
Cache Miss Equations: A Compiler Framework for
Analyzing and Tuning Memory Behavior

SOMNATH GHOSH, MARGARET MARTONOSI, and SHARAD MALIK

Princeton University

With the ever-widening performance gap between processors and main memory, cache memory,
which is used to bridge this gap, is becoming more and more significant. Caches work well for
programs that exhibit sufficient locality. Other programs, however, have reference patterns that
fail to exploit the cache, thereby suffering heavily from high memory latency. In order to get
high cache efficiency and achieve good program performance, efficient memory accessing behavior
is necessary. In fact, for many programs, program transformations or source-code changes can
radically alter memory access patterns, significantly improving cache performance. Both hand-
tuning and compiler optimization techniques are often used to transform codes to improve cache
utilization. Unfortunately, cache conflicts are difficult to predict and estimate, precluding effective
transformations. Hence, effective transformations require detailed knowledge about the frequency
and causes of cache misses in the code. This article describes methods for generating and solving
Cache Miss Equations (CMEs) that give a detailed representation of cache behavior, including
conflict misses, in loop-oriented scientific code. Implemented within the SUIF compiler framework,
our approach extends traditional compiler reuse analysis to generate linear Diophantine equations
that summarize each loop’s memory behavior. While solving these equations is in general diffi-
cult, we show that is also unnecessary, as mathematical techniques for manipulating Diophantine
equations allow us to relatively easily compute and/or reduce the number of possible solutions,
where each solution corresponds to a potential cache miss. The mathematical precision of CMEs
allows us to find true optimal solutions for transformations such as blocking or padding. The
generality of CMEs also allows us to reason about interactions between transformations applied
in concert. The article also gives examples of their use to determine array padding and offset
amounts that minimize cache misses, and to determine optimal blocking factors for tiled code.
Overall, these equations represent an analysis framework that offers the generality and precision
needed for detailed compiler optimizations.

Categories and Subject Descriptors: C.1.0 [Processor Architectures]: General; C.4 [Perfor-
mance of Systems]: Measurement Techniques; D.3.4 [Programming Languages]: Proces-

sors—compilers; optimization

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Cache memories, compilation, optimization, program trans-
formation

Authors’ address: Department of Electrical Engineering, Princeton University, Princeton, NJ
08544; email: {sghosh,martonosi,sharad}@ee.princeton.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 1999 ACM 0164-0925/99/0700-0703 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999, Pages 703–746.

704 · Somnath Ghosh et al.

1. INTRODUCTION

Data caches are widely used to bridge the cycle-time gap between fast microproces-
sors and relatively slow main memories. But, over the past two decades, the speed
of processors has increased at a much faster rate than that of main memory. As this
disparity between processor and main-memory speed increases—by approximately
50 percent per year—cache performance becomes increasingly critical. Although
caches generally work well, some programs fail to use them effectively. In fact, pro-
grams without sufficient locality in their access patterns spend a significant portion
of their execution time transferring data between main memory and cache. Pro-
grammers often hand-tune their code in order to improve its memory behavior, but
this process can be time consuming and error prone. In other cases, automatic com-
piler transformations can improve memory behavior and reduce the programmer’s
burden. Either way, programmers or compilers need detailed, accurate assessments
of when and why cache misses occur. Prior approaches for analyzing cache be-
havior have been based either on simulation, which can be slow, or on compiler
heuristics which can be imprecise. In this article we present a precise mathematical
framework that can be used to guide a range of memory optimizations.

There has been extensive research on improving the cache performance of nu-
merical programs [McKinley et al. 1996; Ferrante et al. 1991; Lam et al. 1991; Wolf
and Lam 1991; Wolfe 1989]. Most of this work targets loop nests with predictable
and regular data accesses. Loop optimization plays a significant role in compiler
optimization, as scientific programs spend a considerable amount of time process-
ing large arrays within loops. Tiling, strip-mining, loop interchanging, and loop
skewing are widely used to transform a loop for better temporal and spatial local-
ity for a given cache size. However, such analysis primarily targets capacity misses
that occur when the working set of the loop exceeds the cache size. The loops can
also suffer heavily due to conflict misses [Hennessy and Patterson 1996; Lam et al.
1991; McKinley and Temam 1996; Temam et al. 1994], thereby precluding effective
cache utilization. Conflict misses can be particularly significant in caches with low
associativity. In such situations programmers often rely on time-consuming cache
profiling and performance tuning [Lebeck and Wood 1994; Martonosi et al. 1992].
There has also been compiler work in tailoring code to reduce conflict misses [Ba-
con et al. 1994; Coleman and McKinley 1995; Lam et al. 1991]. Unfortunately,
conflict misses are highly sensitive to slight variations in problem size and base
addresses [Bacon et al. 1994; Lam et al. 1991], and hence we need more precise
characterization to understand the underlying cause behind such conflict misses.

Most previous compiler techniques to optimize loop nests either use simple cost
models to guide loop transformations [McKinley et al. 1996; Wolf and Lam 1991] or
are targeted toward some specific optimization [Bacon et al. 1994; Lam et al. 1991;
Rivera and Tseng 1998]. There has also been some initial work on estimating the
number of cache misses in numerical code [Ferrante et al. 1991; Temam et al. 1994].
Though the strategies given in previous papers help in reducing cache misses, they
give little insight about the causes of such misses. Their limited focus or approxi-
mate modeling restricts their applicability. This article attempts to fill this gap by
finding precise relationships among the loop indices, array sizes and base addresses,
and the cache parameters for the cache misses in a loop nest. Those relationships
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 705

are used to generate a set of equations—called the Cache Miss Equations (or CM
equations or CMEs)—representing all the cache misses in a loop nest. This sim-
ple, precise characterization allows one to better understand the cause behind such
misses, and helps reduce cache misses in a methodical way.

CMEs are unique in unifying both the loop structure and the data layout within
a simple, equations-based analytical model representing the cache misses. CMEs
are a system of linear Diophantine equations. While solving these equations is dif-
ficult in general, we show that is also unnecessary, as mathematical techniques for
manipulating Diophantine equations allow us to relatively easily compute and/or
reduce the number of possible solutions, where each solution corresponds to a po-
tential cache miss. CMEs are generated statically at compile time. Any variable
whose value is dependent on runtime information or whose optimizing value needs
to be determined for some cache optimization is kept as a parameter in the CMEs.
Compiler optimizations can then use these CMEs generated based on available
information.

The CMEs provide a general framework that can be used to (i) help a compiler
in performing code transformations to improve cache usage, (ii) improve the sim-
ulation speeds of tools that simulate caches, and (iii) tighten bounds on program
performance estimates. This article focuses on the first application; we discuss
how our equations can guide memory optimizations without going through time-
consuming cache simulation. Our ultimate goal is to automate the analysis of the
equations to build an efficient code optimizer.

We have implemented our algorithm to automatically generate the CMEs within
the SUIF compiler system [Wilson et al. 1994]. We have tested our system by
automatically generating the equations for many numerical loop nests including
matrix-multiply, Gaussian elimination, successive over-relaxation (SOR), and loops
from the SPECfp benchmarks. We have, in this article, provided the accuracy
of finding cache misses by our method. We have also shown, with the help of
examples, how the precision and generality of the CME framework help in better
cache optimizations when compared to earlier work.

The rest of this article is organized as follows. Section 2 provides the underlying
models and background information along with an overview of CMEs. Section
3 describes the algorithm to generate the CMEs. Since solutions to each CME
represent potential cache misses, Section 4 describes how we can compose the effects
of multiple CMEs to find the loop’s actual cache misses. In addition, Section
4 gives experimental results on the accuracy of this method. Section 5 shows
how these equations can be used to choose data padding/offset amounts or to
choose a blocking factor in tiled code. Section 6 provides a discussion on the
computational requirements of generating and using CMEs. Section 7 describes
the future extensions to this work. Finally, Section 8 discusses related work, and
Section 9 contains the concluding remarks.

2. BACKGROUND AND OVERVIEW

A system of CMEs couches a loop’s reference stream and cache conflict patterns
in a mathematical framework that can be analytically manipulated. This section
describes the abstractions and terminology we use to facilitate this.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

706 · Somnath Ghosh et al.

2.1 Program Model

Our model applies to references in which the array subscript expressions and the
bounds of the loop index are affine combinations of the enclosing loop indices, a
common model for research in compiler memory analysis. All loops are assumed to
be normalized such that the step value is 1 [Allen and Kennedy 1987]. We consider
only perfectly nested loops and some imperfectly nested loops if they have only a
single basic block in between the loops of a nest. We also assume that loops contain
no conditional expressions. We plan to extend this work to handle conditionals and
to perform inter-nest analysis. For the sake of uniformity, all arrays discussed here
are assumed to be arranged in column-major order as in Fortran, but the techniques
do not depend on a specific layout order. We also assume that all the load/store
references inside a nest correspond to only the array references. Scalars can be
considered as a special case of one-dimensional arrays.

In practice, however, the constraints in our program model are not too restrictive,
as shown by the empirical study presented in Table I. It summarizes the number
of loops which can be analyzed in a collection of programs taken from the SPECfp
benchmarks based on our assumptions given above. For each program, Table I
first gives the total number of for or DO loops found. It also lists the number of
loops that are declared nonanalyzable due to (i) function call (denoted by “Fcn
call” in the table) or (ii) return instruction (“Ret”) inside the loop body, (iii)
nonaffine loop bounds, (iv) nonconstant step value, or (v) nonperfect loops. The
“nonperfect loops” entry counts all the nonperfectly nested loops including those
with conditional statements inside them. A single loop can be counted under more
than one of the above categories. Nonaffine array accesses are not listed here, as
we have not found a single case falling in that category.

Table I shows that loops with nonaffine bounds and nonconstant step are negligi-
bly small. Nonperfectly nested loops and loops with function calls each constitute
a small fraction of the total number of loops. Loops with function calls could
sometimes be made analyzable if interprocedural analysis were used. The “vari-
able bound” entry shows the number of loops which have variables in their loop
bounds that cannot be determined at compile time. It shows that many of the
loops have variable bounds. The “analyzable” column lists the number of loops
and the associated loop nests that are analyzable with all loop bounds known at
compile time. Loops that fall exclusively under the variable bounds classification
are declared as parametrically analyzable. (We do not consider analyzable loops
also as parametrically analyzable loops.) We can form our equations for such loops
with the variables in the bounds represented by separate parameters. By treating
these parameters as another equation variable, our analysis can make headway even
though the loop bound may not be known until runtime.

Overall, the loop statistics show that scientific loop nests are mostly simple and
regular, and we can analyze, absolutely or parametrically, a significant number
of loops, approximately 70% of the total number of loops found in the SPECfp
benchmarks.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 707

Table I. Statistics on the Number of SPECfp Loops Amenable to Our Analysis
(#L refers to the number of loops. #N refers to the number of loop nests.)

Non Non Non
Total Fcn affine constant perfect Variable

Program #L call Ret bound step loops bound

TOMCATV 18 0 0 0 0 2 13

DNASA7 140 12 0 5 4 27 63

MDLJDP2 31 4 1 2 0 8 13

SWIM 24 0 0 0 0 0 24

HYDRO2D 159 3 0 3 2 33 131

FPPP 33 10 0 0 0 7 25

ALVINN 23 10 0 0 0 1 0

SU2COR 127 40 0 0 0 24 104

MGRID 53 11 1 0 0 9 48

DODUC 275 33 0 4 0 27 108

TURB3D 68 8 0 0 0 18 62

Total 951 131 2 14 6 156 591

Parametrically Non
Analyzable Analyzable Analyzable

Program #L #N #L #N #L #N

TOMCATV 5 4 11 8 2 2

DNASA7 44 26 48 37 48 31

MDLJDP2 12 12 5 5 14 11

SWIM 0 0 24 16 0 0

HYDRO2D 20 18 102 63 37 23

FPPP 3 3 14 12 16 4

ALVINN 12 8 0 0 11 6

SU2COR 10 9 53 49 64 32

MGRID 1 1 31 18 21 12

DODUC 161 161 51 51 63 48

TURB3D 2 2 40 30 26 20

Total 270 244 379 289 302 189

2.2 Compilation Model

CMEs are linear Diophantine equations in constrained solution spaces. While solv-
ing these is difficult, we note that it is unnecessary for our approach. Mathematical
techniques for manipulating Diophantine equations allow us to relatively easily
compute and/or reduce the number of possible solutions without solving them.

In addition to program restrictions, it is important to clarify when CMEs are
generated and used. CMEs are generated statically at compile time, but may give
data-positioning hints to the linker. Since CMEs are analyzing possible cache con-
flicts, they need some information about the relative positioning of different data
structures, but they do not need the absolute base address of any variable. Some
of the optimizations we describe could be implemented by analyzing CMEs where
relative variable spacings are a parameter, and then passing the linker informa-
tion concerning what numeric constraints on their spacing will lead to the best
performance.

In general, any variable whose value is dependent on runtime information (e.g.,
loop bounds) or whose optimized value is chosen by the compiler cache optimization
is kept as a parameter in the CMEs. Compiler optimizations can then use these

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

708 · Somnath Ghosh et al.

DO i = 1, N
DO k = 1, N

DO j = 1, N
Z(j, i) += X(k, i) * Y(j, k)

(a) Matrix-multiply loop nest

c

p

r2

r1

k

j

i

(b) Iteration space

Fig. 1. Matrix-multiply loop nest and its iteration space. The iteration points are shown by the
hollow dots in (b). ~r1 = (0, 1, 0) and ~r2 = (0, 0, 1) are two reuse vectors of Z(j, i) shown at the
iteration point ~c = (1, 2, 3). ~r1 is a self-temporal reuse vector, and ~r2 is a self-spatial reuse vector.

CMEs based on available information. However, in order to use CMEs to exactly
count the number of cache misses, we need to know the values of all such parameters.

2.3 Architecture Model

The basic architecture we consider here is a uniprocessor model with a memory
hierarchy. We focus on analyzing a single level of the data cache hierarchy. (An-
alyzing multiple levels simultaneously is not precluded, but it would complicate
the equations.) The associativity of the cache is a parameter in our models, and
CME methods apply to caches of any associativity from direct-mapped to fully
associative. We assume a least-recently-used (LRU) replacement policy. Writes
and reads are modeled identically, so the model is of a write-allocate cache with
fetch-on-write.

2.4 Terminology

Our work with CMEs draws on the substantial body of research in which itera-
tion spaces and reuse vectors are used to analyze memory reference behavior for
dependence analysis [Pugh 1992], locality optimizations [Wolf and Lam 1991], or
prefetching algorithms [Mowry et al. 1992]. We build on these approaches and
develop more precise mechanisms based on them.

2.4.1 Iteration Space. Every iteration of a loop nest is viewed as a single entity
termed an iteration point in the set of all iteration points known as the iteration
space. Formally, we represent a loop nest of depth n as a finite convex polyhedron
of the n-dimensional iteration space Zn, bounded by the loop bounds [Irigoin and
Triolet 1988]. Each iteration in the loop corresponds to a node in the polyhedron
and is called an iteration point. Every iteration point is identified by its index
vector ~i = (i1, i2, · · · , in), where il is the loop index of the lth loop in the nest
with the outermost loop corresponding to the leftmost index. We use the matrix
multiplication example given in Figure 1(a) to illustrate the concepts presented in
this section. Figure 1(b) shows the iteration space of the matrix-multiply loop nest.
~c is an iteration point and corresponds to the iteration i = 1, k = 2, and j = 3. In
this representation, if iteration ~p2 executes after iteration ~p1 we write ~p2 � ~p1 and
say that ~p2 is lexicographically greater than ~p1. For example in Figure 1(b), ~c � ~p.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 709

2.4.2 Memory Terminology. We present the following two definitions to avoid
any confusion regarding some commonly used terms.

Definition 1. A reference is a static read or write in the program, while a
particular execution of that read or write at runtime is a memory access.

Definition 2. A memory line refers to a cache-line-sized block in the memory,
while a cache line refers to the actual cache block to which a memory line is
mapped to.

Throughout this article, we denote the cache size as Cs, associativity of the cache
as k, line size as Ls, and the number of cache sets as Ns. As each cache set consists
of k cache lines, we can write Cs = Ns×k×Ls. The cache set, to which the memory
address accessed by a reference RA at the iteration point ~i is mapped to, is given
by the following expression (with all elements in units of data element size):

MemRA(~i) = Memory Address of RA(~i)
Memory LineRA(~i) = bMemRA(~i)/Lsc
Cache SetRA(~i) = bMemRA(~i)/Lsc mod Ns (1)

where MemRA(~i), the memory address accessed by RA at ~i, is an affine function of
the loop indices and can be easily computed from the subscript expressions of RA.

For example, the cache set of the reference Z(j, i) in the matrix-multiply loop
nest of Figure 1(a) is given by (with all numbers in units of data element size)

b(4192 + 32i+ j − 1)/4c mod 128

where the base address of the array Z is 4192 and the number of elements per
column of Z is 32. The cache considered is an 8KB two-way set-associative cache
with 128 cache sets and four data elements per cache line.

2.4.3 Reuse Vector. Reuse vectors provide a mechanism for summarizing re-
peated memory access patterns in loop-oriented code [Wolf and Lam 1991]. If a
reference accesses the same memory line in iterations ~i1 and ~i2, where ~i2 � ~i1, we
say that there is reuse in direction ~r = ~i2 −~i1, and ~r is called a reuse vector. For
example, the reference Z(j, i) in Figure 1(a) can access the same memory line at
the iteration points (i, k, j) and (i, k, j + 1), and hence one of its reuse vectors is
(0, 0, 1) as shown in Figure 1(b). A reuse vector is repeated across the iteration
space.

In order to find out whether a reference misses in the cache in a particular loop
iteration, we need to know whether the memory line is being accessed for the first
time or whether it is reusing a previously accessed memory line. If it is reusing a
previously accessed memory line, we need to know when it was last accessed and
the reference that accessed it. Once we have the information about the reuse, we
can check if any intervening memory access evicts the memory line from the cache
before it can be reused; this would result in a cache miss.

Definition 3. When a reference within a loop nest accesses a memory line that
was already accessed before, it is called a reuse of the memory line by the reference
[Wolf and Lam 1991].

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

710 · Somnath Ghosh et al.

Reuse vectors provide a concise mathematical representation of the reuse infor-
mation of a loop nest. Reuse can be classified into four different types [Wolf and
Lam 1991]. It is called self-temporal reuse if a reference reuses a memory line by
accessing the same data. It is called self-spatial reuse if a reference reuses a memory
line by accessing data different from the one accessed before in the same memory
line. Furthermore, the same memory line can be accessed by different references
resulting in a group reuse. For example, the references A(j, i) and A(j + 1, i) can
access the same memory line in the same iteration or in different iterations. Again,
it is called group-temporal reuse if a reference reuses a memory line by accessing the
same data that was accessed before by another reference. It is called group-spatial
reuse if a reference reuses a memory line by accessing a data different from the one
accessed before by another reference in the same memory line.

Definition 4. If a reuse results in a cache hit we say that the reuse is realized.

Hence if we had an infinitely large cache, every reuse would result in a cache hit.
In practice, however, reuse does not necessarily result in cache hit. The central
idea behind the CMEs is to find the loop instances at which reuse does not result
in cache hits.

We have extended reuse analysis as presented by Wolf and Lam [1991] and mod-
ified SUIF to generate, when needed, additional reuse vectors for more accurate
analysis. These additional reuse vectors represent reuse directions that are not
provided by the basic reuse vectors generated by SUIF. For example, in Figure 1,
considering a cache line size of two data elements, there is a reuse of Z(j, i) in the
direction (0, 1,−1) which is not generated by SUIF. The approximate model used
by SUIF to quantify reuse needs only the basis reuse vectors, while our precise
analysis needs to know every reuse direction. As we show in Section 4, however,
the basic SUIF reuse vectors are almost always sufficient for counting cache miss
points with no error.

2.4.4 Miss Along a Reuse Vector. All the algorithms described in this section
assume that only one reuse vector of a reference is present at a time. For the sake
of brevity, hereafter, we use the phrase along a reuse vector to mean that for a
reference only that reuse vector is assumed to be present, ignoring the presence of
any other reuse vectors, if any. For example a miss along a reuse vector is defined
as follows:

Definition 5. Consider a miss of a reference R at an iteration point~i. We define
the miss to be along a reuse vector ~r of R, if that miss would occur if ~r were
the only reuse vector present for R.

Each CME generated in our algorithm is for a particular reuse vector ~r of a
reference R. In other words, all the misses of R represented by that CME are along
the reuse vector ~r. In Section 4, we show how all the reuse vectors interact to decide
the cache misses for a reference.

3. GENERATING THE CACHE MISS EQUATIONS

In this article, the term equation has been used loosely to represent a set of simul-
taneous equalities or inequalities. Our approach generates two types of CMEs: cold
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 711

Algorithm GENERATE:
Generate the CMEs for a loop nest

Input:.
(1) Loop nest information: Bounds and step of each loop index;
(2) Array reference information: For each array reference the base

address, size and indexing expression of each dimension;
(3) Reuse information: All the reuse vectors of each reference in

the loop nest.
(4) Reference sequence: sequence in which the references appear

in the generated code of the loop nest.

Output:. A set of CMEs for each reference.

Algorithm:.

For each reference in the loop nest
For each reuse vector of this reference

[1] Generate a cold miss equation (described in Section 3.1).
[2] For each reference in the loop nest

Generate a replacement miss equation
(described in Section 3.2).

Fig. 2. Algorithm to generate all the CMEs.

miss equations (or cold CMEs) and replacement miss equations (or the replacement
CMEs). Solutions to the cold miss equations represent potential cold or compulsory
misses—misses that occur on the first access to a memory line. Solutions to the
replacement miss equations represent all other misses including both capacity and
conflict misses [Hill 1987; Hill and Smith 1989].

Figure 2 summarizes the algorithm to generate all CMEs of a loop nest. The two
major steps—generating a cold miss equation and generating a replacement miss
equation—are described in the next two subsections. In the methods described
in the next two subsections, ~i = (i1, i2, · · · , in) is considered the current iteration
point. The constraints bounding ~i within the iteration space of the loop nest are
given by the following inequalities:

lp ≤ ip ≤ up, ∀ p : 1 ≤ p ≤ n (2)

where lp and up are the lower and upper bounds of the iteration range of the loop
index variable ip. Every CME generated investigates the conditions which could
lead to a miss at ~i along a particular reuse vector. The constraints bounding ~i,
as given in Eq. (2), are included in every CME generated. To avoid restating the
same constraints, we assume the presence of these inequalities in every CME given
in the rest of this section.

3.1 Forming Cold Miss Equations

Cold miss equations or cold CMEs are formed by investigating the situations when a
memory line is brought into the cache for the first time. As each loop nest is treated
in isolation, we assume none of the data accessed in a loop nest are already present
in the cache before it starts execution. This can result in a pessimistic estimate
of a loop’s cache miss behavior. The simplest type of cold CME is already fairly

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

712 · Somnath Ghosh et al.

familiar. Namely, a relationship like (j mod 4) = 0 summarizes, that, in a sequence
of unit-stride accesses in which four data elements fit on a cache line, every fourth
access will result in a cold miss. Cold CMEs become more complicated depending
on loop nesting depths, strides, access patterns, or array alignments, but the basic
goal remains the same.

For each reference, we form a cold CME which captures all the cold misses along
each reuse vector. In this section, we show how to generate the cold CMEs for some
reuse vector ~r = (r1, r2, · · · , rn) of a particular reference, say RA. Depending on
the type of reuse of ~r, the methods for generating these equations are given below.

3.1.1 Spatial Reuse (Self or Group). There can be a cold miss along a spatial
reuse vector for either of two reasons given below:

(1) There is a cold miss when the present access is the first access along this vec-
tor. That means the previous iteration point along this vector lies outside the
iteration space. For example, in Figure 1(b), Z(j, i) has spatial reuse along
the vector (0, 0, 1). So the access of Z(j, i) in the iteration (1, 2, 1) is a cold
miss along that reuse vector, because the previous iteration point along this
vector (1, 2, 0) is outside the iteration space. As we are considering the reuse
vector ~r = (r1, r2, · · · , rn), an access is a cold miss along ~r if the corresponding
iteration point satisfies any of the following inequalities:

i1 − r1 < l1, i1 − r1 > u1,

...
in − rn < ln, in − rn > un (3)

where l1, l2, · · · , ln are the lower bounds and u1, u2, · · · , un are the upper bounds
of the previous iteration point along ~r which is ~p = (i1−r1, i2−r2, · · · , in−rn).

(2) There can be a cold miss along a spatial reuse vector also when a memory
line boundary is crossed along that vector. This means that the memory line
accessed in the present iteration point ~i by the reference RA is different from
the memory line accessed in the previous iteration point ~p =~i−~r along ~r by the
same reference (if self-reuse) or by a different reference, say R

′

A (if group-reuse).
(Group-reuse between the references RA and R

′

A implies that they access the
same array.) Hence, there are cold misses along ~r in the iteration points~i which
satisfy the following relation:

Memory LineRA(~i) 6= Memory LineR′
A

(~p) (4)

Let us denote mp = MemR
′
A

(~p), memory address accessed by R
′

A at ~p, and

mi = MemRA(~i), memory address accessed by RA at~i. We can express Eq. (4)
as the two inequalities in Eq. (5). This is illustrated in Figure 3.

mi < mp − Loff if mi < mp (negative stride)
mi > mp + (Ls − 1− Loff) if mi > mp (positive stride)

where Loff = mp mod Ls (5)

When the array is accessed with unit stride we can further simplify Eq. (5) to
the more familiar form: mi mod Ls = 0 since mi −mp = 1 for unit stride. For

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 713

mpmi

offL

Ls

(a) Negative Stride

mp mi

offL

Ls

(b) Positive Stride

Fig. 3. Cold miss examples along a spatial reuse vector when a memory line boundary is crossed.
If mp is the array element accessed in the previous iteration, the access of array element mi in
the current iteration will result in a cold miss.

example, in Figure 1(b), the cold misses of Z(j, i) along the spatial reuse vector
(0, 0, 1) can be simplified to (j mod 4) = 0, assuming the column size of Z to
be of the form 4n, where n is any integer, and assuming that the cache line can
hold four array elements.

3.1.2 Temporal Reuse (Self or Group). Cold misses along a temporal reuse vec-
tor occur only for the iteration points which lie first along the temporal reuse vector.
This is similar to the first case given for spatial reuse vectors. All the cold misses
along this vector are given by the same equations as in Eq. (3).

The methods described here generate cold CMEs along a single reuse vector.
Eventually, the CMEs of all the reuse vectors will be combined to find the actual
cache misses as shown in Section 4.

3.2 Forming Replacement Miss Equations

3.2.1 Intuition and Overview. Replacement CMEs summarize conflict and ca-
pacity misses in which the currently accessed memory line was previously resident
but has been evicted from the cache. The intuition behind these equations is fairly
straightforward, if first considered in a direct-mapped cache. In a direct-mapped
cache, a miss occurs if, between consecutive accesses to a particular memory line,
another access occurs to a distinct memory line that maps to the same cache line.

For example, consider the tiny reference stream, RA–RB–RA. A conflict clearly
occurs in a direct-mapped cache if Cache Line of RA = Cache Line of RB . This
happens if

Memory Address of RA = Memory Address of RB
+n× Cache Size + Line Size Range. (6)

That is, a conflict occurs, roughly speaking, between RA and RB whenever the
memory addresses accessed by them differ by multiples of the cache size. In order
to be precise, we need two further details. First, n cannot be zero, because in
that case the memory addresses reside on the same memory line. Second, the
Line Size Range is included in the equation to capture the situations when the
memory addresses do not differ by exactly a multiple of the cache size, but they
map to the same cache line. (See Figure 4.) Line Size Range is a range whose size
is set to capture the offset effects based on where the memory addresses sit in their
respective memory lines. Since memory addressing is an affine function, Eq. (6) is
a linear Diophantine equation.

For a k-way set-associative cache, a miss occurs if, between consecutive accesses
to a particular memory line, at least k other accesses occur to distinct memory

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

714 · Somnath Ghosh et al.

RA

RB

Line_Size

Cache

Memory

Cache_Size

Fig. 4. An example of two memory addresses that map to the same cache line. The addresses are
marked by the references that access them, namely RA and RB.

lines that map to the same cache set. Each of these conflicts satisfies an equation
similar to Eq. (6). Intuitively, a reuse vector provides a closed-form representation
of a particular reference stream over the entire iteration space for a particular
reference. We utilize this representation to form equations characterizing all the
conflicts along that reference stream. The formal method to form these equations
is described below.

3.2.2 Formal Method. Every replacement CME represents a contention between
two references for the k cache lines in a cache set. Also, like cold CMEs, each
replacement CME is formed by considering a single reuse vector at a time.

Say we want to find the replacement CMEs for the reference RA along the reuse
vector ~r = (r1, r2, · · · , rn). These will fall into two categories. Self-interference
equations summarize interiteration interactions of the same reference.1 Cross-
interference equations summarize the interactions with other references in the loop.
Here we show how to form the replacement CME representing the interferences
with the reference RB. For the self-interference equation, references RA and RB
are identical. If the current iteration point is~i = (i1, i2, · · · , in) and the reuse vector
is ~r then the iteration point where the memory line was last accessed by RA along
~r is ~p = ~i − ~r = (i1 − r1, i2 − r2, · · · , in − rn). The iteration points at which we
can have an interference with RB are all the points lying between ~p and ~i which
are considered as the set of potentially interfering points. Whether we include the
points ~p and ~i also in that set depends on the relative access order of RA and RB
in a loop nest iteration. If RA occurs before RB in the nest, only ~p has to be
considered; otherwise, only ~i needs to be considered. In our implementation, we
extract access order information from the code generation phase automatically. We
represent all points in the set of potentially interfering points as ~j = (j1, j2, · · · , jn),

where ~j ∈ [~p,~i) if access ofRA is beforeRB ,
∈ (~p,~i] if access ofRA is afterRB,
∈ (~p,~i) if bothRA andRB represent the same reference

(for the self-interference equation). (7)

The range of ~j comprising of the set of points given in Eq. (7) are represented

1Other research sometimes uses self-interference more broadly to refer to any cache interferences
of a data structure with itself.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 715

by sets of equalities and/or inequalities. A general method for finding such a
representation for the range [~p,~i) is provided in Appendix A; the other ranges are
represented similarly.

Cache interference occurs when the cache set accessed by RA in iteration ~i is
the same as any of the cache sets accessed by RB at every potentially interfering
iteration ~j between iteration ~p and iteration~i. Equating the appropriate cache sets
accessed gives the condition for a cache set contention along reuse vector ~r:

Cache SetRA(~i) = Cache SetRB (~j) (8)

Substituting in the expressions from Eq. (1), we can simplify the resulting equation
to the linear Diophantine equation shown in Eq. (9). This simplification is described
in detail in Section 3.3. We thus have

MemRA(~i) = MemRB (~j) + nCs/k + b (9)

where Cs is the cache size, k is the associativity of the cache, and n is any nonzero
integer. The variable b can take on values in the range −Loff ≤ b ≤ Ls − 1 − Loff

where Loff = MemRB (~j) mod Ls. Thus, Loff shows the offset of the reference RB
in its cache line, and b bounds the search for an interference within that cache line.
With a slightly conservative estimate of the cache interferences, the range of the
variable b can be simply written as −(Ls−1) ≤ b ≤ (Ls−1). Since the loop indices
are bounded, the equality holds for a bounded region.

Every solution of Eq. (9) is a vector of the form (~i,~j, n) where ~i is the iteration
where RA might suffer a miss. ~j is the iteration, before RA’s access in iteration ~i,
whereRB accesses the same cache set. The memory lines of RA andRB in this cache
set contention are separated by (n/k) cache sizes. So, if n is 0 the memory lines are
identical, and there is no conflict at all. For this reason we disallow solutions with
n = 0. In a k-way set-associative cache k distinct contentions are needed before a
replacement miss will occur at~i along the reuse vector ~r. The algorithm in Section
4 shows how to combine the solutions of all the replacement CMEs of a reuse vector
to provide all the replacement misses along that reuse vector.

3.2.3 Example. For the matrix-multiply example shown in Figure 1 with N =
32, consider generating replacement CMEs for Z(j, i) along the spatial reuse vector
~r = (0, 0, 1). If ~i = (i, k, j) then ~p = ~i − ~r = (i, k, j − 1). For an 8KB two-way
set-associative cache with 128 cache sets and four array elements per cache line,
Eq. (3.2.3) shows the replacement miss equation for the interferences with X(k, i)
along ~r (here the access of Z(j, i) is after X(k, i) in each loop nest iteration):

Cache Set Z(j, i) = Cache Set X(k′, i′)
where (i′, k′, j′) ∈ ((i, k, j − 1), (i, k, j)]

⇒ b(4192 + 32i+ j − 1)/4c mod 128
= b(2136 + 32i+ k − 1)/4c mod 128

⇒ 4192 + 32i+ j = 2136 + 32i+ k + 512n+ b (10)

where n > 0, (i, k, j) ∈ [(0, 0, 0), (31, 31, 31)], −Loff ≤ b ≤ 3− Loff , Loff = (2136 +
32i + k − 1) mod 4. The range of b can be written more simply as −3 ≤ b ≤ 3 if

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

716 · Somnath Ghosh et al.

a slightly pessimistic estimate of the interferences is acceptable. 4192 and 2136 are
the base addresses (in array elements) of the arrays Z and X respectively, and 32
is the number of elements per column in the arrays.

3.3 Simplifying the Cache Miss Equations

All the constraints governing the CMEs generated in the last two subsections are
in the form of linear equalities or inequalities except the one given in Eq. (8).
Figure 5 illustrates the simplification of Eq. (8), which is simply Cache SetRA(~i) =
Cache SetRB (~j). The memory is viewed as a contiguous set of cache-line-sized
blocks or memory lines as shown in Figure 5. Assume that the cache size is Cs and
consists of Ns cache sets (that is, Cs = Ns × k × Ls). The condition of Eq. (8)
states that the cache set accessed by RA at ~i must be the same as that accessed
by RB at ~j. In other words, both the memory lines accessed by RA at ~i and by
RB at ~j are mapped to the same cache set. Memory lines are mapped to cache
sets in a circular or modulo fashion. Hence, two memory lines are mapped to the
same cache set if they are separated by a multiple of the total number of cache sets,
since (m+ n×Ns) mod Ns = mmod Ns where m,n are any integers. Equation (8)
holds if and only if the memory line accessed by RA at ~i is n×Ns cache sets away
from that accessed by RB at ~j, where n is any integer except zero. Only nonzero
values of n are considered because when n is zero the memory lines accessed are
identical and so do not correspond to conflicting accesses. Let us assume that, at ~j,
RB accesses the memory address MB = MemRB (~j) which lies in the memory line
lB as shown in Figure 5. If the memory line accessed by RA at ~i is lA, Eq. (8) can
be rewritten in terms of memory lines as follows:

lA = lB + n×Ns, where n is any nonzero integer (11)

Now, let e be the memory address located at the same offset x from the base of the
memory line lA as the address MB from the base of the corresponding memory line
lB. If MemRA(~i), the memory address accessed by RA at ~i, is equal to e, Eq. (11)
can be represented in terms of the memory addresses as follows:

MemRA(~i) = MemRB (~j) + nCs/k, where n is any nonzero integer (12)

MemRA(~i), however, can lie anywhere within the memory line lA to satisfy Eqs. (8)
or (11). Equivalently, it can lie anywhere within the range of −x to (y − 1) with
respect to the address e, where, x = Loff = MemRB (~j) mod Ls and y = Ls − x.
Hence, Eq. (12) can be modified to Eq. (13) which provides the generalized and
simplified form of Eq. (8) in terms of the memory addresses of RA and RB, namely
MemRA and MemRB respectively:

MemRA(~i) = MemRB (~j) + nCs/k + b (13)

where n is any nonzero integer. The variable b can take on values in the range
−Loff ≤ b ≤ Ls − 1− Loff where Loff = MemRB (~j) mod Ls. We can have simpler
bounds for b if we ignore the relative position of MemRB (~j) in its cache line. Now,
in order to include all the solutions of Eq. (13), in spite of ignoring the offset
of MemRB (~j) in its cache line, the bounds of b can be written as −(Ls − 1) ≤
b ≤ (Ls − 1). This would result in a slightly more pessimistic estimate of the
cache misses. As MemRA(~i) and MemRB (~j) are affine functions of the loop indices,
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 717

✱ ✱

Cs/k Cs/k

Ls

x

y

lB lA

Increasing Memory address

eMB

Cs/k Cs/k

x

Fig. 5. Memory viewed as a contiguous set of memory lines for simplifying the CMEs. A shaded
area stands for a single memory line. MB = MemRB (~j), the memory address accessed by RB at
~j, lies in the memory line lB. lA, the memory line accessed by RA at ~i, is at n× Cs/k elements
away, where n is any nonzero integer (n = 3 in this figure). MemRA(~i), the memory address

accessed by RA at ~i, can lie anywhere in the memory line lA. x = Loff = MemRB (~j) mod Ls
and y = Ls − x.

Eq. (13) results in a linear equation which is allowed to have only integral solutions,
that is, a linear Diophantine equation. Since the loop indices are bounded, the
equation holds for a bounded region.

3.4 Putting It All Together

In the previous three subsections, we have described the methods to generate and
simplify the CMEs. Figure 6 summarizes the CMEs generated and simplified by
these methods for the reference Z(j, i) along its spatial reuse vector (0, 0, 1) in the
matrix-multiply loop nest of Figure 1. The equations listed in Figure 6 are presented
in terms of the cache and data layout parameters. Such an architectural view of the
CMEs should provide useful insights into different sources of cache optimizations.
The base addresses of the arrays X,Y, and Z are denoted as OffsetX , OffsetY , and
OffsetZ respectively. Col sizeX , Col sizeY , and Col sizeZ represent the column
sizes of the arrays X,Y, and Z respectively. To further generalize the loop nest, we
have represented the lower and upper bounds of the loop indices i, k, j as Lboundi ,
Lboundk , Lboundj and Uboundi , Uboundk , and Uboundj respectively.

4. FINDING CACHE MISSES FROM THE CACHE MISS EQUATIONS

This section describes the algorithm for finding all cache misses in a loop nest
by composing the effects of multiple CMEs. This discussion is useful for building
intuition about how CME solutions relate to cache miss instances. It is important
to note, however, that most of the cache optimizations including the ones described
in Section 5 would never be required to execute this algorithm on a per-loop basis.
Instead, as described in Section 5, we typically use mathematical shortcuts to derive
cache optimization algorithms from the CMEs once they are generated.

4.1 Algorithm

As described in Section 3, for every reference we generate a set of equations for
each of its reuse vectors. For each reuse vector there are at most two cold CMEs
representing cold misses along that vector (Section 3.1), as well as replacement
CMEs representing the self- and cross-interferences of this reference with itself and

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

718 · Somnath Ghosh et al.

Cold Miss Equations:
(1) j = Lboundj for Lboundj ≤ j ≤ Uboundj
(2) j mod Ls = 0 for Lboundj ≤ j ≤ Uboundj

Replacement Miss Equations: (assuming, access of Z(j, i) is after that of both
X(k, i) and Y (j, k) in each loop iteration)

Cross-interference equations:
(3) OffsetZ + Col sizeZ × i+ j = OffsetX+ Col sizeX × i′ + k′ + Cs × n+ b

for i′ = i; k′ = k;
n > 0 (assuming, OffsetX < OffsetZ);
Loff = (OffsetX+ Col sizeX × i′ + k′) mod Ls; -Loff ≤ b ≤ Ls − 1− Loff;
Lboundi ≤ i ≤ Uboundi; Lboundk ≤ k ≤ Uboundk; Lboundj ≤ j ≤ Uboundj ;

(4) OffsetZ + Col sizeZ × i+ j = OffsetY + Col sizeY × k′ + j′ + Cs × n+ b
for k′ = k; (j − 1) < j′ ≤ j;

n > 0 (assuming, OffsetY < OffsetZ);
Loff = (OffsetY + Col sizeY × k′ + j′) mod Ls; -Loff ≤ b ≤ Ls − 1− Loff;
Lboundi ≤ i ≤ Uboundi; Lboundk ≤ k ≤ Uboundk; Lboundj ≤ j ≤ Uboundj ;

Self-interference equation:
(5) Col sizeZ × i+ j = Col sizeZ × i′ + j′ + Cs × n+ b

for i′ = i; (j − 1) < j′ ≤ j;
n 6= 0;
Loff = (OffsetZ+ Col sizeZ × i′ + j′) mod Ls; -Loff ≤ b ≤ Ls − 1− Loff;
Lboundi ≤ i ≤ Uboundi; Lboundk ≤ k ≤ Uboundk; Lboundj ≤ j ≤ Uboundj ;

Fig. 6. CMEs of Z(j, i) along its spatial reuse vector (0, 0, 1) in the matrix-multiply loop nest of
Figure 1. The two cold miss equations correspond to the two cases described in Section 3.1.1.
For the second equation, we have assumed that every column of the array Z starts at a cache
line boundary. The third and the fourth equation represents the cross-interferences of Z(j, i) with
X(k, i) and Y (j, k) respectively. Without loss of generality, we have assumed that (i) the access
of Z(j, i) is after that of both X(k, i) and Y (j, k) in each loop iteration and (ii) the offsets or the
base addresses of both the arrays X and Y are at a lower address than that of the array Z. The
last equation stands for the self-interferences of Z(j, i).

others. CME solution points represent potential cache misses; to find actual cache
misses, however, one must consider the effects of multiple reuse vectors at once.
Figure 7 provides the algorithm that combines the effects of multiple reuse vectors
in order to determine the set of all cache miss instances of a loop nest from the
solutions of all of its CMEs.

Here, we will provide an intuitive explanation of the algorithm shown in Figure 7
with the help of an illustrative example. This algorithm is based on two theorems
presented and proved in Appendix B. We will consider the iteration space shown in
Figure 8 as our example. The algorithm first sorts the reuse vectors of a reference
in lexicographically increasing order. In our example, assume that a reference X
has three reuse vectors ~r1, ~r2, and ~r3. This means it accesses the same memory
line at the iteration points ~i1, ~i2, ~i3, and ~i4. The lexicographic ordering of the reuse
vectors is [~r3, ~r1, ~r2]. For each reuse vector, a number of CMEs are generated,
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 719

Algorithm Find Cache Misses of a Loop Nest
Input: for each reference, solution sets of the CMEs for every reuse vector

of the reference
Output: MX for every reference X, where MX = set of miss points of X
{
1.for each reference /* Say the reference is X */
2. Sort the reuse vectors lexicographically from the shortest to the longest one;
3. MX = φ (null set);
4. C = Set of all iteration points;

/* MX keeps track of the cache miss points found */
/* C keeps track of the iteration points that need further investigation */

5. for each reuse vector of the reference X /* Say the reuse vector is ~r */
6. if (|C| ≤ ε) break;

/* No further investigation for this reference if |C|, the #elements in C,
is less than ε; ε is set to 0 for an exact output */

7. C′ = union of the solutions of cold CMEs of ~r;
8. R′ = union of the solutions of replacement CMEs of ~r;
9. R′′ = φ;

10. for each (~i,~j, n) ∈ R′
11. R′′ = R′′ ∪ {(~i, n)}; /* R′′ stores the distinct (~i, n) tuples */
12. I = φ;

13. for each (~i, n) ∈ R′′
14. I = I ∪ {i}; |~i| += 1; /* |~i| keeps track of #occurrences of ~i */

/* So, |~i| counts the distinct cache set contentions */

/* All |~i|’s are initialized to 0 before this loop */
15. I = I ∩ C; C = C′ ∩ C; /* Search inside C only */
16. I = I − C; /* eliminate cold CME solution points from I */

17. for each ~i ∈ I
18. if |~i| ≥ k /* k = associativity of the cache */

/* ~i is a replacement miss point along ~r */

19. MX = MX ∪ {~i};
/* At this point C = cold misses of the reference */
/* and MX = replacement misses of the reference */

20. MX = MX ∪ C;
}

Fig. 7. Algorithm to find the cache miss points of a loop nest from its CME solutions.

1
i

2
i

3
i

r
1 r

3

r
2

i
4

i

j

Fig. 8. Illustration of the algorithm to find cache misses for a two-dimensional loop nest.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

720 · Somnath Ghosh et al.

each producing a collection of CME solution points. The algorithm investigates
one reuse vector at a time, starting from the shortest one which is ~r3 here. After
investigating a reuse vector, some of its CME solution points are declared definite
miss points, while others are indeterminate. If any iteration point is a solution for a
cold CME of ~r3, there is a cold miss along ~r3 at that point. Hence, there is no reuse
along ~r3 at that point. As we cannot take any further decision about these iteration
points without considering other reuse vectors, we declare them as “indeterminate”
for ~r3. These indeterminate points are passed on to the next reuse vector for further
investigation. However, if an iteration point is not a solution for a cold CME but
is a replacement miss along ~r3, it is declared a definite miss point for the reference.
This is because if the memory line is replaced after its use at ~i4, there is no further
access (i.e., no other shorter reuse vector) to prevent the cache miss at ~i1. Finally,
any iteration point that is neither a cold CME solution point nor a replacement
miss along ~r3 is a guaranteed hit. That is, if the cache line is not replaced after its
use at ~i4, X will enjoy a hit at ~i1 irrespective of what happens along other reuse
vectors. For only the indeterminate points (i.e., cold CME solution points) of ~r3,
we move on to consider ~r1. All the CME solutions of ~r1 are treated similarly to
those of ~r3, as we can consider ~r3 effectively absent for all its cold CME solution
points. Finally, we consider ~r2 within the points that are declared indeterminate
after investigating both ~r3 and ~r1.

So, in general the algorithm works as follows. We consider reuse vectors one at a
time in lexicographically increasing order. While considering each reuse vector,
some of its CME solution points are declared definite misses, while others are
indeterminate. Then, considering only the set of indeterminate solution points,
we move on to consider the CMEs from the lexicographically next reuse vector for
this reference. Intuitively, the indeterminate points form a reduced iteration space
that need further investigation. We continue investigating further reuse vectors
until the number of indeterminate points is either zero, or is “sufficiently small”
(as defined by a user threshold). At that point, we can stop the process, even if
the reference has additional reuse vectors that we have not yet considered. Since a
replacement miss point found along the current reuse vector in the algorithm is a
guaranteed miss point, it is included in the global miss set MX (line 19 in Figure 7)
immediately after it is found. In Figure 7, C maintains the set of indeterminate
iteration points, and ε is the tolerable error in miss count per reference. Section
4.3 will show that in practical loop nests, perfect accuracy can be obtained by
considering a relatively small number of reuse vectors per reference.

Figure 9 depicts the progress of the algorithm for the load reference of Z(j, i)
in a 256 × 256 matrix-multiply loop nest (Figure 1(a)). We have considered an
8KB direct-mapped cache with 32-byte line size and 8 data elements per cache
line. Every iteration point is identified by the index vector (i, k, j). We consider
three reuse vectors ~r1, ~r2, and ~r3 of Z(j, i). Reuse vectors ~r1 and ~r2 are self-spatial
reuse vectors, and ~r3 is a self-temporal reuse vector. ~r1 and ~r3 are the basic reuse
vectors generated from SUIF, while ~r2 is generated from our extension to SUIF.
Figure 9 shows the contribution of every CME encountered toward the final miss
count. Every replacement CME is denoted by “ReplEqn” followed by the names of
the interfering references. Of the 2.1 million indeterminate points after considering
r1, only 8192 remain indeterminate after r2. Considering r3, we can deduce that
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 721

Reuse Vector
~r1: (0 0 1) ~r2: (0 1 -7) ~r3: (0 1 0)

Cold CMEs 2097152 8192 8192

ReplEqn ZZ 0 0 0

ReplEqn ZY 1835008 261120 0

ReplEqn ZX 401408 64064 0

Repl. Misses 2236416 325184 0

Definite Misses 2236416 2561600 2569792

(52%)
(48%) (98%) (0%) (100%)RC

1R
1

2 3 3

(2%)C
2

R C

Fig. 9. Using the CME-based algorithm from Figure 7 to find cache misses for the load of Z(j, i)
in the matrix-multiply loop nest (Figure 1(a)). The diagram and the table show the progress of
the algorithm as reuse vectors are considered one by one, each time zeroing in on the previously
indeterminate points. The table shows the solution count of the CMEs and the actual misses
found at every stage of considering a reuse vector. C1, C2, and C3 in the diagram represent the
cold CME solution points (from the row “Cold CMEs” in the table) when we consider the reuse
vectors ~r1, ~r2, and ~r3 respectively. Similarly, R1, R2, and R3 represent the replacement misses
found (from the row “Repl. Misses” in the table). The indeterminate points are identical to the
cold CME solution points. The last row in the table shows the cumulative count of actual misses
found so far after each reuse vector is investigated.

all 8192 of these are true cold misses.

4.2 Set-Associative Caches

The preceding miss-finding discussion built intuition by considering a direct-mapped
cache. Composing CME solutions into cache miss points is more complex in a set-
associative cache. This is because a cache miss occurs in a k-way set-associative
cache only when k distinct conflicts occur.

Every solution to the CMEs can be summarized using a triple of the form (~i,~j, n).
(The set of all such triples is given by the set R

′
in Figure 7.) The first component

~i of each triple corresponds to the iteration point where a reference (the “victim”)
potentially suffers a replacement miss along a reuse vector. The second component
of the triple, ~j, denotes the iteration at which the potentially conflicting access
(the “perpetrator”) occurs. The third element of the triple, n, corresponds to the
number of “cache wraparounds” there are between the memory addresses of the
two potentially conflicting references. To be precise, the two potentially conflicting
references are separated by (n/k) cache sizes, where k is the associativity of the
cache. In this analysis, n will never equal 0, since that is not a conflict but rather
a reuse, and reuse will always be summarized in the reuse vectors.

From this triple, we wish to derive distinct miss points. For a particular iteration
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

722 · Somnath Ghosh et al.

point ~i, all solutions with the same value of n correspond to contention with the
same memory line (since they have the same wraparound factor). Thus, to find
distinct conflicts for an iteration ~i, we look for distinct values of n. Note that ~j,
the cause of the miss, does not impact miss-finding, so we map the space of (~i,~j, n)
triples down to a space, R

′′
, of (~i, n) pairs (line 11 in Figure 7).

The cardinality of the set R
′′

corresponds to the total number of conflicts seen,
but this is different from the number of cache misses. The points in R

′′
are misses

at ~i along ~r if and only if there are at least k (the associativity) elements in R
′′

with ~i as the first component. Hence, only these ~i’s are selected as replacement
miss points and included in the set MX (lines 17-19 in Figure 7). The mapping
from R

′′
to MX performs the following. For each ~i, if there are at least k conflicts

(for a k-way set-associative cache) then add a point to MX . If there are less than
k conflicts, do not add a point. Note that if there are greater than k conflicts, still
only a single point is added to MX .

The equations generated here represent a set of linear equalities or inequalities.
Methods to solve these kind of equations for most practical loops can be found
in Banerjee [1993] and Pugh [1992]. Taking the unions and intersections shown
in Figure 7 takes polynomial time in the number of elements of the sets. In the
next section, however, we have shown how different optimizations can be analyzed
without actually solving the equations.

4.3 CME Accuracy

Next, we show the accuracy of our system for finding the cache misses of loop nests
using the reuse vectors generated by our current reuse analysis. Table II compares
the actual misses (from DineroIII cache simulation) of some example loop nests
with the misses measured from CMEs. Actual runtime values of loop bounds,
array sizes, and relative base addresses of arrays are used to count the cache misses
using CMEs. We have considered an 8KB direct-mapped cache with 32-byte line
size. The loop nests considered include mmult (matrix multiply), gauss (Gaussian
elimination), sor (successive over-relaxation), adi (ADI kernel after loop fusion and
interchange optimizations), trans (matrix transpose), alv (loop nest from alvinn
benchmark), and tom (loop nest from the tomcatv benchmark). For all the loop
nests the problem size considered is 256, and each array element size is 4 bytes.
The table shows that for most of these loop nests very few reuse vectors (average of
2 per reference) are needed to attain accuracy within 1%. Furthermore, the basic
reuse vectors given by SUIF are sufficient in all but one case. The inaccuracies
found for gauss and trans are due to the fact that the reuse vectors used are not yet
sufficient to represent all the reuse directions present in the loop nest. As a result,
the CME method finds more cache miss points than are actually present.

5. USING CMES TO GUIDE MEMORY OPTIMIZATIONS

We have implemented our algorithm to generate the CMEs for all the analyzable
loops in a program. Our implementation is integrated into the SUIF compiler
system [Wilson et al. 1994]. According to the algorithm shown in Figure 2, four
different kinds of information are provided as input to our CME generator: (i) the
loop indices, (ii) array references, (iii) reuse vectors of the references, and (iv) the
reference sequence inside a loop nest. The reuse analysis of SUIF is extended to
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 723

Table II. Number of reuse vectors (RVs) used by our CME method to get the calculated
miss count within 1% of the actual miss count (measured by DineroIII). SUIF-RV corre-
sponds to reuse vectors extracted from SUIF analysis, and Ext-RV corresponds to extra
reuse vectors found from our extended reuse analysis. (In this table, “Max.” stands for
“Maximum” and “ref.” stands for “reference”.)

Max. Max. Distribution of
Loop #refs to #RVs used RVs used
Nest #Arrays. an array #Refs. per ref. SUIF-RV Ext-RV

mmult 3 2 4 3 7 3

gauss 1 5 5 2 4 -

sor 1 6 6 4 11 -

adi 3 3 9 1 9 -

trans 1 4 4 2 6 -

alv 2 2 5 1 5 -

tom 4 2 6 1 6 -

Loop #Data #Data cache misses
Nest accesses DineroIII CME %Error

mmult 67108864 7042336 7042336 0.0

gauss 16744320 1998466 2019682 1.0

sor 387096 8192 8192 0.0

adi 587520 391680 391680 0.0

trans 262144 73456 73732 0.4

alv 183150 14090 14090 0.0

tom 387096 258064 258064 0.0

generate all the reuse vectors we need. The exact reference sequence is obtained
from the code generator after register allocation is done.

In this section, we show how the CMEs can be manipulated for better cache
optimizations and how to devise efficient compiler algorithms from the analysis
of mathematical properties of the CMEs. We illustrate this with the help of two
examples. The first example shows how the CMEs can be used to reduce cache
misses by changing the base addresses and the column sizes (i.e., padding) of the
arrays referenced. The second example shows how the equations can be used for
efficient block size selection for a blocked loop nest. While these optimizations
have been addressed in isolation by past work [Bacon et al. 1994; Coleman and
McKinley 1995; Lam et al. 1991], these examples illustrate how CMEs provide a
more accurate and unifying framework to drive optimizations.

5.1 Example 1: Padding

This example shows how CMEs are used to find appropriate intravariable padding
(increasing array dimension size) and intervariable padding (repositioning variable
base addresses) that reduce both the self-interferences of a reference and its cross-
interferences with other references. We first illustrate how the CMEs are analyzed to
drive this optimization with a loop nest from alvinn program, a SPECfp benchmark.
Then we provide an automated compiler algorithm derived from such analysis along
with experimental results showing the usefulness of the precision and generality
of the CME framework.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

724 · Somnath Ghosh et al.

5.1.1 Padding for a Loop Nest in alvinn. When we run our equation generator
on the loop nests, it generates a collection of CMEs summarizing the memory
behavior of each nest. We focus here on one of the analyzable loop nests (shown
in Figure 10(a)) which suffers significantly from replacement misses. In this loop,
roughly 187,000 out of 306,000 misses are replacement misses. We use the CMEs
to eliminate these misses.

Equations (14) and (15) are generated as the replacement CMEs for the reference
to i h weights(iu, hu). Equation (14) represents the self-interferences for this refer-
ence. Equation (15) gives the cross-interferences with the reference i h w ch sum
array(iu, hu).

1221hu+ iu = 1221hu
′
+ iu

′
+ nCs + b (14)

82110 + 1221hu+ iu = 45480 + 1221hu
′
+ iu

′
+ nCs + b (15)

where (iu
′
, hu

′
) ∈ [(iu − 1, hu + 1), (iu, hu − 1)] in Eq. (14), and (iu

′
, hu

′
) ∈

[(iu − 1, hu), (iu, hu− 1)] in Eq. (15). For both the equations, hu ∈ [1, 30], iu ∈
[1, 1221], b ∈ [−3, 3], and n ∈ [0,∞). For this example, we assume a direct-mapped
cache with cache size, Cs, of 1024 and a line size of 4 elements. In Eq. (15), the
constant terms 82110 and 45480 are the base addresses of the arrays i h weights
and i h w ch sum array respectively. The coefficient 1221 is the size of each column
of the arrays. The absolute value of the bounds of b is one less than the cache line
size. (All the numbers given are in units of data element size.)

Using standard algebraic techniques we can simplify Eqs. (14) and (15) to the
forms shown in Eqs. (16) and (17) respectively.

197hudiff + iudiff = n
′
Cs + b, n

′
∈ [−30,∞) (16)

790 + 197hudiff + iudiff = n
′
Cs + b, n

′ ∈ [−65,∞) (17)

In Eq. (16), hudiff = (hu − hu
′
) ∈ [−29,−1] if iudiff = (iu − iu

′
) = 1 and hudiff ∈

[1, 29] if iudiff = 0. In Eq. (17), hudiff ∈ [−29, 0] if iudiff = 1 and hudiff ∈ [1, 29] if
iudiff = 0. The maximum absolute value of hudiff in these equations corresponds
to the upper bound of the loop index hu.

Equations (14) and (15) have 232 and 269 solutions respectively. Each solution
corresponds to a potential cache miss. We wish to reduce the number of solutions in
order to reduce the cache interferences represented by these equations. We intend
to do that by changing the base addresses and the column sizes. For this reason,
we replace all terms related to the base addresses and the column sizes in Eqs. (16)
and (17) with parameters to get Eqs. (18) and (19) respectively. (The ranges of
all the variables in Eqs. (18) and (19) are the same as given in the Eqs. (16) and
(17) respectively.) We consider the constant term in Eq. (17) (related to the base
address) as a parameter B and the coefficient of hudiff in Eqs. (16) and (17) (related
to the column sizes) as a parameter P . Thus, our goal is to see which values of B
and P will result in the fewest number of solutions to the equations (that is, the
potential interference misses).

Phudiff − 1024n
′

= (b− iudiff) (18)

B + Phudiff − 1024n
′

= (b− iudiff) (19)
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 725

Though Eqs. (18) and (19) are independent equations, they are connected through
the parameter P . Changing P in one equation will affect the other. We first
consider Eq. (18) to determine which values of P would eliminate its solutions. We
then use one of these P ’s in Eq. (19) to find the values of B that eliminate its
solutions.

From basic number theory, we know that if the greatest common divisor of P
and 1024 (represented as GCD(P, 1024)) does not divide (b− iudiff) ∈ [−4, 3], then
Eq. (18) has no solution [Adler and Coury 1995; Banerjee 1993]. When (b−iudiff) =
0, GCD(P, 1024) will always divide (b − iudiff). For this case, we can again show
from number theory that the equation will have no solution if GCD(P, 1024) <
1024/max(hudiff) where max(hudiff) is the maximum value of hudiff (in this case,
29). Choosing 4 < |GCD(P, 1024)| < 36 satisfies both of the above criteria and
guarantees that Eq. (18) will have no solution. We can write P = 8t, 16t, or 32t
where t is any odd positive integer.

By similar reasoning as above, Eq. (19) will have no solution if GCD(B,P, 1024)
does not divide (b − iudiff) for (b − iudiff) 6= 0. For (b − iudiff) = 0, rewriting
the equation as Phudiff − 1024n

′
= −B, the equation will have no solution if

GCD(P, 1024) does not divide B. If we choose B = 8 and P = 16t we can satisfy
all the above criteria and make Eqs. (18) and (19) have no solution. In order to
have the least amount of padding, we choose P = 208, the least multiple of 16
above the original value of P = 197. (Clearly, we cannot choose to decrease P ; that
would correspond to negative padding.)

Setting B = 8 corresponds to changing the base address of the array i h weights
from 82110 to 81328. Setting P = 208 corresponds to changing the size of each
column of the arrays from 1221 to 1232. These simple changes in the array layout
eliminate all the interference misses in the loop nest of Figure 10(a). (The equations
for the reference i h w ch sum array(iu, hu) are similar and required similar changes
to eliminate misses.)

5.1.2 Compiler Algorithm for Padding. Here we provide a general padding al-
gorithm, in which we sacrificed some precision from the above analysis to develop
an automated approach. This section compares our algorithm to prior work.

The parameters of interest for padding are the column size and the base addresses
of the arrays. Our target equations are the replacement CMEs. For our analysis, we
consider the interference between two arbitrary references RX and RY . For the self-
interference equation of a reference, RX and RY are identical. Let us consider that
the references RX and RY access the arrays X and Y whose base addresses are BX
and BY respectively. We assume that these conflicting arrays have the same column
size C. Using Eq. (1), the memory addresses of RX and RY at iteration point~i can
also be written as BX +C(f(~i)+c)+(f0(~i)+c′) and BY +C(f ′(~i)+d)+(f ′0(~i)+d′)
respectively, where f, f0, f

′, f ′0 are linear functions of the loop indices and c, c′, d, d′

are constants.
The replacement CMEs that correspond to the interferences between two ref-

erences that access the same array are of the following type (called Type 1 in
Figure 11):

C(δf + c− d)− nCs = b− (δf0 + c′ − d′) (20)
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

726 · Somnath Ghosh et al.

DO iu = 1, 1221
DO hu = 1, 30

i h weights(iu, hu) +=
i h w ch sum array(iu, hu) * i h lrc ;

i h w ch sum array(iu, hu) *= ALPHA ;

(a)

1220
1222

1224
1226

1228
1230

0

10

20

30

40
0

2

4

6

8

10

12

x 10
4

Column SizeδB mod C
s

#C
ac

he
 M

is
se

s

(b)

Fig. 10. (a) The alv loop, a loop nest from alvinn benchmark. (b) A surface plot of number of
cache misses for different column sizes and base address positioning of the two arrays accessed
in the alv loop. (δB is the difference in base addresses of the two arrays.) This plot shows the
sensitivity of cache misses in the alv loop to different padding choices. The irregular pattern
demonstrates the necessity of accurate analysis.

where n 6= 0, b ∈ [−(Ls−1), (Ls−1)], δf = f(~i)−f ′(~j), and δf0 = f0(~i)−f ′0(~j). The
range of the intervening points ~j is determined by the corresponding reuse vector.
From straightforward number theory [Adler and Coury 1995; Banerjee 1993], this
linear Diophantine equation has no solution if the following two conditions are
satisfied:

1. gcd(C,Cs) > max |b− (δf0 + c′ − d′)|
2. gcd(C,Cs) < Cs/max |δf + c− d|

if (b− (δf0 + c′ − d′)) = 0

All the other replacement CMEs are of the following type (say, Type 2):

(BX −BY) + C(δf + c− d)− nCs = b− (δf0 + c′ − d′) (21)

Again from number theory, Eq. (21) has no solution if the following conditions are
satisfied:

3. gcd(|BX −BY |, C, Cs) > max |b− (δf0 + c′ − d′)|
4. gcd(C,Cs) > |BX −BY | mod Cs if (b− (δf0 + c′ − d′)) = 0

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 727

Our algorithm finds appropriate values of C and |BX −BY | that satisfy all four
conditions. Since cache size Cs is a power of two, the GCDs in all the conditions
are also powers of two. We consider C = 2xt1 and |BX − BY | = 2yt2 where t1, t2
are nonzero odd positive integers. The following constraints follow from the four
conditions:

From Condition 1 : x > lg(max |b− (δf0 + c′ − d′)|)
From Condition 2 : x < lg(Cs/(max |δf + c− d|))
From Condition 3 : x, y > lg(max |b− (δf0 + c′ − d′)|)
From Condition 4 : lg(|BX −BY | mod Cs) < x

Once x is known, the compiler can easily choose any value of t1 such that C is at
least equal to the original column size. Once y is known, it can choose any value of
t2 such that (i) |BX −BY | is at least equal to the size of the arrays lying between
BX and BY and (ii) |BX −BY | satisfies Condition 4.

Based on these constraints, we have developed the algorithm sketched out as
pseudocode in Figure 11. The core of the algorithm finds the x and y values. For
every pair of conflicting arrays X and Y we need to find y(XY), but we need only
one x, since all the array column sizes are assumed to be same. The algorithm
iterates through each equation and updates the bounds of x and y’s according
to the constraints. The max values are easily evaluated from the ranges of the
intervening points ~j; these depend on the reuse vector. Finally, the minimum
possible C and interarray paddings are evaluated satisfying the constraints on x and
y’s in Get paddings. This algorithm guarantees a solution if there exist x, y’s that
satisfy all the conditions. In practice, however, most cases satisfy these conditions.

As discussed in Section 4, our CME methods let us choose precision by choosing
how many reuse vectors to consider. We have implemented the described algorithm
considering only the nearest reuse vector for every reference.2 The algorithm is
quite fast—quadratic on the number of references, which is a small number in all
practical loop nests.

Table III shows the results of applying this padding algorithm to our benchmark
suite. Of the six programs with non zero replacement misses, our padding algorithm
dramatically reduces replacement misses in all but one. In particular, both the
precision and generality of the CME approach allow our algorithm to eliminate
more conflict misses than the padding methods recently described by Rivera and
Tseng [1998]. For example, their methods cannot decrease any conflict misses for
the mmult loop (Figure 1(a)), because they do not address inter array padding for
the Y (j, k) and Z(j, i) references that are not uniformly generated. The Rivera-
Tseng method also lacks sufficient generality to handle replacement misses between
references of the form A(i, j) and B(i, j) as in alv (Figure 10(a)); this is because it
does not attempt intraarray padding to reduce cross-interferences. In contrast, our
algorithm decreased conflict misses in these loops by 50.8% and 100% respectively.

Figure 10(b) shows the sensitivity of cache misses in the alv loop to different

2For even more precise results, one could increase the number of reuse vectors considered. Also
Conditions 2 and 4 are rare cases and hence can be ignored if needed.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

728 · Somnath Ghosh et al.

Algorithm Find ColumnSize and BaseAddresses
Input: CMEs of the loop nest
Output: (i) The column size C of the arrays

(ii) Base address BX for every array X accessed in the loop nest
{
For each reference /* Say the array accessed by this reference is X */

For each reuse vector
For each replacement CME

Lb = lg(max |b − (δf0 + c′ − d′)|);
Ub = lg(Cs/max |δf + c− d|);

If (Type 1 equation)
update lower bound(x) with Lb
update upper bound(x) with Ub

Else
/* Say the other array involved in this CME is Y */

update lower bound(x) with Lb
update lower bound(y(XY)) with Lb
add constraint (lg(|BX −BY | mod Cs) < x)

Get paddings from above ranges and constraints
}

Fig. 11. Algorithm for padding arrays and setting base addresses to reduce cache interferences.

choices of column sizes and base addresses. Such an irregular pattern makes it
difficult to find effective padding choices through a heuristic, iterative framework.
Manipulating CMEs allows our algorithm to directly and precisely identify the
padding values that will eliminate all replacement misses in this case. The generality
of the CME framework also allows our algorithm to simultaneously consider (and
eliminate) both self- and cross-interferences.

Thus, we have shown how effective compiler optimizations can be derived directly
from the solution properties of linear Diophantine equations. Our padding algo-
rithm only needs the CMEs, not their explicit solutions. Furthermore, the precision
and generality of the CME framework allow our algorithm to reduce more conflict
misses than prior approaches.

5.2 Example 2: Selecting Block Size for Loop Tiling

This case study deals with a familiar loop optimization for scientific code: array
blocking (or tiling). This technique tries to eliminate capacity misses by reordering
accesses so that accesses to reused data are closer together in the iteration space.
There has been significant research on how to restructure loop nests for tiling [Carr
and Kennedy 1992; Wolf and Lam 1991; Wolfe 1989; Kodukula et al. 1997]. These
work typically ignore the effects of conflict misses arising due to the low associativity
of real caches. However, researchers have also noted that cache conflicts can have
significant impact on performance and are highly sensitive to the problem size and
block size [Lam et al. 1991]. This led to recent research on choosing appropriate
tile sizes or block sizes that would reduce conflict misses as well [Coleman and
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 729

Table III. Impact of our Padding Algorithm: Data Cache Misses in the Original and Opti-
mized Code. Both replacement miss and total miss counts are shown. (“Repl.” in the table
stands for “Replacement”.)

#Data cache misses %Reduction in
Loop #Data Original Optimized cache misses
Nest accesses Repl. Total Repl. Total Repl. Total

mmult 67108864 7017760 7042336 3454304 3478880 50.8 50.6

gauss 16744320 1974689 1998466 883473 901048 55.3 54.9

sor 387096 0 8192 0 8192 - 0

adi 587520 367104 391680 0 24576 100.0 93.7

trans 262144 57344 73456 57344 73456 0.0 0.0

alv 183150 4880 14090 0 9240 100.0 34.4

tom 387096 225552 258064 0 32512 100.0 87.4

McKinley 1995; Lam et al. 1991]. These papers concentrate on eliminating the
self-interference misses that are found to dominate conflict misses in tiled code.
They develop specific algorithms for choosing a blocking factor based on program
and cache parameters. In the first subsection, we will show how to use CMEs,
a more general framework, to find the block size that will eliminate all the self-
interference misses in tiled code. In fact, our framework can be used to handle both
self- and cross-interferences as discussed in the second subsection. (The analysis
described here can be translated to an automated algorithm as we did for the
padding example.)

5.2.1 Block Size Selection for Blocked Matrix Multiply. In this example, we start
with an already blocked loop nest. We explain our method for the blocked matrix
multiplication loop nest given in Figure 12. Our analysis could be easily generalized
for all other tiled loops handled in previous work. For Figure 12, we try to maximize
T k by T j without incurring any self-interference misses.

In order to roughly match the analysis given by Lam et al. [1991], we consider a
4KB (512-element) direct-mapped cache with 8-byte (1-element) lines. We assume
matrices of size 295 by 295 double-word elements. The predominant source of
misses in the tiled code is self-interference misses in Y (j, k). In fact, after a certain
block size, these self-interferences outweigh the performance gain expected from
increasing block size [Lam et al. 1991]. The self-interference equation of Y (j, k) for
each execution of the blocked code in Figure 12 is given by Eq. (22).

295k + j = 295k
′
+ j

′
+ nCs + b (22)

where (k, j) ∈ [(1, 1), (T k ,T j)], (k
′
, j
′
) ∈ [(1, 1), (k, j−1)] or [(k, j+1), (T k ,T j)],

b ∈ [−0, 0], Cs = 512, and n is any integer except 0. As before, Cs is the cache size,
and the absolute value of the bounds of b is cache line size minus one. Equation (23)
is a simplified version and includes all the solutions of Eq. (22):

295kdiff + jdiff = 512n (23)

where |kdiff | = |k − k
′ | < T k and |jdiff | = |j − j

′ | < T j .
Figure 13 plots the number of solutions of Eq. (22) for different square block

sizes. These data are consistent with the self-interference misses of blocked matrix
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

730 · Somnath Ghosh et al.

DO kk = 1, N, T k
DO jj = 1, N, T j

DO i = 1, N
DO k = kk, min(kk+T k-1, N)

r = X(k, i);
DO j = jj, min(jj+T j-1, N)

Z(j, i) += r * Y(j, k);

Fig. 12. Blocked matrix multiplication loop nest.

0 4 8 12 16 20 24 28 32

Block Size (bytes)

0

200

400

600

800

1000

1200

N
um

be
r

of
 s

ol
ut

io
ns

Fig. 13. Solutions to self-interference equation of Y (j, k).

multiplication presented by Lam et al. [1991]. There are no self-interferences of
Y (j, k) until a block size of 16 by 16. Thereafter, it increases drastically with
increasing block size. Our goal is to use the CMEs to identify the largest block
size with no self-interference. That means we need to find the largest value of
T k by T j such that Eq. (23) has no solution. Lam et al. considered only square
blocks, but Coleman and McKinley [1995] showed that we can sometimes get better
performance by considering more general rectangular blocks. CMEs can guide us
to choose the best block, square or rectangular.

Figure 14 illustrates the block-selection problem. The lines in the figure are plots
of Eq. (23), but without any constraints on kdiff or jdiff , for different values of
n. The bold dots show the self-interference instances, i.e., the solution points for
integral values of kdiff and jdiff . Since |kdiff | < T k and |jdiff | < T j , Eq. (23) will
have no solution if there are no integral solution points strictly within the region
defined by kdiff = T k , kdiff = −T k and jdiff = T j , jdiff = −T j . Thus, such an
empty region corresponds to the selection of a block of size T k by T j which would
eliminate all self-interferences. For example, the shaded region A1 in Figure 14 is
one such empty region. Our aim is to find the empty region with the largest area.

For our explanation, we only concentrate on the right half of Figure 14 (i.e.,
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 731

.

.

.
.
.

.

.

.

.

.

. .

.
.

.
.
.

.
.
.

.
.
.
.

.
.
.

.
.
. .

. .
. .

.
.

.
.

.
.
.
.

.
.

.
.

.
.

.
.

.

.
.

.

.

. . .

.

.

.

.
.

.

.
.

.

.
.

.
.

.

.

.
.
.

.
. .

.
..

..
.

.
.
.
.

.
.
.
.
.
.

.
.

. .

.
.

.
.

.

.
.
.

.

.
.

.
.

.

.
.
.
.

5 10

500

1000

-500

-1000

-5-10

A1

A2

kdiff

j diff. . .

...

(1, 217)

(5, 61)

(2, -78)

Fig. 14. Solution plot of the self-interference equation of Y (j, k). The parallel lines correspond to
sets of solutions for different values of n. Dots along each line represent the integral solution points
(interference misses). Shaded regions correspond to possible blocks with no self-interference.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

...
..

...
..

..........

.
A1

A2

A3

A4

kdiff

j diff

(5, 61)

(7, -17)

(2, -78)

Fig. 15. Finding regions without integral solution points.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

732 · Somnath Ghosh et al.

Table IV. Blocks with No Self-
Interference (from our algorithm)

Block size
Region T k T j (T k * T j)

A1 2 217 434

A2 5 78 390

A3 7 61 427

A4 26 17 442

A5 33 10 330

A6 59 7 413

A7 151 3 453

kdiff ≥ 0) as the left half is just the reflection of that through the origin. In order
to explain our method, consider the zone around the origin in the figure. We start
with the tallest, thinnest empty region A1 where T k = 1 and T j = 217, since
(kdiff , jdiff) = (1, 217), an integral solution point, has to be excluded. We then try
to expand that empty region along the kdiff axis until we hit an integral solution
point. Here, since (2,−78) is an integral solution point, A1 cannot be expanded
beyond kdiff = 2. (Note, that, we are only interested in expanding at integral
steps, as the dimensions of a block can only be integers.) Now the region is shrunk
along the jdiff axis to exclude that solution point; we then expand again along
kdiff as much as possible without including any integral solution point. So, here
we shrink A1 along the jdiff axis such that jdiff = 78 in order to exclude (2,−78).
Subsequently, the region is expanded along kdiff axis until kdiff = 5. It cannot be
expanded beyond kdiff = 5 as the integral solution point (5, 61) has to be excluded.
As a result, we obtain the region A2. We repeat the above process of finding the
empty regions by shrinking along the jdiff axis and expanding along the kdiff axis to
find the maximal empty regions which are defined as the empty regions whose area
cannot be increased without decreasing the height. The process is continued until
a maximal empty region is generated whose area exceeds the cache size or is equal
to zero. Table IV lists the maximal empty regions A1 through A7 found by the
above algorithm. Figure 15 depicts the formation of the first four maximal empty
regions. We define a limiting point to be an integral solution point that prevents
any further expansion of a maximal empty region along the kdiff axis. For instance,
(5, 61) is the limiting point for the maximal empty region A2. Each of the empty
regions defines a block size with no self-interference. For example, region A4 defines
the block size of T k by T j = 26 by 17 which clearly includes the square block
solution of 16 by 16 found experimentally from Figure 13. The empty region with
the largest area is clearly A7. For the largest block size with even dimensions, we
choose the region with the maximum area that has even dimensions which, in this
case, is the block of size 26 by 16. Our algorithm does not require finding integral
solution points for all n, j, k. Rather, we need only identify the limiting points as
we stretch the rectangles.

5.2.2 Selecting Block Size to Eliminate Both Self- and Cross-Interferences. Here
we present a novel method, using CMEs, where we integrate block size selection
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 733

and padding in order to reduce both self- and cross-interferences. We briefly de-
scribe the process for a blocked matrix-multiply loop nest, determining a block
size of T k by T j. Say we want to reduce self-interferences of Y (j, k) and also
its cross-interferences with Z(j, i). Hence, the equations we analyze are Y (j, k)’s
self-interference equation and the cross-interference equation with Z(j, i). For the
blocked code they are

Ckdiff − nCs = b− jdiff , where kdiff < T k, jdiff < T j (24)
(BY −BZ) + C(k − i′)− nCs = b− jdiff ,

where k ∈ [0, N − 1], i′ ∈ [0, N − 1], jdiff < T j (25)

The variables to be optimized here are T k, T j, BY , and BZ . There are a lot of
ways one can follow here. We have developed an algorithm where we first find T k,
T j from Eq. (24), and then optimize BY , BZ from Eq. (25) by an algorithm similar
to Figure 11. The block size selection algorithm conceptually finds all combinations
of (T k, T j) that ensure no solution to Eq. (24) for a direct-mapped cache. For a
k-way set-associative cache, it finds (T k, T j)’s that allow at most (k−1) solutions
to Eq. (24). As our algorithm combines padding along with selecting block sizes,
it would be interesting to compare this algorithm with the block size selection
algorithm presented by Coleman and McKinley [1995].

6. COMPUTATIONAL COMPLEXITY

Here we discuss the computational requirements of generating and using CMEs.
The first step in generating CMEs is calculating reuse vectors. If the number of
array references in a loop nest of depth n is nref and if dmax is the maximum
number of dimensions of any of those arrays, then the worst-case complexity of
calculating all the reuse vectors is O(n2

ref × (max(n, dmax))3). Each reuse vector
can be calculated by simple manipulations on a matrix of size max(n, dmax) which
takes O((max(n, dmax))3) time in the worst case. Moreover, in the worst case, we
need to do n2

ref of such matrix manipulations, corresponding to the group reuse
vector calculation between every pair of references in the loop nest.

Once the reuse vectors are calculated, the time taken to generate all the CMEs of
the loop nest is given by O(n×dmax×neqn), where neqn = #Equations = nrv×nref ,
nrv = Total #reuse vectors of all the references.

We have implemented our CME generator in the SUIF compiler system [Wilson
et al. 1994] and have tested our system on SPECfp and other benchmarks. In these
experiences, we have found the CME generator to be quite fast. In fact, for the
SPECfp benchmarks, CME generation always executes in less than 10s per program
on an SGI/INDY with a 133MHz MIPS R4600 CPU.

Once the CMEs are generated, further computational requirements depend on
the methodology used to develop an optimization using CMEs. For example, the al-
gorithm presented in Section 5.1.2 simply computes GCDs and is a linear algorithm
in the number of loop indices.

The equations generated in Section 3 represent a set of linear equalities or in-
equalities. Fast methods to solve these kind of equations for most practical loops
have been demonstrated in Banerjee [1993] and Pugh [1992; 1994]. Taking unions
and intersections to find the cache misses takes polynomial time in the number of

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

734 · Somnath Ghosh et al.

elements of the solution sets. However, in most optimization applications, we do
not need to find the cache miss instances explicitly.

Many loop optimizations and estimations need the total number of cache misses
rather than the iteration points where the cache misses occur. This involves finding
the number of integer solutions to the unions and intersections of the CMEs. The
method to find the number of integer points in unions and intersections of closed
convex polyhedrons defined by most practical scientific loops, as given in Clauss
[1996], could be used. For the closed convex polyhedrons defined by the CMEs, the
method takes polynomial time for fixed loop bounds. It can also handle parametric
loop bounds for practical loop nests.

7. DISCUSSION: FUTURE EXTENSIONS AND APPLICATIONS

In order to make our analysis framework more general, it needs to handle the
effects of multiple loop nests in the program. Also, to make the framework more
effective, we should be able to automatically solve or at least find the number of
solutions to the CMEs in parametric form. Finally, if we can automate the analysis
of the equations for cache optimizations, it can be effectively incorporated within
a compiler for better program performance. In the following sections we discuss
the above issues in further detail and investigate the potentially broad application
scope of our CME-analysis framework.

7.1 Inter-Nest Analysis

The methods presented here can be followed to generate equations taking inter-nest
effects into account, once efficient methods are developed to calculate reuse vectors
across loop nests. Fortunately, most inter-nest misses occur between adjacent nests
[McKinley and Temam 1996]. So it may be enough to find reuse vectors only
between adjacent nests for most practical purposes.

7.2 Automatic Solving and Analysis of the CMEs

In order to help code optimizations, as described in Section 5, we try to find values
of parameters that would eliminate or reduce the number of solutions to the CMEs.
One possible way to automate that analysis is to use the extension of Pugh’s Omega
test [Pugh 1992] to project our constraints on the parameters of interest and find the
possible ranges of those parameters that would eliminate or reduce the number of
solutions. Another possible way is to calculate the parametric number of solutions
as given by Clauss [1996] and then find the values of the parameters that would
reduce that number. The Pugh and Clauss methods are reported to be fast for
linear constraints derived from most practical loops. The varying ability of these
methods to handle parameters would also help us to analyze and optimize loops
with parametric loop bounds.

7.3 Applications

As described in Section 5, the CMEs can be used to reduce the number of cache
misses due to their precise characterization of the cache misses. Also, the CMEs
provide users with a general framework from which different kinds of optimizations
to improve memory performance can be applied. We have shown two different
optimizations in this article and are studying the techniques to use them for guid-
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 735

ing various other optimizations including different kinds of loop transformations.
The idea is to use the CMEs to choose the appropriate loop transformation that
would yield the best memory performance for the loop nest considered. We plan
to automate the analysis of the equations as much as possible, enabling the com-
piler to harness the preciseness of our framework, for applying effective memory
optimizations from a common platform.

Many optimizing transformations are decided on a comparison of the execution
times of the original and the transformed code. Therefore, it is essential to esti-
mate, as accurately as possible, the execution time of programs at various gran-
ularity levels as program, function, loop, basic block, statement, and expression.
Tighter bounds on the worst-case execution time of programs are also necessary
for designing efficient embedded systems. One of the biggest problems in closely
predicting the execution time is to be able to estimate the data cache performance.
The CMEs can be used to calculate quite precisely the number of data cache misses
in a loop nest by counting the number of solutions to them. Besides providing an
estimate of the number of cache misses, the CMEs can also provide indicators for
an optimizer to the origin of most of the cache misses.

Finally, we also hope to use the equation framework to improve the performance
of cache simulation tools. Essentially, CMEs can accelerate simulations by iden-
tifying cache misses and summarizing much of a program’s memory behavior at
compile time, before cache simulation is run.

8. RELATED WORK

Realizing the importance of cache behavior in numerical codes, researchers have
focussed on improving the cache performance of numerical programs. Most of the
previous work explores the techniques to reduce capacity misses in scientific loops
[Gannon et al. 1988; Irigoin and Triolet 1988; Wolfe 1989; Eisenbeis et al. 1990;
Wolf and Lam 1991; Carr and Kennedy 1992; Li and Pingali 1992; Banerjee 1993;
McKinley et al. 1996; Carr and Lehoucq 1995]. For example, several researchers
have described the popular technique of loop tiling to reduce capacity misses [Wolfe
1989; Carr and Kennedy 1992; Carr and Lehoucq 1995; Irigoin and Triolet 1988;
Eisenbeis et al. 1990; Kodukula et al. 1997]. There are also several case studies
that report the severe adverse effects of cache interferences or conflicts on cache
performance [Lam et al. 1991; Sugumar and Abraham 1993; Temam et al. 1994;
McKinley and Temam 1996]. For instance, McKinley and Temam [1996] performed
a study of the locality characteristics of numerical loop nests and found that con-
flict misses comprise half of all cache misses and are the most significant sources of
intranest misses. In addition, some work shows that cache interferences can vary
wildly with slight variations in problem size and base addresses [Lam et al. 1991;
Bacon et al. 1994; Navarro et al. 1994]. However, cache conflicts are difficult to
predict and estimate, as they require a detailed analysis of the data mapping in the
cache and the data-referencing patterns. In fact, there are relatively few studies on
analyzing and reducing interference misses. More generally, there has been no work
on precisely and analytically representing the cache misses of a loop nest as pre-
sented in this article. Our work shows how such a precise, analytical representation
could guide optimizations for reducing cache misses, including obscure interference
misses in a methodical way.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

736 · Somnath Ghosh et al.

The methods presented by Gannon et al. [1988] and Gallivan et al. [1988] can
be used to estimate the amount of local memory needed by array references in a
loop nest. Their focus was on optimizing for a software-controlled local memory
rather than for a hardware-controlled cache memory. Porterfield [1989] described a
technique for estimating the hit rate of a fully associative LRU cache in a unipro-
cessor system. None of these papers, however, consider the effect of cache conflicts.
Later, Ferrante et al. [1991] provided closed-form formulae that bound the number
of distinct accesses and distinct lines for an array reference in a loop nest. These
bounds provide an estimate of the number of cache misses in a loop nest. They
have also included some suggestions on how to consider interferences. All of these
projects, however, only provide rough estimates of the cache misses, and it is not
possible to find the appropriate padding amounts, base addresses, and tile sizes
as shown in the optimizations presented in this article. The CMEs, however, can
also be used to estimate the number of cache misses in a loop nest more accurately
than presented in previous work. In fact, the CMEs can be used to get separate,
precise estimates of cache misses of each type and/or from every source, which in
turn helps to determine the cache performance bottlenecks.

Temam et al. [1993; 1994] provide a more accurate analysis than Ferrante et al.
[1991] for predicting and estimating cache interferences. However, the methods
described by Temam et al. [1994] handle a much smaller subset of array references
than we do. For example, their technique does not consider the reference A[i1 + i2]
where i1 and i2 are loop indices. Then, due to several approximations, their process
is not as precise as ours. Finally, as they only estimate the number of cache misses,
it is not clear how the expressions presented in their paper could be used directly
to guide optimizations as discussed in this article.

Some of the optimizations described in this article have been addressed in iso-
lation in previous work. Bailey [1992] analyzes the behavior of a direct-mapped
cache with strided data access to estimate the cache efficiency. Subsequently, cache
efficiency is used by the compiler to detect unfavorable strides and determine au-
tomatically the necessary padding for array dimensions, thereby reducing cache set
conflicts. In the parallel domain, Torrellas et al. [1990] have suggested alignment of
arrays to cache line boundaries to reduce false sharing. Later, Bacon et al. [1994]
developed a padding algorithm for selecting efficient padding amounts, which takes
into account both cache and TLB (Translation Lookaside Buffer) effects collectively
within a single framework. The goal of the algorithm is to avoid set conflicts in the
cache and TLB for a given loop nest. Recently, Rivera and Tseng [1998] presented
various heuristic techniques for inter and intraarray padding optimizations. CMEs,
on the other hand, allow us to apply padding optimizations in a more general
framework along with other kinds of optimizations. Moreover, due to the precision
inherent in CMEs, CME-based padding algorithms can sometimes eliminate more
conflict misses than earlier work.

There are also some papers on choosing problem-size-dependent tile sizes that
eliminate self-interference and capacity misses in a tiled loop nest. Lam et al. [1991]
present cache performance data for tiled matrix-multiply and describe a model for
evaluating cache interference. They provide an algorithm which selects the largest
square tile size that avoids self-interference. However, the algorithm presented by
Coleman and McKinley [1995] can find more effective data-dependent rectangular
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 737

tiles and improves execution times over Lam et al. [1991]. We have shown how our
general framework of CMEs can also be used to choose such efficient rectangular
tile sizes, given a particular tiled loop nest.

Finally, there has been some work on automatic analysis and counting the number
of solutions to a set of linear equalities and inequalities. This complementary work
would help to automate the analysis of the CMEs. Pugh [1992] describes the Omega
test, which determines whether there is an integer solution to an arbitrary set of
linear equalities and inequalities. One of the important extensions to the Omega
test, relevant to the analysis of CMEs, deals with symbolic projection of a set of
constraints onto the variables of interest. The Omega test has been further extended
in Pugh [1994] by considering a set of constraints as Presburger formulas. Recently,
Clauss [1996] has provided an exact method for counting the number of integer
points in polytopes, based on the determination of Ehrhart Polynomials. While
our work is mainly concerned with the compiler and architectural implications of
caching behavior by deriving the CMEs, their work focuses on the mathematical
aspects of solving such equations.

9. CONCLUSIONS

This article demonstrates the use of Cache Miss Equations as a means of pre-
cisely characterizing both cold and replacement misses within a loop nest. Our
method involves extending traditional reuse analysis in order to generate a set of
linear Diophantine equations whose solutions comprise potential cache misses for
the loop nest. We then describe algorithms for identifying cache misses and pro-
vide experimental results on the accuracy of our method for loop nests taken from
SPECfp benchmarks. Finally, we present examples of CME applications to show
the effectiveness of the precision and generality of our CME framework.

The CME framework provides an excellent compile-time platform for a wide
variety of applications ranging from performance estimation to code optimizations
within a single, unified precise framework. By automating CME analysis within
the compiler, one can guide compiler memory optimizations. Overall, Cache Miss
Equations provide an unique, systematic framework for accurately assessing the
frequency and causes of cache misses in loop-oriented code; this general and precise
foundation will serve as an enabling technology for effective cache optimizations in
the future.

APPENDIX

A. REPRESENTING THE SET OF POTENTIALLY INTERFERING POINTS

The set of potentially interfering points is represented by the ranges given in Eq. (7).
Each of these ranges is again represented by sets of equalities and/or inequalities.
Here we describe such a representation for the range [~p,~i) of Eq. (7); the other
ranges are represented similarly.

Before presenting the most general form, the basic idea is explained with the
help of an example range from the matrix-multiply loop nest of Figure 1(a). The
region defined by the range ~j = [(2, 18, 26), (16, 12, 24)) is divided into five convex
regions, namely R1, R2, R3, R4, and R5 as shown in Figure 16.The convex regions
are formed by sequentially considering all the iterations of the loop nest from the

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

738 · Somnath Ghosh et al.

ik

j
(a) (b)

R1

R2
R3

R4

R5

i = 15

i = 16

i = 2

i = 3

i = 16

Fig. 16. Division of the range [(2, 18, 26), (16, 12, 24)) into the convex regions R1, R2, R3, R4, and
R5. (a) shows the regions in the iteration space of the loop nest of Figure 1(a). (b) shows the
regions in the iteration space when i = 16 to clarify the area hidden in (a).

starting iteration ~p = (2, 18, 26) to the last iteration~i = (16, 12, 24). A new convex
region is formed when the current set of points cannot be expanded any further
without violating the convexity. Each of these convex regions is represented with
a set of constraints defining a single range for each of the loop indices as shown in
Eq. (26).

~j ∈ [(2, 18, 26), (16, 12, 24)) = {R1, R2, R3, R4, R5}

R1 :
[
(i, k) = (2, 18); 26 ≤ j ≤ 31

]
R2 :

[
i = 2; 19 ≤ k ≤ 31; 0 ≤ j ≤ 31

]
R3 :

[
3 ≤ i ≤ 15; 0 ≤ k ≤ 31; 0 ≤ j ≤ 31

]
R4 :

[
i = 16; 0 ≤ k ≤ 11; 0 ≤ j ≤ 31

]
R5 :

[
(i, k) = (16, 12); 0 ≤ j < 24

]
(26)

Equation (27) presents the most general form of the division of the range~j = [~p,~i)
in an n-deep loop nest. In Eq. (27), ~j = (j1, j2, · · · , jn), ~p = (p1, p2, · · · , pn), and
~i = (i1, i2, · · · , in). Since ~p ≺ ~i, we assume, without any loss of generality, that
the kth loop is the outermost loop such that pk < ik, and so (p1, p2, · · · , pk−1) =
(i1, i2, · · · , ik−1). In all the convex regions, provided in Eq. (26), our assumption
of (p1, p2, · · · , pk−1) = (i1, i2, · · · , ik−1) holds, and so we have avoided restating
these equalities. We have also assumed that the lower bounds of the loop indices
are l1, l2, · · · , ln and that the corresponding upper bounds are u1, u2, · · · , un. With
these assumptions, Equation (27) represents the range of ~j as the union of (2k− 1)
convex regions where each convex region is defined by a conjunction of a set of
constraints.

~j ∈ [~p, ~i) = {R1, R2, · · · , Rk−1, Rk, Rk+1, · · · , R2k−1}
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 739

R1 :
[
(jk, jk+1, · · · , jn−1) = (pk, pk+1, · · · , pn−1);

pn ≤ jn ≤ un

]
R2 :

[
(jk, jk+1, · · · , jn−2) = (pk, pk+1, · · · , pn−2);

pn−1 + 1 ≤ jn−1 ≤ un−1;

ln ≤ jn ≤ un

]
Rk−1 :

[
jk = pk;

pk+1 + 1 ≤ jk+1 ≤ uk+1;
lk+2 ≤ jk+2 ≤ uk+2;

...
ln ≤ jn ≤ un

]
Rk :

[
pk + 1 ≤ jk ≤ ik − 1;

lk+1 ≤ jk+1 ≤ uk+1;
...

ln−1 ≤ jn−1 ≤ un−1;

ln ≤ jn ≤ un

]
Rk+1 :

[
jk = ik;

lk+1 ≤ jk+1 ≤ ik+1 − 1;
lk+2 ≤ jk+2 ≤ uk+2;

...
ln ≤ jn ≤ un

]
R2k−1 :

[
(jk, jk+1, · · · , jn−1) = (ik, ik+1, · · · , in−1);

ln ≤ jn < in

]
(27)

B. THEORY BEHIND THE CACHE-MISS-FINDING ALGORITHM

The methods described in Section 3 generate cold and replacement CMEs along a
single reuse vector. Eventually, the effects of all the reuse vectors are combined in
the algorithm presented in Figure 7 to find the set of all cache miss instances of a
loop nest from the solutions of all of its CMEs. This algorithm is developed based
on two theorems presented and proved here. Before presenting the theorems, we
first present some lemmas that we use to prove these theorems.

The following lemma shows the relationship between a solution of a cold CME
and a cold miss along a reuse vector.

Lemma 1. If a reference R suffers a cold miss at an iteration point ~i along a
reuse vector ~r of R, ~i satisfies at least one of the cold CMEs of ~r.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

740 · Somnath Ghosh et al.

Proof. According to the methods described in Section 3.1.1 for the cold misses
along a spatial reuse vector, two equations are generated—one for each of the two
cases described there. However, only one equation need to be generated, as in
Section 3.1.2, for the cold misses along a temporal reuse vector. As we consider
all possible cases for the occurrence of cold misses along a reuse vector, we can
claim that every cold miss is captured by at least one of the equations generated
in Sections 3.1.1 and 3.1.2.

In fact, the converse of the above lemma, as stated below, holds as well.

Lemma 2. If an iteration point~i satisfies any of the cold CMEs for a reuse vector
~r of a reference R, then R suffers a cold miss at ~i along ~r.

Proof. Let us consider an arbitrary iteration point ~i. If ~r is a spatial reuse
vector, assume that ~i satisfies the cold CME from case (1) of Section 3.1.1. Also,
assume that ~i does not satisfy the case (2) equation. Otherwise, if ~r is a temporal
reuse vector, assume that ~i satisfies the equation generated in Section 3.1.2. Now,
according to the methods used to generate the equations, reference R definitely
accesses a new memory line at ~i along ~r. Hence, R is guaranteed to suffer a cold
miss at ~i along ~r as claimed in Lemma 2.

Now, consider ~r is a spatial reuse vector and~i satisfies the equation from case (2)
and not the case (1) equation in Section 3.1.1. ~i not satisfying case (1) implies that
~i is not the first iteration point along that vector. But, ~i satisfying case (2) implies
that a new memory line is brought in at~i. Hence, there is a cold miss at ~i along ~r.

Finally, consider the situation when ~r is a spatial reuse vector and~i satisfies both
the case (1) and case (2) equations in Section 3.1.1. An iteration point satisfying
the case (1) equation, however, is guaranteed to be the instance of a first access
to a memory line by R along ~r. Hence, there is a cold miss at ~i along ~r. (The
method used to generate the case (2) equation does not take any separate action
for the iteration points that satisfy the case (1) equation. That is why, in this case,
~i wrongly satisfies the case (2) equation. So, whenever ~i is not a candidate for
case (2), but still satisfies the case (2) equation wrongly, ~i is, in fact, a candidate
for case (1).)

Next we provide two more lemmas that depict the relationship between a solution
of a replacement CME and a replacement miss along a reuse vector. Before that,
we define the terminology of distinct solutions of replacement CMEs used hereafter.

Definition 6. If S is a set of solutions to replacement CMEs of a reference R, and
if the solutions in S correspond to interferences between the memory line accessed
by R at~i and other distinct memory lines, then every solution in S is defined to be
distinct at the iteration point ~i.

Every solution to the replacement CMEs of a reference R is a vector of the form
(~i,~j, n) where ~i is the iteration where R might suffer a miss due to the contention
with another memory line for the same cache set at ~j, and the contending memory
lines are separated by (n/k) cache sizes. From the simplification in Section 3.3, we
can verify that for an iteration point~i two solutions with the same value of n corre-
spond to the interference between the same two memory lines. So, mathematically,
two solutions with~i as the first component are distinct if they have different values
of n.
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 741

Lemma 3. If there is a replacement miss of a reference R at the iteration point
~i along the reuse vector ~r, then there exist at least k distinct solutions at ~i in the
union of all the solution sets of the replacement CMEs of ~r.

Proof. As the associativity of the cache is k and an LRU replacement policy is
used, at least k distinct interferences must be encountered by R between ~i− ~r and
~i before it suffers a replacement miss at ~i along ~r. In the method of generating the
replacement CMEs described in Section 3.2, we consider every possible interference
encountered by R that can prevent the reuse along ~r from being realized at ~i.
In fact, we generate one equation for each of the potentially interfering references
(including R itself). Hence, all the k or more distinct interferences must correspond
to k or more distinct solutions to the set of all replacement CMEs.

The exact converse of the above lemma does not hold. However, when the logic
of Lemma 3 is reversed, the following lemma results:

Lemma 4. If an iteration point ~i is not a cold miss point of a reference R along
a reuse vector ~r and there exist at least k distinct solution points at ~i in the union
of all the solution sets of the replacement CMEs of ~r, then R suffers a replacement
miss at ~i along ~r.

Proof. The replacement CMEs of ~r do not take any special action for the iter-
ation points at which R suffers a cold miss along ~r. But if there is a cold miss at ~i
along ~r, the reuse ~r, in fact, does not exist at ~i, and so the replacement CMEs at ~i
become meaningless. Since~i is not a cold miss point of R along ~r, there is potential
for realizing the reuse represented by ~r at ~i. According to the assumption in this
lemma, there also exist at least k distinct solution points at ~i. It follows from the
method given in Section 3.2 that R encounters at least k distinct interfering ac-
cesses before the reuse of ~r can be realized at~i. All these interfering accesses occur
after the previous access of R along ~r at ~i−~r. Hence, due to the LRU replacement
policy, the memory line accessed by R at~i−~r will be evicted from the cache before
its reuse at~i. Note that we ignore the presence of any other access of R in between
~i − ~r and ~i to the same memory line, if any, as it implies the presence of another
reuse vector at ~i. Here we consider misses along ~r and so ignore the presence of
other reuse vectors.

The solution set—the set of all miss instances3—can be generated with the help
of the following theorems which are discussed shortly.

Let us first consider the example iteration space shown in Figure 17(a). For
a particular reference, assume that one of its reuse vectors is ~r1, which indicates
the reference reuses the same memory line at the iteration points ~i1 and ~i2. Each
solution of all the equations corresponds to either a cold miss along ~r1 (if it is a
cold miss equation) or a replacement miss (if it is a replacement miss equation),
preventing the reuse to be realized at ~i1. Moreover, for a replacement miss, it takes
at least k different conflicting memory line accesses between ~i2 and ~i1 to cause the
reference to miss at ~i1 along ~r1. This indicates that a non-cold miss point will be

3The set of all miss instances of a reference is comprised of all the iteration points at which that
reference suffers a cache miss.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

742 · Somnath Ghosh et al.

● ● ● ●

i

j

(a) Considering one reuse vector

i

j

(b) Considering multiple reuse vectors

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

i1
→

i1
→

i2
→

i2
→

i3
→

i4
→

r2
→

r3
→r1

→
r1
→

Fig. 17. Illustration of (a) Theorem 1 and (b) Theorem 2 in the iteration space of a 2D loop nest.

a miss point along ~r1 if there are at least k distinct solutions to the replacement
CMEs at that point. This is formally stated in the following theorem.

Theorem 1. Within a given set of iteration points, the set of cold miss points
of a reference R along a reuse vector ~r is given by the union of all the solution sets
of the cold CMEs of ~r. Again, the set of all replacement miss points of R along ~r is
given by the set of points that are not cold miss points along ~r except that at each
point there exists at least k distinct solutions in the union of all the solution sets of
the replacement CMEs of ~r (k is the associativity of the cache).

Proof. Let us denote the equations corresponding to the reuse vector ~r by
eq1, eq2, · · · , eqn. eq1 represents a single cold CME if ~r is a temporal reuse vector;
otherwise, it represents two cold CMEs, eq1a and eq1b, when ~r is a spatial reuse
vector. {eqm : 2 ≤ m ≤ n} represents the replacement CMEs of the reference. Let
the solution set of eqm be given by Sm. If ~r is a spatial reuse vector, we consider
S1 as the union of the solution sets of the equations eq1a and eq1b. If Cr denotes
the set of all cold miss instances of R along ~r, we first need to show Cr = S1.

Let ~i ∈ Cr ⇒ ~i ∈ S1 (follows from Lemma 1)
⇒ Cr ⊆ S1.

Let ~i ∈ S1 ⇒ ~i ∈ Cr (follows from Lemma 2)
⇒ S1 ⊆ Cr.

Hence, Cr = S1.
Suppose Xr be the set of all replacement miss points of R along ~r. Say S is

the set of points where at each point there exist at least k distinct solutions from
∪nm=2Sm. Eliminating the cold miss points from S we get the set Sr = S −Cr. So,
we need to show Xr = Sr.

Let ~i ∈ Xr ⇒ ~i ∈ Sr (follows from Lemma 3)
⇒ Xr ⊆ Sr.

Let ~i ∈ Sr ⇒ ~i ∈ Xr (follows from Lemma 4)
⇒ Sr ⊆ Xr.

Hence, Xr = Sr.

Now, let us consider the example iteration space in Figure 17(b). We assume
that the reference has the reuse vectors ~r1, ~r2, and ~r3, which means it accesses
the same memory line at the iteration points ~i1, ~i2, ~i3, and ~i4. The reference can
reuse data at ~i1 if the data remain in cache after being accessed at either ~i2 or ~i3
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 743

or ~i4. Intuitively, we can argue that if the reuse ~r3 is not realized at ~i1 there is
definitely a miss at ~i1 irrespective of the presence of the other two reuse vectors.
Similarly, if ~r3 is realized at ~i1 there is definitely a hit at ~i1. This is because the
memory line accessed by R at ~i1 was accessed most recently at ~i4, and it suffices to
check whether the memory line will remain in cache or not after that access. Based
on this observation, we present Theorem 2. Theorem 2 provides a mechanism to
combine the effects of all the reuse vectors in order to determine the definite cache
misses of a reference within a loop nest. Before presenting Theorem 2, we define
lexicographical ordering for the reuse vectors.

Definition 7. Reuse vector ~r1 = ~i − ~i1 is defined to be lexicographically shorter
than ~r2 =~i− ~i2, if and only if ~i1 � ~i2

Theorem 2. Consider a reference R. If there exists no reuse vector of R shorter
than ~r for a given set of iteration points I, the following holds:

(1) The replacement miss points of R in I along the reuse vector ~r are the definite
replacement miss points of R.

(2) All the other non-cold miss points in I are definite hit points.
(3) No absolute decision can be taken for the cold miss points in I along ~r unless

there exists no reuse vector longer than ~r, in which case, these cold miss points
are the definite cold miss points of R.

Proof. (1) We prove this statement by contradiction. Say the statement is
not true. Assume ~i in I is a replacement miss point of R along the reuse vector ~r.
So, the memory line accessed by R at ~i − ~r is evicted from the cache before it is
accessed again at~i. As the statement is not true, assume~i is a hit point. So, there
must be another iteration point, say ~i1, in between ~i − ~r and ~i, where the same
memory line is accessed but is not evicted before R accesses it again at ~i. This
implies that there exists a reuse vector ~i− ~i1 which is clearly shorter than ~r. This
contradicts the assumption that there exists no reuse vector of R in I shorter than
~r. Hence, the statement is true.

(2) Say the iteration point ~i in I is neither a cold miss point nor a replacement
miss point of R along ~r. Since~i is not a cold miss point along ~r,~i−~r exists within I,
and the same memory line is accessed by R at~i−~r and~i. Hence, there is potential
for realizing the reuse ~r at ~i. But, the fact that ~i is also not a replacement miss
point along ~r implies that the memory line accessed by R at ~i − ~r is not evicted
from the cache before it is accessed again by R at ~i. Hence, the access of R at ~i
enjoys a definite cache hit.

(3) Say the iteration point~i in I is a cold miss point along ~r. Hence, either~i−~r
is outside the iteration space, or the memory line accessed by R at ~i is different
from the one accessed at ~i − ~r. This implies that the reuse ~r does not exist here.
If there exist other reuse vectors in I (which has to be longer than ~r due to the
assumption made in the theorem), the fate of the access of R at~i will be determined
by them, and hence no conclusive remarks can be made just based on ~r. However,
if there exist no other longer reuse vectors, ~r is the only reuse vector present in I,
as it is already assumed to be the shortest one in I. Hence, ~i, being a cold miss
point along ~r, becomes a definite cold miss point also.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

744 · Somnath Ghosh et al.

The algorithm in Figure 7 uses Theorem 2 to consider reuse vectors one at a
time starting from the lexicographically shortest one. We have also developed a
different algorithm that considers all the reuse vectors simultaneously; it follows
directly from Theorem 3 presented in Appendix C.

C. ALTERNATIVE TO THEOREM 2

Let us again consider the example iteration space in Figure 17(b). If at least one
of the reuses are realized, the reference will find the data in the cache at ~i1. Hence,
the reference suffers a miss at ~i1 if and only if ~i1 is a miss along all the reuse vectors
~r1, ~r2, and ~r3. This is generalized and stated formally in the following theorem:

Theorem 3. The set of all miss instances of a reference is given by the
intersection of all the miss instance sets along the reuse vectors.

Proof. Let us assume that a reference R has m reuse vectors. We denote these
reuse vectors as ~r1, ~r2, · · · , ~rm and the set of all miss instances along them (as
evaluated by Theorem 1) as M1,M2, · · · ,Mm respectively. Also let M denote the
set of all miss instances or the iteration points at which the reference suffers a cache
miss. Hence we are required to prove that M = ∩mk=1Mk.

Let ~i ∈ M . This implies that R suffers a cache miss at ~i. Now, we claim that
~i ∈ Mk, for every k ∈ [1,m]. We prove this by contradiction. Assume there
exists a reuse vector ~r of the reference such that the iteration point ~i is not an
element of Mr, the set of miss instances of ~r. Now, if ~i is not an element of Mr,
this implies that the reuse represented by the vector ~r is realized at ~i. In other
words, R does not suffer a cold or a replacement miss at ~i along ~r. The fact that
R does not suffer a cold miss at ~i along ~r guarantees that there exists a reuse of
R at ~i. Thus, there cannot be a definite cold miss at ~i irrespective of the presence
of other reuse vectors. Also, as there is no replacement miss of R at ~i along ~r, the
memory line accessed by R at ~i is not evicted from the cache before it is reused
at ~i. Now, while finding cache misses along a particular reuse vector (by Theorem
1) we consider every possible interfering accesses. (We might, however, ignore the
presence of other accesses to the same memory line as discussed in Lemma 4.)
Hence, there is a definite hit at ~i. But, this is contrary to our assumption that the
reference suffers a cache miss at ~i. Thus, it follows that

~i ∈ Mk, for every k ∈ [1,m]
⇒ ~i ∈ ∩mk=1Mk.

Hence, ~i ∈ M ⇒ ~i ∈ ∩mk=1Mk

⇒ M ⊆ ∩mk=1Mk.

Let ~i ∈ ∩mk=1Mk, i.e., ~i ∈ Mk for every k ∈ [1,m]

⇒ no reuse is realized at ~i
⇒ the reference suffers a miss at ~i
⇒ ~i ∈ M

⇒ ∩mk=1Mk ⊆M.

Hence, M = ∩mk=1Mk.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

Cache Miss Equations · 745

REFERENCES

Adler, A. and Coury, J. E. 1995. The Theory of Numbers: A Text and Source Book of Problems.
Jones and Bartlett Publishers, Boston, MA.

Allen, R. and Kennedy, K. 1987. Automatic translation of FORTRAN programs to vector form.
ACM Trans. Program. Lang. Syst. 9, 4, 491–542.

Bacon, D. F. et al. 1994. A compiler framework for restructuring data declarations to en-
hance cache and TLB effectiveness. In Proceedings of the IBM Centre for Advanced Studies
Conference ’94.

Bailey, D. 1992. Unfavorable strides in cache memory systems. Tech. Rep. RNR-92-015, NASA
Ames Research Center, CA.

Banerjee, U. 1993. Loop transformations for Restructuring Compilers. Kluwer Academic Pub-
lishers, Norwell, MA.

Carr, S. and Kennedy, K. 1992. Compiler blockability of numerical algorithms. In Proceedings
of the Supercomputing ’92 Conference.

Carr, S. and Lehoucq, R. B. 1995. A compiler-blockable algorithm for QR decomposition. In
Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific Computing.

Clauss, P. 1996. Counting solutions to linear and nonlinear constraints through Ehrhart poly-
nomials: Applications to analyze and transform scientific programs. In Proceedings of the 1996
International Conference on Supercomputing.

Coleman, S. and McKinley, K. S. 1995. Tile size selection using cache organization and data
layout. In Proceedings of the SIGPLAN ’95 Conference on Programming Language Design and
Implementation.

Eisenbeis, C., Jalby, W., Windheiser, D., and Bodin, F. 1990. A strategy for array manage-
ment in local memory. In Proceedings of the 3rd Workshop on Programming Languages and
Compilers for Parallel Computing.

Ferrante, J., Sarkar, V., and Thrash, W. 1991. On estimating and enhancing cache effective-
ness (extended abstract). In Proceedings of the 4th International Workshop on Languages and
Compilers for Parallel Computing.

Gallivan, K., Jalby, W., and Gannon, D. 1988. On the problem of optimizing data trans-
fers for complex memory systems. In Proceedings of the 1988 International Conference on
Supercomputing.

Gannon, D., Jalby, W., and k. Gallivan. 1988. Strategies for cache and local memory man-
agement by global program transformation. J. Parall. Distrib. Comput. 5, 5 (Oct.), 587–616.

Hennessy, J. L. and Patterson, D. A. 1996. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, San Mateo, CA.

Hill, M. D. 1987. Aspects of cache memory and instruction buffer performance. Ph.D. thesis,
Computer Science Dept., University of California, Berkeley.

Hill, M. D. and Smith, A. J. 1989. Evaluating associativity in CPU caches. IEEE Trans.
Comput. 38, 12 (Dec.), 1612–1630.

Irigoin, F. and Triolet, R. 1988. Supernode partitioning. In Proceedings of the 15th Annual
ACM Symposium on the Principles of Programming Languages.

Kodukula, I., Ahmed, N., and Pingali, K. 1997. Data-centric multi-level blocking. In Proceed-
ings of the ACM SIGPLAN’97 Conference on Programming Language Design and Implemen-
tation. 346–357.

Lam, M., Rothberg, E. E., and Wolf, M. E. 1991. The cache performance of blocked algorithms.
In Proceedings of the 4th International Conference on Architectural Support for Programming
Languages and Operating Systems.

Lebeck, A. R. and Wood, D. A. 1994. Cache profiling and the SPEC benchmarks: A case study.
IEEE Computer , 15–26.

Li, W. and Pingali, K. 1992. Access normalization: Loop restructuring for NUMA compilers.
In Proceedings of the 5th International Conference on Architectural Support for Programming
Languages and Operating Systems.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

746 · Somnath Ghosh et al.

Martonosi, M., Gupta, A., and Anderson, T. 1992. MemSpy: Analyzing memory system
bottlenecks in programs. In Proceedings of the ACM SIGMETRICS 1992 Conference on Mea-
surement and Modeling of Computer Systems. 1–12.

McKinley, K. S., Carr, S., and Tseng, C. W. 1996. Improving data locality with loop trans-
formations. ACM Trans. Program. Lang. Syst. 18, 4 (July), 424–453.

McKinley, K. S. and Temam, O. 1996. A quantitative analysis of loop nest locality. In Proceed-
ings of the 7th International Conference on Architectural Support for Programming Languages
and Operating Systems.

Mowry, T. C., Lam, M. S., and Gupta, A. 1992. Design and evaluation of a compiler algorithm
for prefetching. In Proceedings of the 5th International Conference on Architectural Support
for Programming Languages and Operating Systems.

Navarro, J. J., Juan, T., and Lang, T. 1994. Mob forms: A class of multilevel block algorithms
for dense linear algebra operations. In Proceedings of the 1994 International Conference on
Supercomputing.

Porterfield, A. K. 1989. Software methods for improvement of cache performance on super-
computer applications. Ph.D. thesis, Rice University.

Pugh, W. 1992. The Omega test: A fast and practical integer programming algorithm for depen-
dence analysis. Commun. ACM 35, 8 (Aug.), 102–114.

Pugh, W. 1994. Counting solutions to Presburger formulas: How and Why. In Proceedings of
the ACM SIGPLAN’94 Conference on Programming Language Design and Implementation.
121–134.

Rivera, G. and Tseng, C. W. 1998. Data transformations for eliminating conflict misses. In
Proceedings of the ACM SIGPLAN’98 Conference on Programming Language Design and Im-
plementation.

Sugumar, R. A. and Abraham, S. G. 1993. Efficient simulation of caches under optimal replace-
ment with applications to miss characterization. In Proceedings of the ACM SIGMETRICS
1993 Conference on Measurement & Modeling of Computer Systems.

Temam, O., Fricker, C., and Jalby, W. 1994. Cache interference phenomena. In Proceedings of
the ACM SIGMETRICS 1994 Conference on Measurement & Modeling of Computer Systems.

Temam, O., Granston, E., and Jalby, W. 1993. To copy or not to copy: A compile-time
technique for assessing when data copying should be used to eliminate cache conflicts. In
Proceedings of the Supercomputing’93 Conference.

Torrellas, J., Lam, M. S., and Hennessey, J. L. 1990. Shared data placement optimizations

to reduce multiprocessor cache miss rates. In Proceedings of the 1990 International Conference
on Parallel Processing.

Wilson, R. P. et al. 1994. SUIF: An infrastructure for research on parallelizing and optimizing
compilers. ACM SIGPLAN Notices 29, 12 (Dec.).

Wolf, M. E. and Lam, M. S. 1991. A data locality optimization algorithm. In Proceedings of
the SIGPLAN ‘91 Conference on Programming Language Design and Implementation.

Wolfe, M. J. 1989. More iteration space tiling. In Proceedings of the Supercomputing ’89
Conference.

Received August 1997; revised November 1998; accepted January 1999

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.

	Introduction
	Background and Overview
	Program Model
	Compilation Model
	Architecture Model
	Terminology
	Iteration Space
	Memory Terminology
	Reuse Vector
	Miss Along a Reuse Vector

	Generating the Cache Miss Equations
	Forming Cold Miss Equations
	Spatial Reuse (Self or Group)
	Temporal Reuse (Self or Group)

	Forming Replacement Miss Equations
	Intuition and Overview
	Formal Method
	Example

	Simplifying the Cache Miss Equations
	Putting It All Together

	Finding Cache Misses from the Cache Miss Equations
	Algorithm
	Set-Associative Caches
	CME Accuracy

	Using CMEs to Guide Memory Optimizations
	Example 1: Padding
	Padding for a Loop Nest in alvinn
	Compiler Algorithm for Padding

	Example 2: Selecting Block Size for Loop Tiling
	Block Size Selection for Blocked Matrix Multiply
	Selecting Block Size to Eliminate Both Self- and Cross-Interferences

	Computational Complexity
	Discussion: Future Extensions and Applications
	Inter-Nest Analysis
	Automatic Solving and Analysis of the CMEs
	Applications

	Related Work
	Conclusions
	Representing the set of potentially interfering points
	Theory behind the Cache-Miss-Finding Algorithm
	Alternative to Theorem 2
	References

