5 presents results for our baseline
memory system; it shows that when the data set size is reduced by a factor of three, memory
behavior degrades drastically. The miss rate, and false and true sharing misses increase by a
factor of two or more, while cache line utilization and speedups are halved. These results show
that it is important to use realistic data set sizes when studying memory system behavior.

8 Related Work

Our work is unique in providing a detailed characterization of the memory behavior of compiler-
parallelized codes. In addition, we have highlighted some of the constructs expected to be
common in these codes and explained how they affect caching performance. By contrast, pre-
vious work has focused almost exclusively on characterizing memory system behavior of hand-
parallelized applications on different styles of cache coherent multiprocessors. While our work
draws on a significant body of related work in understanding multiprocessor memory behavior,
we outline below the most directly relevant studies.

Eggers and Katz [8] did important early work characterizing application caching behavior
of hand-parallelized programs in bus-based multiprocessors. For their applications, they show
that the majority of cache misses in a bus-based multiprocessor are due to sharing misses. They
also demonstrate that the overall miss rate in a multiprocessor can increase as the cache line
size increases, whereas it tends to go down in uniprocessors. Bolosky and Scott [3] developed
the cost component method to measure false sharing and applied it to four computation kernels.
More recently, Dubois et al. [6] introduced a definition of false sharing and used it to measure
four hand-parallelized applications. We use their definition for our study.

Torrellas et al. [24] measured false and true sharing and the number of bytes used per cache
line. They find poor spatial locality has a greater impact than false sharing in determining the
overall miss rate of their applications. In comparison, the SUIF applications in this study have
excellent spatial locality and are limited mostly by false sharing. Both Torrellas et al. [24] and
Eggers and Jeremiassen [7] suggest program transformations to eliminate false sharing in hand-
parallelized programs. The latter have implemented their transformations in a compiler, and
used them to eliminate false sharing in the SPLASH benchmarks by padding lock variables [14].
(In our SPLASH programs lock variables have also been padded to eliminate false sharing.)

Ounly a handful of researchers have looked at the behavior of compiler-parallelized applica-
tions. Blume and Eigenmann [2] analyzed the performance of commercial parallelizing compilers
on the PERFECT benchmarks, concluding that they detected only limited amounts of paral-
lelism. The SUIF compiler incorporates many of the analyses they deemed vital; as a result, it
enjoys much better success in extracting parallelism.

More recently, Natarajan et al. [21] measured operating system, parallelism, and memory
contention overhead for five PERFECT applications on the Cedar multiprocessor. They de-
termined that parallelism overhead consumed 10-25% of program execution time and memory
contention overhead was over 10%. Our study focused on a more advanced memory system and
compiler; we also determine causes of poor memory behavior. Lilja [18] examines the impact

16

of prefetching in conjunction with loop scheduling strategies that schedule blocks of consecutive
iterations to execute on each processor.

Our experiments have led to several observations about the behavior of compiler parallelized
codes. Overall, we have found that agressively parallelizing all possible loops can occassionally
lead to false or true sharing. This can occur when the loop has a fairly small iteration space
compared to the number of processors, or when the variables are aligned such that a particular
processor’s portion of the data structure shares a cache line with another processor’s data.
There is much active research on compiler techniques to improve memory performance. In [4],
the authors evaluated a suite of compiler techniques for improving data referencing locality in
uniprocessor code. Heuristics are being developed to reduce true sharing by improved co-location
of data and computation [1, 3] and eliminate false sharing by better compiler management of
large coherence units [10].

9 Conclusions

In this paper, we demonstrate that good memory system behavior is vital to achieving reason-
able speedups on moderate-scale multiprocessors. We present the first detailed study of the
impact of advanced memory systems on the performance of a large suite of compiler-parallelized
codes running with their full-size data sets. Our results show applications amenable to com-
piler parallelization suffer from significantly higher memory costs than hand-parallelized codes,
particularly for longer (e.g. 512 byte) cache lines. We discover that increases in granularity are
frequently correlated with improvements in memory behavior and overall performance. We also
identify compiler constructs that lead to frequent true and false sharing, and present case stud-
ies that quantify the positive impact of advanced compiler techniques such as interprocedural
analysis and array privatization.

Overall, this study has several implications. For computer architects, our study shows a high
degree of sharing is likely for compiler-parallelized applications running on advanced memory
systems with long cache lines. For compiler writers, we discover small parallel loops to be the
primary culprit in poor memory behavior; compilers need to be more careful in parallelizing
small loops since sharing misses may outweigh any potential benefits from parallelism. For
both architects and compiler writers, the potential impact of parallelism granularity on memory
system behavior should be weighed carefully when making tradeoffs in system design.

10 Acknowledgements

This research was supported in part by ARPA contract DABT63-94-C-0054, and NSF CISE
postdoctoral fellowships in Experimental Science. We are grateful to Monica Lam and other
members of the SUIF research group at Stanford for supplying the compiler-parallelized appli-
cations used in our study. We wish to thank Steve Woo and J.P. Singh for providing SPLASH
applications and some of the simulation technology; Mark Heinrich also assisted us with the
details of TangoLite. Finally, we are indebted to John Hennessy, Anoop Gupta, Monica Lam,
and J.P. Singh for their helpful comments.

References

[1] J. Anderson and M. Lam. Global optimizations for parallelism and locality on scalable parallel

17

machines. In Proc. SIGPLAN 93 Conf. on Programming Language Design and Implementation,
Albuquerque, NM, June 1993.

W. Blume and R. Eigenmann. Performance analysis of parallelizing compilers on the Perfect Bench-
marks programs. IEEE Trans. on Parallel and Distributed Systems, 3(6):643-656, Nov. 1992.

W. Bolosky and M. Scott. False sharing and its effect on shared memory performance. In Proceedings
of the USENIX Symposium on Ezxperiences with Distributed and Multiprocessor Systems (SEDMS
IV), San Diego, CA, Sept. 1993.

S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler Optimizations for Improving Data Locality. In
Proc. Sizth Intl. Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 252-262, Oct. 1994.

H. Davis, S. R. Goldschmidt, and J. Hennessy. Multiprocessor Simulation and Tracing Using Tango.
In Proc. International Conference on Parallel Processing, Aug. 1991.

M. Dubois, J. Skeppstedt, L. Ricciulli, et al. The Detection and Elimination of Useless Misses in
Multiprocessors. In Proc. 20th Intl. Symp. on Computer Architecture, pages 88-97, May 1993.

S. J. Eggers and T. E. Jeremiassen. Eliminating false sharing. In Proc. 1991 Int’l Conf. on Parallel
Processing, St. Charles, IL, Aug. 1991.

S. J. Eggers and R. H. Katz. The Effect of Sharing on the Cache and Bus Performance of Parallel
Programs. In Third Intl. Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS IV), pages 257-270, Apr. 1989.

S. R. Goldschmidt. Simulation of Multiprocessors, Speed and Accuracy. PhD thesis, Stanford Uni-
versity, June 1993.

E. Granston and H. Wishoff. Managing pages in shared virtual memory systems: Getting the
compiler into the game. In Proc. 1993 ACM Int’l. Conf. on Supercomputing, Tokyo, Japan, July
1993.

A. Gupta and W.-D. Weber. Cache Invalidation Patterns in Shared-Memory Multiprocessors. [EEE
Trans. on Computers, 41(7):794-810, July 1992.

M. Hall, S. Amarasinghe, B. Murphy, S. Liao, and M. Lam. Detecting coarse-grain parallelism using
an interprocedural parallelizing compiler. In Proceedings of Supercomputing 95, Dec. 1995.

M. W. Hall, B. R. Murphy, and S. P. Amarasinghe. Interprocedural parallelization analysis: A case
study. In Proc. Seventh SIAM Conf. on Parallel Processing for Scientific Computing, San Francisco,
Feb. 1995.

T. Jeremiassen and S. Eggers. Reducing false sharing on shared memory multiprocessors through
compile time data transformations. In Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Santa Barbara, CA, July 1995.

J. Kuskin et al. The Stanford FLASH Multiprocessor. In Proc. of the 21st Int’l Symp. on Computer
Architecture, pages 302-313, Chicago, IL, Apr. 1994.

R. L. Lee. The Effectiveness of Caches and Data Prefetch Buffers in Large-Scale Shared Memory
Multiprocessors. PhD thesis, University of Illinois at Urbana-Champaign, May 1987.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The Directory-Based Protocol
for the DASH Multiprocessor. In Proc. 17th Annual Int’l Symp. on Computer Architecture, May
1990.

D. J. Lilja. The Impact of Parallel Loop Scheduling Strategies on Prefetching in a Shared-Memory
Multiprocessor. IEEE Trans. on Parallel and Distributed Systems, 5(6):573-584, June 1994.

M. Martonosi, A. Gupta, and T. Anderson. MemSpy: Analyzing Memory System Bottlenecks in
Programs. In Proc. ACM SIGMETRICS Conf. on Measurement and Modeling of Computer Systems,
pages 1-12, June 1992.

M. R. Martonosi. Analyzing and Tuning Memory Performance in Sequential and Parallel Programs.

PhD thesis, Stanford University, Dec. 1993. Also Stanford CSL Technical Report CSL-TR-94-602.

18

[21]

[22]

C. Natarajan, S. Sharma, and R. Iyer. Measurement-based characterization of global memory and
network contention, operating system and parallelization overheads: Case study on a shared-memory
multiprocessor. In Proc. of the 21st Int’l Symp. on Computer Architecture, Chicago, IL, May 1994.

S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and Typhoon: User-Level Shared Memory.
In Proc. 21st Annual Int’l. Symp. on Computer Architecture, pages 325-337, Apr. 1994.

J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for Shared-
Memory. Computer Architecture News, 20(1):5-44, March 1992.

J. Torrellas, M. S. Lam, and J. L.. Hennessy. False Sharing and Spatial Locality in Multiprocessor
Caches. IEEFE Trans. on Computers, 43(6):651-63, June 1994.

R. Wilson et al. SUIF: An infrastructure for research on parallelizing and optimizing compilers.
ACM SIGPLAN Notices, 29(12):31-37, Dec. 1994.

S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. Methodological considerations and charac-
terization of the SPLASH-2 parallel application suite. In Proc. of the 22st Int’l Symp. on Computer
Architecture, Santa Margherita Ligure, Italy, June 1995.

19

