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Dynamic voltage scaling (DVS) has become an important dynamic power-management technique to
save energy. DVS tunes the power-performance tradeoff to the needs of the application. The goal is to
minimize energy consumption while meeting performance needs. Since CPU power consumption is
strongly dependent on the supply voltage, DVS exploits the ability to control the power consumption
by varying a processor’s supply voltage and clock frequency. However, because of the energy and
time overhead associated with switching DVS modes, DVS control has been used mainly at the
interprogram level.

In this paper, we explore the opportunities and limits of intraprogram DVS scheduling. An
analytical model is derived to predict the maximum energy savings that can be obtained using
intraprogram DVS given a few known program and processor parameters. This model gives in-
sights into scenarios where energy consumption benefits from intraprogram DVS and those where
there is no benefit. The model helps us extrapolate the benefits of intraprogram DVS into the fu-
ture as processor parameters change. We then examine how much of these predicted benefits can
actually be achieved through compile-time optimal settings of DVS modes. We extend an existing
mixed-integer linear program formulation for this scheduling problem by accurately accounting
for DVS energy switching overhead, by providing finer-grained control on settings and by consider-
ing multiple data categories in the optimization. Overall, this research provides a comprehensive
view of intraprogram compile-time DVS management, providing both practical techniques for its
immediate deployment as well theoretical bounds for use into the future.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers;
D.4.7 [Operating System]: Organization and Design—Real-time systems and embedded systems;
I.6.4 [Computing Methodologies]: Simulation and Modeling—Model validation and analysis

General Terms: Design, Experimentation

Additional Key Words and Phrases: Analytical model, compiler, dynamic voltage scaling, low power,
mixed-integer linear programming

1. INTRODUCTION

The International Technology Roadmap for Semiconductors highlights system
power consumption as a limiting factor in our ability to develop designs below
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the 50-nm technology point [Semiconductor Industry Association 2001]. Indeed,
power/energy consumption has already started to dominate execution time as
the critical metric in system design. This holds not just for mobile systems due
to battery life considerations, but also for server and desktop systems due to
exorbitant cooling, packaging, and power costs.

Various power-management techniques have been implemented to save
energy. Dynamic voltage and frequency scaling (DVS) is a recent dynamic
power-management technique that allows the system to explicitly tradeoff
performance for energy savings, by providing a range of voltage and frequency
operating points. Since power consumption is strongly dependent on the supply
voltage, DVS makes it possible to reduce power/energy consumption by reduc-
ing the supply voltage at run-time. However, in CMOS technology the circuit
delay increases as the supply voltage decreases [Sakurai and Newton 1990]:
delay ∝ Vdd/(Vdd − Vt)α, where Vdd is the supply voltage, Vt is the threshold
voltage, and α is a technology-dependent factor (between 1 and 2). Thus, re-
ducing voltage will result in performance degradation as the clock frequency f
needs to be decreased to account for the increased circuit delay. Consequently,
DVS techniques need to make sure that the performance needs continue to be
met as voltage and frequency are scaled.

Proposals have been made for purely-hardware DVS [Marculescu 2000] as
well as for schemes that allow DVS with software control [Flautner et al. 2001;
Intel Corp. 2003b; Hughes et al. 2001]. DVS accomplishes energy reduction
through scheduling different parts of the computation to different (V, f ) pairs
so as to minimize energy while still meeting execution time deadlines. Over the
past few years DVS has been shown to be a powerful technique that can po-
tentially reduce overall energy consumption by several factors. More recently,
DVS control has been exposed at the software level through instructions that
can set particular values of (V, f ). These mode-set instructions are provided in
several contemporary microprocessors, such as Intel XScale [Intel Corp. 2003b],
StrongARM [Intel Corp. 2003a], and AMD mobile K6 Plus [Advanced Micro
Devices Corporation 2002]. However, the use of these instructions has been
largely at the process/task level under operating system control. The coarser
grain control at this level allows for easy amortization of the energy and run-
time overhead incurred in switching between modes for both the power supply
(V ) as well as the clock circuitry ( f ). It also makes the control algorithm easier
because it is relatively easy to assign priorities to tasks, and schedule higher
priority tasks at higher voltages and lower priority tasks at lower voltages.
Providing this control at a finer-grain level within a program would require
careful analysis to determine when the mode-switch advantages outweigh the
overhead. Hsu and Kremer provide a heuristic technique that lowers the volt-
age for memory-bound sections [Hsu and Kremer 2002]. The intuition is that
the execution time here is bound by memory access time, and thus the compute
time can be slowed down with little impact on the total execution time, but
with potentially significant savings in energy consumption. Using this tech-
nique, they have been able to demonstrate modest energy savings. Subsequent
work on using mathematical optimization by Saputra et al. [2002] provides an
exact mixed-integer linear programming (MILP) technique that can determine
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the appropriate (V, f ) setting for each loop nest. This optimization seems to
result in better energy savings. However, this formulation does not account for
any energy penalties incurred by mode switching. Thus, it is unclear how much
of these savings will hold up once those are accounted for.

In this paper, we are interested in studying the opportunities and limits of
intraprogram DVS using compile-time mode settings. We seek to answer the
following questions: Under what scenarios can we get significant energy sav-
ings? What are the limits to these savings? The answers to these questions
determine when and where (if ever) is compile-time intraprogram DVS worth
pursuing. We answer these questions by building a detailed analytical model
for energy savings for a program and examining its upper limits. In the process,
we determine the factors that determine energy savings and their relative con-
tributions. These factors include some simple program-dependent parameters,
memory speed, and the number of available voltage levels.

We also examine how these opportunities can be exploited in practice. To-
ward this end we develop an MILP-optimization formulation that extends the
formulation by Saputra et al. by including energy penalties for mode switches,
providing a much finer grain of program control, and enabling the use of mul-
tiple input data categories to determine optimal settings. We show how the so-
lution times for this optimization can be made-acceptable in practice through a
judicious restriction of the mode-setting variables. Finally, we show how the re-
sults of this optimization relate to the limits predicted by our analytical model.

The rest of this paper is organized as follows. Section 2 reviews related work
in this area. This is followed by a description of our basic analytical model
and analysis in Section 3. The detailed analysis is presented in Sections 4 and
5. Section 6 derives the MILP formulation used to determine the values of
the optimal mode-setting instructions. Section 7 discusses some implementa-
tion details for our MILP-based approach, and Section 8 provides the results
of various experiments. Section 9 considers the applicability of intraprogram
DVS on a real-time multitask environment. Critical and unresolved issues
are the focus of Section 10. Finally, we present some concluding remarks in
Section 11.

2. RELATED WORK

DVS scheduling policies have been studied exhaustively at the operating sys-
tem (OS), microarchitecture, and compiler levels. Algorithms at the OS level
using heuristic scheduling include interval-based algorithms and task-based al-
gorithms. Interval-based algorithms divide the execution time into fixed-length
intervals. Information from previous intervals is used to predict the workload
of the current interval and an appropriate DVS setting is picked based on
the prediction. Algorithms in the category include Lorch and Smith [2001],
Weiser et al. [1994], and Sinha and Chandrakasan [2001]. The task-based al-
gorithms [Luo and Jha 2003; Jejurikar and Gupta 2002; Zhang et al. 2003;
Swaminathan et al. 2002; Pillai and Shin 2001] schedule at the granularity of
a task and use heuristics to pick a DVS setting. Integer linear programming
(ILP)-based scheduling has also been used in algorithms at the OS level. For
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example, Ishihara and Yasuura [1998] give an ILP formulation that does not
take into account the transition costs. Swaminathan and Chakrabarty [2001]
incorporate the transition costs into the ILP formulation but make some sim-
plifications and approximations in order to make the formulation linear. At the
microarchitecture level, Ghiasi et al. [2000] suggest the use of IPC (instructions
per cycle) to direct DVS, and Marculescu [2000] proposes the use of cache misses
to direct DVS. Both are done through hardware support at run-time and work
for general applications. In Im et al. [2001], buffers are used to facilitate the
utilization of DVS techniques for low-power multimedia applications. The mul-
tiple clock domain microarchitecture proposed by Magklis et al. [2003] allows
the frequency/voltage of microprocessor regions to be adjusted independently
and dynamically. The utilization of interregion communication queues is used
to determine the appropriate DVS settings for each domain. The DVS tech-
niques for similar multiple clock domain architectures have also been proposed
in Iyer and Marculescu [2002].

Some research efforts have targeted the use of mode-set instructions. Mode-
set instructions are inserted either evenly at regular intervals in the program
[Lee and Sakurai 2000], or on a limited number of control-flow edges as pro-
posed by Shin [Shin et al. 2001]. In Shin’s work [Shin et al. 2001], the mode
value is set statically using the worst-case execution time analysis for each
basic block. Branching edges in control-flow graph (CFG) that drop the re-
maining worst-case execution time faster than the current execution rates are
selected as voltage/frequency scaling points. In AbouGhazaleh et al. [2003], a
power-management point routine is invoked periodically to adjust the processor
voltage/frequency based on the worst-case remaining cycles, which are collected
at run-time by instrumenting code at compile time. Thus, there exists run-time
overhead related to the mode decision in addition to the switching overhead.
Hsu and Kremer [2002] suggest lowering voltage/frequency in memory-bound
regions using power-down instructions and provide a nonlinear optimization
formulation for optimal scheduling. Saputra et al. [2002] derive an ILP formu-
lation for determining optimal modes for each loop nest, but do not consider the
energy overhead of switching modes.

The efficiency of scheduling policies has also been discussed in the literature.
Hsu and Kremer [2003] have introduced a simple model to estimate theoretical
bounds of energy reduction, which any DVS algorithm can produce. In Ishihara
and Yasuura [1998], a simple ideal model that is solely based on the dynamic
power dissipation of CMOS circuits has been studied and an OS-level schedul-
ing policy is discussed based on that model and ILP. Some other work focuses
only on the limits of energy savings for DVS systems without taking into con-
sideration actual policies. Qu provides models for feasible DVS systems in his
work [Qu 2001]. However, evaluating the potential energy savings of compile-
time DVS policies for real programs has not received much attention thus far.
We feel it is important as it gives us deep insight into opportunities and limits
of compile-time intraprogram DVS. Since the interprogram DVS scheduling at
the OS level is fully developed, we assume benefits from interprogram DVS
scheduling have been exploited and focus our efforts on extra energy savings
provided by intraprogram DVS.
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In our previous work [Xie et al. 2003], we touched on this aspect by providing
an analytical model. This work extends on that by incorporating features of
both real-program behavior and intraprogram DVS scheduling. In this paper,
we present an accurate and simplified analytical model, which is a refinement
of our previous analytical model [Xie et al. 2003]. We also extend existing ILP
formulations to apply DVS to any granularity of program code with practical
transition costs and multiple data categories.

3. ANALYTICAL MODELING FOR ENERGY SAVINGS USING
INTRAPROGRAM DVS

3.1 Overview

We are interested in answering the following questions: What are the fac-
tors that influence the amount of power savings obtained by using compile-
time DVS? Can we determine the power savings and upper bounds for them
in terms of these factors? The answers to these questions will help provide
insight into what kinds of programs are likely to benefit from compile-time
DVS, under what scenarios and by how much. Among other outcomes, accu-
rate analysis can help lay to rest the debate on the value of intraprogram DVS
scheduling.

There has been some research on potential energy savings for DVS schedul-
ing. Analytical models have been studied in Ishihara and Yasuura [1998] and
Qu [2001]. However, that research only models computation operations and not
memory operations, thus not capturing a critical aspect of program execution.
Further, their models are not suitable for bound analysis for compile-time DVS
because they ignore critical aspects of the compile-time restriction. In this sec-
tion, we describe a more realistic and accurate analytical model to determine
achievable energy savings that overcomes the restrictions of prior modeling
efforts.

In deriving this model, we make the following assumptions about the
program, microarchitecture, and circuit implementation:

(1) The program’s logical behavior does not change with frequency.
(2) Memory is asynchronous with the CPU.
(3) The clock is gated when the processor is idle.
(4) The relationship between frequency and voltage is: f = k(v − vt)α/v where

vt is the threshold voltage, and α is a technology-dependent factor (currently
around 1.5) [Sakurai and Newton 1990].

(5) Computation can be assigned to different frequencies at an arbitrarily fine
grain, that is, a continuous partitioning of the computation and its assign-
ment to different voltages is possible. Also each invocation of an instruction
can run at different frequency.

(6) There is no energy or delay penalty associated with switching between
different (V, f ) pairs.

While the first four assumptions are very realistic, the last two are opti-
mistic in the sense that they allow for higher energy savings than may be
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achievable in practice. As we are interested in determining upper bounds on
the achievable savings, this is acceptable. When we move from the analytical
models to practical implementation, we do not use the last two assumptions.
In the implementation, the granularity of computation is determined by the
potential positions of voltage and frequency switches. In addition, energy and
delay penalty for switches are also included. Thus, the optimism will result in
higher energy savings in theory as compared to practice. We will review the
tightness of the bounds in Section 8.

3.2 Basic Definitions of Model Parameters

The existence of memory operations complicates the analysis. Cache misses pro-
vide an opportunity for intraprogram DVS, since memory access time and thus
possible execution time will not change with voltage/frequency if the memory
is asynchronous with the processor. Slowing down the frequency in that region
may save energy without impacting performance.

Instruction cache misses, on the other hand, do not provide a good opportu-
nity for intraprogram DVS. First, most instruction cache misses are cold-start
misses. Second, when instruction cache misses happen, the CPU usually stalls
and clock gating will reduce the energy significantly. This is not the case with
data cache misses since computation may be able to continue while waiting for
data from the memory.

For each instruction execution, we classify it as either an overlap operation or
a nonoverlap operation. Some operations can run concurrently with cache miss
memory operations. They are referred to as the overlap part. Some operations
cannot run in parallel with cache miss memory operations and are dependent on
the data being fetched from the memory. They are referred to as the nonoverlap
part.

For a piece of code consisting of three instructions,

(1) LOAD r1, s1(4)
(2) ADD r2, r3, r5
(3) SUB r4, r1, r4

suppose the first LOAD instruction encounters a cache miss and goes to mem-
ory to fetch data. The ADD instruction can run concurrently with the LOAD
instruction, so it is an overlapping operation. Since the SUB instruction needs
to use data from the LOAD instruction and it cannot run in parallel with the
LOAD instruction, it is a nonoverlapping operation.

We define the following program parameters of the model based on this
observation.

Noverlap The number of execution cycles of operations that can run in par-
allel with cache miss memory operations at any frequency.

Nnonoverlap The number of execution cycles of operations that cannot run in
parallel with any cache miss memory operations at all possible
frequencies.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.
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Fig. 1. Possible overlaps of memory and computation. For the computation-dominated case, over-
lapped computation operations take longer than cache misses. For the memory-dominated case,
cache misses take longer than overlapped operations.

tinvariant The execution time of cache miss memory operations. As mem-
ory operates asynchronously relative to the processor, this time is
independent of processor frequency, and thus is measured abso-
lutely rather than in terms of processor cycles.

Some execution cycles may run in parallel with cache miss memory oper-
ations at high frequencies but do not overlap with any cache miss memory
operations at lower frequencies because cache miss memory operations have
smaller latencies in terms of execution cycles at lower frequencies. However,
according to the definition, if they can run in parallel with cache miss memory
operations at high frequency, they are still classified as Noverlap. So Noverlap and
Nnonoverlap do not change with processor frequency.

For the simple example above, Noverlap = 1, Nnonoverlap = 1, and tinvariant =
0.1 µs, if we assume ADD and SUB instructions take 1 cycle and the memory
latency is 0.1 µs.

Thus, we can represent the execution time of this simple piece of code as
illustrated in Figure 1. If the ADD instruction hypothetically takes longer than
the cache miss LOAD instruction, the execution time will be the summation of
ADD and SUB instruction as shown in Figure 1(a). If the ADD instruction takes
time shorter than the LOAD instruction, then the execution time is illustrated
in Figure 1(b), which is the summation of execution time of the LOAD and SUB
instructions.

The actual program execution consists of many pieces of code, so the exe-
cution time will be represented by the accumulation of many similar figures
as shown in Figure 1. In other words, the cache miss memory operations, the
overlapped and nonoverlapped operations will be interleaved. However, we can
lump all the occurrences of each category together and get an overall number for
each category, since for the purpose of the analysis it is sufficient to represent
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Fig. 2. Variation of tinvariant due to different processor frequencies when multiple outstanding
cache misses are allowed.

the total execution time. Consequently, the overall execution time of the whole
program still can be represented as illustrated in Figure 1.

3.3 Validation of Model Parameters

The program parameter tinvariant we defined may be dependent on the processor
frequency. If the front-side bus has different frequency levels as the processor
frequency changes, memory access time varies. However, we can divide the
analysis into separate processor frequency domains so that the front-side bus
speed is fixed in that processor frequency domain. Thus in each domain, memory
access time is constant and analysis can be performed exactly the same as the
fixed front-side bus speed case. Thus, we assume the fixed front-side bus speed
thereafter without losing any generality.

Since memory access time is fixed, for processors allowing only one cache
miss at a time, tinvariant is constant. However, for processors that allow multi-
ple outstanding cache misses, tinvariant might not be constant. This is because
multiple cache misses can overlap and the overlapped ratio depends on the pro-
cessor frequency as shown in Figure 2. In Figure 2, there are two consecutive
cache misses. The second cache miss is 5 cycles behind the first one. For 800
MHz, 5 cycles mean 6.25 ns but for 400 MHz, 5 cycles mean 12.5 ns. So tinvariant
increases as the processor frequency decreases.

In order to illustrate the trend, we use SimpleScalar to profile tinvariant for
five benchmarks from the MediaBench suite [Lee et al. 1997] (mpg123 is from
MediaBench II [MediaBench II 2003]) running at a single frequency f . If for an
execution cycle, a cache miss is being handled, then tinvariant increases by 1/ f .

Figure 3 shows the profiled tinvariant of the five benchmarks we consider using
different frequencies for a processor allowing at most eight outstanding cache
misses at one time. It is easy to notice that tinvariant has variations across differ-
ent frequencies. Higher frequency gives a higher overlap ratio. For programs
with high miss rates such as mpg123 and epic, the variation is more obvious.
For epic, 0.85 million cycles out of 2.7 million cache miss cycles have more than
two simultaneous cache misses and the variation is 7% at 200 MHz. Since the
variation is less than 8%, we will treat tinvariant as constants to simplify the
analysis.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.
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Fig. 3. tinvariant for different processor frequencies: Eight outstanding cache misses allowed.

Note that Noverlap and Nnonoverlap are independent of the processor frequency.
We pick the values sampled at the highest frequency (800 MHz) as the values
of the three parameters. Any cycles that do not overlap with memory accesses
at the highest frequency will not overlap with any memory accesses at lower
frequency, so they belong to Nnonoverlap. Each execution cycle is classified into
one of the three categories. If for an execution cycle, a cache miss is being
handled, then tinvariant increases by 1/ f . If at the same time, there are some
computation operations, then Noverlap increases by 1. For an execution cycle, if
there is no cache miss and there are computation operations, then Nnonoverlap
increases by 1. Note that the classification is based on every execution cycle
and not every instruction. This is because for superscalar processors multiple
instructions can be executed at the same time.

Consequently, the total execution time for any piece of code or program as it
just meets its deadline can be represented as illustrated in Figure 1, with the
different cases corresponding to different relative values of these parameters.
In these figures, the frequency f is not fixed through the program execution
and may vary.

In the figures, tdeadline is the time deadline that the computation needs to
meet. In Figure 1(a), parallel operations determine the execution time of the
overlap part and total execution time is Noverlap/ f +Nnonoverlap/ f . In Figure 1(b),
cache miss memory operations dominate the overlap part and total execution
time is tinvariant + Nnonoverlap/ f .

The total execution time expression for any of these cases is

max(tinvariant, Noverlap/ f ) + Nnonoverlap/ f

3.4 Basic Model

The goal of the analytical model is to find minimum energy points (i.e., maxi-
mum energy savings) using different voltages for different parts of the execu-
tion, subject to the following two time constraints:

(1) The total execution time is less than tdeadline.
(2) The time for the nonoverlap operations cannot overlap with the time for

the cache miss memory operations tinvariant. This respects the fact that non-
overlap operations must wait for the memory operations to complete.
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We now state our overall optimization problem. In Figure 1, assume a time
ordering from top to bottom. Let t1 be the time the overlapping part finishes,
t2 be the time the nonoverlap operations start execution, and t3 be the time all
computation finishes. The goal, then, is to minimize:

E =
∫ t1

0
v2

1(t) f1(t) dt +
∫ t3

t2

v2
2(t) f2(t) dt

subject to the constraints

(1) t3 ≤ tdeadline

(2) t2 ≥ tinvariant and t1 ≤ t2

The first integral represents energy consumption during the overlapping
computation. The second integral represents energy during the nonoverlap pe-
riod. As mentioned earlier, we assume perfect clock gating when the processor
is waiting for memory, and thus there is no energy consumption in the processor
during idle memory waits. Also, we account here for only the processor energy;
the memory energy is a treated as constant independent of processor frequency.
Unlike models proposed in Ishihara and Yasuura [1998] or Qu [2001], our in-
clusion of memory operations adds significant complexity to the optimization
problem. We now consider specific cases of this optimization, corresponding to
different options for the set of voltages available.

4. DISCUSSION OF MODEL DETAILS: CONTINUOUSLY SCALABLE
VOLTAGE CASE

We first consider the case where the supply voltage can be scaled continuously,
that is, v1, v2 can vary continuously over some range [VL, VH ]. While continuous
scaling may not be available in practice, this analysis serves two purposes. First,
it helps us build up to the discrete case presented in the next section. Second,
it approximates the case where the number of discrete voltages available is
sufficiently large. Previous work considering only computation operations and
not memory operations showed that for a fixed deadline, the optimal solution is
to use a single supply voltage that adjusts the total execution time to just meet
the deadline [Ishihara and Yasuura 1998]. So, in this case v1 is a constant over
[0, t1] and 0 at other times. v2 is a constant over [t2, t3] and 0 otherwise. We now
need to find appropriate v1, v2, [0, t1] and [t2, t3] such that energy is minimized.

A key dividing line between the computation-dominated and memory-
dominated case concerns the inflection point when memory time begins to mat-
ter. We use the term f invariant to refer to a clock frequency at which the execu-
tion time of Noverlap cycles of computation operations just balances the cache
miss service time tinvariant, thus f invariant = Noverlap/tinvariant. (We use vinvariant
to refer to the voltage setting paired with that frequency). If the speed for the
overlapped part is slower than f invariant, then the Noverlap cycles of computation
operations take up the entire cache miss period tinvariant and go beyond as shown
in Figure 1(a). Similarly, if the speed is faster than f invariant, then tinvariant is not
filled up with overlap operations as shown in Figure 1(b). If the optimal energy
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point can be reached with a frequency slower than f invariant we say that the
program is computation dominated.

The problem becomes one of minimizing:

E(v1, v2) = Noverlap × v2
1 + Nnonoverlap × v2

2

subject to different constraints depending on
if f1 > f invariant

Nnonoverlap

f2
+ tinvariant = tdeadline (1)

if f1 ≤ f invariant

Noverlap

f1
+ Nnonoverlap

f2
= tdeadline (2)

When f1 > f invariant, f2 (hence v2) is completely determined by the con-
straint (1). f1 and f2 (thus v1 and v2) are independent. As a result, to get the
most energy savings, f1 should be as low as possible, which means f1 should
not be greater than f invariant. Hence, we will only focus on the second case where
f1 ≤ f invariant from now on.

Representing f as a function of v to get all equations in terms of v:
if k(v1 − vT )α/v1 ≤ f invariant

Noverlapv1

k(v1 − vT )α
+ Nnonoverlapv2

k(v2 − vT )α
= tdeadline (3)

Due to the deadline constraint, v1 and v2 are not independent. We use this in
deriving the value of v1 (and thus v2) that results in the least energy as follows:

dE
dv1

= 2Noverlapv1 + 2Nnonoverlapv2
dv2

dv1

dv2
dv1

is obtained from the constraint equation (3).

Noverlap(v1 − αv1 − vT )
k(v1 − vT )α+1

+ Nnonoverlap(v2 − αv2 − vT )
k(v2 − vT )α+1

dv2

dv1
= 0

and

dv2

dv1
= − Noverlapv1

Nnonoverlapv2

(1 − α − vT /v1)
(1 − α − vT /v2)

(v2 − vT )α+1

(v1 − vT )α+1

Thus, we get

dE
dv1

= 2Noverlapv1

(
1 − (1 − α − vT /v1)

(1 − α − vT /v2)
(v2 − vT )α+1

(v1 − vT )α+1

)
(4)

The sign of dE
dv1

depends on the relationship between v1 and v2.

Let g (v1, v2) = (1−α−vT /v1)
(1−α−vT /v2)

(v2−vT )α+1

(v1−vT )α+1 , then g (v1, v2) is a decreasing function of
v1. Hence g (v1, v2) is an increasing function of v2, since v1 and v2 must satisfy
constraint (2). It is easy to see that when v1 = v2, g (v1, v2) = 1.
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When v1 = v2, we get f1 = f2 = (Noverlap+Nnonoverlap)/tdeadline from constraint
(2). We define f ideal = (Noverlap + Nnonoverlap)/tdeadline and videal is the paired
voltage setting with f ideal. So f ideal is the single frequency at which the whole
program just finishes at the deadline.

It is easy to deduce that

g (v1, v2)




< 1 if v1 > v2

= 1 if v1 = v2 = videal

> 1 if v1 < v2

By applying the results of g (v1, v2) to Equation (4), we get the sign of dE
dv1

:

dE
dv1




> 0 if v1 > v2

= 0 if v1 = v2 = videal

< 0 if v1 < v2

(5)

Depending on the parameters, however, not all three relationships in Equa-
tion (5) are valid. We define fnonoverlap = Nnonoverlap/(tdeadline − tinvariant) and
vnonoverlap is the paired voltage with fnonoverlap. fnonoverlap is the lowest frequency
f2 can achieve, since nonoverlap operations cannot be executed within tinvariant.
So (tdeadline − tinvariant) is the maximum time for nonoverlap operations. From
the previous discussion, f invariant is the upper bound for f1. So the relationship
between f invariant and fnonoverlap determines the possible relationship for v1 and
v2. As a result, we will discuss two cases separately.

4.1 Computation-Dominated Case

Since fnonoverlap is the lowest frequency for f2 and f invariant is the highest fre-
quency for f1, if fnonoverlap < f invariant, all three possible relationships (namely,
v1 > v2, v1 = v2, and v1 < v2) are valid because they do not violate the boundary
requirements. Thus, all conditions in Equation (5) can be satisfied. Then, from
Equation (5), it is easy to see that when v1 = v2 = videal, energy consumption is
minimized, since dE

dv1
= 0.

Figure 4 shows the relationship between energy consumption and supply
voltage v1 for a set of parameters that satisfy these conditions (i.e., fnonoverlap ≤
f invariant). When v1 < videal or v1 > videal, energy consumption increases as you
move away from videal. When v1 = v2 = videal, energy is minimized. This is
the computation-dominated case as shown in Figure 5(a), since the overlapped
operations dominate the execution time of the overlapped part. Using the single
frequency f ideal, overlap operations take up the entire cache miss period tinvariant
and go beyond. So the optimal energy point is reached with a single frequency
f ideal, which is slower than f invariant. The minimum energy is

E = (Noverlap + Nnonoverlap)v2
ideal

In this case, the memory time is largely irrelevant because meeting the dead-
line mainly revolves around getting the computation done in time. This case is
similar to the pure computation case in Ishihara and Yasuura [1998] and thus
a single frequency leads to optimal energy performance. Since a single (V, f )
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Fig. 4. Computation dominated: Energy consumption versus supply voltage (v1) of overlapped
compute/memory region (tdeadline = 10 ms, tinvariant = 3 ms, Noverlap = 2 × 106 cycles, Nnonverlap =
4 × 106 cycles, α = 1.5, vT = 0.45 v.)

Fig. 5. Optimized frequencies to achieve minimum energy for computation-dominated case and
memory-dominated case.

setting is optimal for this case, intraprogram DVS will not provide energy sav-
ings here.

4.2 Memory-Dominated Case

If fnonoverlap > f invariant, then f2 is always greater than f1 because fnonoverlap is
the lower bound for f2 and f invariant is the upper bound for f1. So v1 > v2 and
v1 = v2 are not valid. There is only one valid condition here: v1 < vinvariant <

vnonoverlap < v2.

dE
dv1

< 0 if v1 < vinvariant < v2
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Fig. 6. Memory dominated: Energy consumption versus supply voltage (v1) of mixed compute/
memory region (tdeadline = 10 ms, tinvariant = 5 ms, Noverlap = 2 × 106 cycles, Nnonverlap = 4 × 106

cycles, α = 1.5, vT = 0.45 v).

Since the energy function E is a decreasing function of v1 and vinvariant is the
upper bound for v1, vinvariant is the frequency for the overlapped part to minimize
energy. At this point, vnonoverlap is the frequency for the nonoverlapped part.

Figure 6 shows the energy consumption with respect to different v1 for
this situation. When v1 > vinvariant or v1 < vinvariant, energy consumption in-
creases as you move away from vinvariant. Unlike the computation-dominated
case, there is a sharp turning point at vinvariant. At this point, energy consump-
tion is minimized, which requires two different (V, f ) settings as shown in Fig-
ure 5(b). This is the memory-dominated case because tinvariant is just filled up
with overlap operations for minimum energy and overlap operations cannot go
beyond.

The minimum energy is achieved when the overlapped part uses vinvariant
and the nonoverlap part uses vnonoverlap (vnonoverlap ≥ voverlap).

Emin = Noverlapv2
invariant + Nnonoverlapv2

nonoverlap

Note that in this case, the computation is broken into two parts, the over-
lapped and the nonoverlapped part, each with its own time constraint. The
optimization problem has been solved by treating it as two optimization prob-
lems for the overlapped part and the nonoverlapped part, respectively. Thus, the
optimal operating point arises when two frequencies are chosen: one for the over-
lapped computation, and a different one for the nonoverlapped computation.

4.3 Continuous Voltage Settings: Summary and Results

The primary result here is that a special relationship between various pa-
rameters is required to achieve energy savings using compile-time mode set-
tings. Specifically, we need fnonoverlap > f invariant. This condition translates to:
Nnonoverlap/(tdeadline − tinvariant) > Noverlap/tinvariant. When all the parameters are
consistent with the above condition, it is possible to use multiple voltages for
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Fig. 7. Continuous case: Energy saving ratio with respect to different Noverlap and Nnonoverlap
(tdeadline = 3 ms, tinvariant = 1 ms).

different parts of the computation to achieve power savings over the single-
voltage case. Further, the analysis tells us that two voltages suffice for this
case. Energy savings is a function of Noverlap, Nnonoverlap, tinvariant, and tdeadline.
To visualize the dependence, we now consider various surfaces in this space,
keeping three of these parameters at fixed values and varying two of them.

Energy savings for different Noverlap and Nnonoverlap are illustrated in
Figure 7. For fixed tdeadline and tinvariant, for most cases, there is no energy
savings. Recall that single frequency outcomes offer no energy savings over
a fixed a priori frequency choice. As Noverlap increases, some computations can
be executed within tinvariant without increasing execution time. Two frequen-
cies instead of one can then be used to achieve minimum energy, as shown in
Figure 5(b). As Noverlap keeps increasing, eventually computation operations
dominate. At this point, the “virtual” deadline set by memory operations is of
no consequence and a single frequency (this time due to computation domi-
nance) will once again be optimal. This corresponds to Figure 1(a). Thus there
are again no energy savings when compared to the best static single-frequency
setting.

In Figure 8, Nnonoverlap and tdeadline are fixed. As tinvariant increases, energy
saving increases. This is intuitive because as the memory bottleneck increases,
the opportunities for voltage scaling due to overlap slack increase.

Memory operations are cache miss memory operations, slowing down the
overlap computations does not dilate the memory time-line, and thus does not
impede the start of the nonoverlapping operations.

Figure 9 shows energy savings with respect to different tdeadline and Noverlap.
Other parameters are fixed. When Noverlap is small, as tdeadline increases, energy
savings increase. Once again, this makes intuitive sense because the greater
slack gives more opportunities for energy savings. As Noverlap gets bigger, how-
ever, energy savings go up, achieve a maximum point and then go down again.
This is because as Noverlap increases, the slowdown over the tinvariant has more
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Fig. 8. Continuous case: Energy saving ratio with respect to different Noverlap and tinvariant

(Nnonoverlap = 106 cycles, tdeadline = 3 ms).

Fig. 9. Continuous case: Energy saving ratio with respect to different tdeadline and Noverlap

(Nnonoverlap = 106 cycles, tinvariant = 1 ms).

impact on the execution time. So it is less likely two frequencies will reduce
energy.

5. DISCUSSION OF MODEL DETAILS: DISCRETE VOLTAGE SETTING CASE

In the case where voltage is continuously scalable, optimal settings can always
be obtained with either one or two voltage choices. In real processors, how-
ever, supply voltages are much more likely to be scalable only in discrete steps.
Thus, rather than having free choice of v1 and v2, they must be selected from
a set of values (V1, V2, . . . , Vh). (F1, F2, . . . , Fh) are the corresponding paired
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frequencies. The problem becomes one of minimizing:

E =
h∑
i

V 2
i x1i +

h∑
j=0

V 2
j x2 j =

h∑
i

V 2
i (x1i + x2i)

subject to constraint:

h∑
i

(x1i + x2i)
Fi

= tdeadline

h∑
i

x2i

Fi
≤ tdeadline − tinvariant

h∑
i

x1i = Noverlap

h∑
i

x2i = Nnonoverlap

Here x1i and x2i are the number of cycles at voltage level i for the overlapped
part and nonoverlapped part, respectively.

Leveraging off prior work by Ishihara and Yasuura [1998] allows us to
progress on the problem. We have already used the result that for computa-
tion with a fixed deadline and no memory operations, with continuous voltage
scaling, a single-voltage level results in the least energy. We now use a sec-
ond result provided there. For the discrete case they show that the minimum
energy can be obtained by selecting the two immediate neighbors of the opti-
mum voltage in the continuous case that are available in the discrete set. Thus,
for the computation-bound case, which needed a single optimum frequency,
fopt, in the continuous case, we know that the discrete case will require the
two immediate neighbors of fopt from the available voltages. What remains
to be determined is the number of cycles each of these frequencies is used
for.

We determine this for the computation-dominated case from Section 4. Con-
sider the two neighboring values for voltage and frequency: va < videal < vb and
fa < f ideal < fb. Say that xa cycles are executed with voltage va and xb cycles
are executed with voltage vb. The values for xa and b are determined by solving
for the following constraints:

xa/ fa + xb/ fb = tdeadline

xa + xb = Noverlap + Nnonoverlap

By solving these simultaneous equations, we get

xa = fa fb

fb − fa

(
tdeadline − Noverlap + Nnonoverlap

fb

)

xb = fa fb

fb − fa

(
Noverlap + Nnonoverlap

fa
− tdeadline

)
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The minimum energy consumption occurs at the point:

Emin = v2
axa + v2

bxb

= fa fb

fb − fa

[(
Noverlap + Nnonoverlap

fa
− tdeadline

)
v2

b

+
(

tdeadline − Noverlap + Nnonverlap

fb

)
v2

a

]
(6)

Consider next the memory-dominated case that resulted in two frequen-
cies in the continuous-scaling approach. f invariant = Noverlap

tinvariant
is the optimal fre-

quency for the overlapped part in the continuous case. Similarly, fnonoverlap =
Nnonoverlap

tdeadline−tinvariant
is the optimal frequency for the nonoverlapped part. This gives

us: fa, fb the immediate discrete neighbors of f invariant and fc, fd the imme-
diate discrete neighbors of fnonoverlap, as the four frequencies required in this
case. What remains to be determined is the number of cycles executed at each
frequency. These are obtained by solving for the following constraints:

xa/ fa + xb/ fb = tinvariant

xc/ fc + xd/ fd = tdeadline − tinvariant

xa + xb = Noverlap

xc + xd = Nnonoverlap

We can get xa, xb, xc, and xd similarly and express the minimum energy as

Emin = v2
axa + v2

bxb + v2
c xc + v2

dxd

Emin = fa fb

fb − fa

[(
Noverlap

fa
− tinvariant

)
v2

b +
(

tinvariant − Noverlap

fb

)
v2

a

]

+ fc fd

fd − fc

[(
Nnonoverlap

fc
− (tdeadline − tinvariant)

)
v2

d

+
(

tdeadline − tinvariant − Nnonoverlap

fd

)
v2

c

]

fa, fb, fc, fd are staircase functions of program parameters. As program param-
eters change, f invariant and fnonoverlap will change. As long as they are sandwiched
by the same two available frequencies, fa, fb, fc, and fd remain the same. When
changes in program parameters will change f invariant and fnonoverlap so much
that the frequencies sandwiching them change as well, then fa, fb, fc, fd will
become the new neighbor frequencies.

5.1 Discrete Voltage Settings: Summary and Results

The main results in this case are that for the compute bound case, we can use
the two voltages from the available set that are the nearest neighbors of the
single optimal voltage in the continuous case. If the single optimal voltage in
the continuous case is an available voltage, then only one voltage is needed. For
the memory-bound case, at most four voltages are needed, the two immediate
neighbors of the two optimal voltages in the continuous case. One exception is
when one of the optimal frequencies from the continuous case is greater than

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



P1: IAZ
CM226A-02 ACM-TRANSACTION August 11, 2004 19:6

DVS: Bounding Opportunities with Analytic Modeling • 19

Fig. 10. Discrete case: Energy savings with respect to different Noverlap and Nnonverlap relative
to best single-frequency setting that meets the deadline (three voltage levels, tdeadline = 5200 µs,
tinvariant = 1000 µs).

Fig. 11. Discrete case: Energy savings with respect to different Noverlap and Nnonverlap relative
to best single-frequency setting that meets the deadline (seven voltage levels, tdeadline = 5200 µs,
tinvariant = 1000 µs).

the available highest frequency. In this situation, the entire program will run
at the highest frequency and the program will miss its deadline anyway.

We now examine the surfaces for the energy savings obtained in terms of the
dependent parameters (in Figures 10–13). The figures do a good job of conveying
the complexity of the energyoptimization space when discrete voltage settings
are involved. Benefits of intraprogram DVS peak and drop as one moves into
regions that are either poorly served or well served by a single static frequency
setting. In fact, one of the main motivations of the MILP-based DVS formulation
presented in the next section is that it offers a concrete way of navigating this
complex optimization space.

When more voltage settings are available, the number of peaks in the graphs
increases. When there are three voltage levels as shown in Figure 10, there are
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Fig. 12. Discrete voltage levels: Energy savings for different Noverlap and tinvariant relative to best
single-frequency setting that meets the deadline (seven discrete voltage levels, Nnonoverlap = 106

cycles, tdeadline = 5.2 ms).

Fig. 13. Discrete case: Energy savings for different tdeadline and Noverlap relative to best single-
frequency setting that meets the deadline. This graph is plotted for a case with seven possible
discrete voltage levels (tinvariant = 1 ms, Nnonoverlap = 106 cycles).

two sets of peaks. For seven voltage levels, there are six sets of peaks as shown in
Figure 11. When the step size between voltage settings is smaller, the amplitude
of each peak becomes smaller as well. This follows fairly intuitively from the
fact that fine-grained voltage settings allow one to do fairly well just by setting
a single voltage for the whole program run; intraprogram readjustments are of
lesser value if the initial setting can be done with sufficient precision.

Figure 12 shows the energy savings for different Noverlap and tinvariant. For a
fixed tinvariant, when Noverlap is small so that cache miss memory operations dom-
inate, the number of best frequencies will be four. So energy savings increase
smoothly as Noverlap increases. As Noverlap gets larger, the difference between
the two frequencies for the overlapped part and the nonoverlapped part gets
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smaller. So energy savings drop smoothly till to the point that a single frequency
minimizes the energy consumption. As Noverlap increases further so that compu-
tation operations dominate, the number of best frequencies will be two or one.
The energy savings peak and drop correspondingly. Figure 13 shows the energy
savings for different Noverlap and tdeadline. Energy savings is not monotonic with
the deadline because we compare not to the highest-frequency operation, but
to the best single frequency that meets the deadline.

5.2 Analytical Model Summary

Overall, the key message of the analytic model, particularly for the case of
discrete voltage settings, is that while DVS offers significant energy savings
in some cases, the optimization space is complex. Achieving energy savings
via compile-time, intraprogram DVS seems to require a fairly intelligent opti-
mization process. Our MILP-based proposal for managing this optimization is
presented in the next section.

6. PRACTICAL ENERGY SAVINGS USING MATHEMATICAL OPTIMIZATION

Sections 4 and 5 provide a detailed analysis for the maximum energy savings
possible using profile-based intraprogram DVS. As they use some simplifying
assumptions, it leaves open the question as to how much of the predicted sav-
ings can actually be extracted in practice. In this and the following section,
we answer this question using a practical implementation of a mathematical
optimization formulation of the problem.

6.1 Overview

Here we assume that instructions or system calls are available to allow soft-
ware to invoke changes in clock frequency and supply voltage. For example, in
the Intel XScale processor, the clock configuration is specified by writing to a
particular register [Intel Corp. 2003b]. Throughout the paper we refer to these
invocations generically as “mode-set instructions,” although their implemen-
tations may range from single instructions to privileged system calls. For this
study we use a MILP-based technique to determine optimal placements of the
mode-set instructions in the code such that total program energy is minimized,
subject to meeting a constraint, or deadline, regarding the program run-time.
Overall, the goal is to operate different parts of the program at the lowest pos-
sible frequency that will allow the program to meet its deadline with the least
power consumption.

This MILP formulation extends the one presented by Saputra et al. [2002]
by including the energy cost of a mode switch, considering finer-grain control
over code regions controlled by a single setting, and considering multiple input
data categories to drive the optimization.

Since executing a mode-set instruction has both time and energy cost, we
wish to place them at execution points that will allow the benefit of invoking
them (improvements in energy or in ability to meet the deadline) to outweigh
the time/energy cost of invoking them. Thus, some knowledge is needed of the
execution time and frequencies for different parts of the program. As shown
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Fig. 14. An example control-flow graph.

Fig. 15. Flow diagram of the technique.

in Figure 14, an initial approach might involve considering the beginning of
each basic block as a potential point for inserting a mode-set instruction. Some
blocks, however, such as blocks 2 or 5 in the diagram, may benefit from different
mode settings depending on the path by which the program arrives at them.
For example, if block 5 is entered through block 4, and this flow is along the
critical path of the program, then it may be desirable to run this at a different
mode setting than if it is entered through block 3, in which case it is not on the
critical path.

For reasons like this, our optimization is actually based on program edges
rather than basic blocks. Edge-based analysis is more general than block-based
analysis; it allows us to incorporate context regarding which block preceded the
one we are about to enter. Figure 15 gives the general flow of our technique.
The MILP formulation, briefly described in the next section, presumes that we
have profiled the program and have a set of transition counts that correspond
to how often we execute a basic block by entering it through a specific edge and
leaving it through a specific edge. This is referred to as the local path through
a basic block. We also profile to determine the execution time and energy of
each basic block for each possible voltage–frequency pair. Section 6.2 discusses
our methodology further, and Section 6.3 discusses how this methodology can
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be generalized to allow for profiling multiple input sets or categories of input
types. We assume, as is common in current processors, that there are a finite
number of discrete voltage/frequency settings at which the chip can operate.
(This improves upon some prior work that relied upon a continuous tradeoff
function for voltage/frequency levels [Lorch and Smith 2001]; such continuous
(V, f ) scaling is less commercially-feasible.) Figure 15 also shows a step where
the possible set of mode instructions is passed through a filtering set, where
some of them are restricted to be dependent on other instructions based on
the program flow. This independent set of mode instructions is used to formu-
late the MILP program, which will determine the value for each mode instruc-
tion. Subsequent sections discuss the criteria used in restriction as well as its
implementation.

6.2 The MILP Formulation

We start by accounting for the transition energy and time costs. Let SE (vi, vj )
be the energy transition cost in switching from voltage vi to vj and ST (vi, vj )
be the execution time switching cost from vi to vj .

SE = (1 − u) × c × ∣∣v2
i − v2

j

∣∣
ST = 2 × c

IMAX
|vi − vj |

Equations for SE , ST have been taken from Burd and Brodersen [2000], and
are considered to be an accurate modeling of these transition costs. The vari-
able c is the voltage regulator capacitance and u is the energy efficiency of
the voltage regulator. IMAX is the maximum allowed current. There is run-
time overhead related to mode-set instruction executions but compared to
the high switching overhead (thousands of cycles per switch), it is negligible.
As for CPU energy during switches, we assume that clock gating techniques
can reduce this significantly. Thus we ignored the overheads associated with
them.

Let there be N possible modes that can be set by the mode-set instruction.
For an edge (i, j ) in the control-flow graph there are N binary-valued (0/1)
mode variables kijm, m = 1, 2, . . . , N . kijm = 1 if and only if the mode-set
instruction along edge (i, j ) sets the mode to m as a result of the DVS schedul-
ing, and is 0 otherwise. Since each edge sets the mode to at most one value,
we have the following constraint among the mode variables for a given edge
(i, j ):

∑N
m=1 kijm = 1. With this, the optimization problem to be solved is to

minimize:
R∑

i=1

R∑
j=1

N∑
m=1

kijmGij Ejm +
R∑

h=1

R∑
i=1

R∑
j=1

DhijSE (−→khi,
−→kij )

subject to the following constraint:

R∑
i=1

R∑
j=1

N∑
m=1

kijmGijTjm +
R∑

h=1

R∑
i=1

R∑
j=1

DhijST (−→khi,
−→kij ) ≤ deadline
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Fig. 16. Edge graph and corresponding definitions.

where:

R The number of regions, that is, nodes such as basic blocks in a control-flow
graph. It is different for different programs.

N The number of mode settings. It is determined by the processor’s available
mode settings.

kijm The mode variable for mode m on edge (i, j ). kijm = 1 if and only if the
mode-set instruction along edge (i, j ) sets the mode to m as a result of the
scheduling, and is 0 otherwise. For example, if edge i, j chooses mode 2,
then kij 2 = 1 and other kijm = 0 (m �= 2). −→kij is the set of mode variables
(N in all) for edge (i, j ).

Ejm The energy consumption for a single invocation of region j under mode
m.

Gij The number of times region j is entered through edge (i, j ) as shown in
Figure 16.

Dhij The number of times region i is entered through edge (h, i) and exited
through edge (i, j ) as shown in Figure 16.

Tjm The execution time for a single invocation of region j under mode m.

These last four values are all constants for a given program determined by
profiling. If we let Vm be the supply voltage of mode m, then SE is the transition
energy cost for one mode transition, such that

SE (−→khi,
−→kij ) = c × (1 − u)

∣∣∣∣∣
N∑

m=1

khimV 2
m −

N∑
m=1

kijmV 2
m

∣∣∣∣∣
Likewise, ST , the transition time cost for one mode transition, is represented
as

ST (−→khi,
−→kij ) = 2 × c

IMAX

∣∣∣∣∣
N∑

m=1

khimVm −
N∑

m=1

kijmVm

∣∣∣∣∣
In the objective function the first summation represents the energy con-

sumption of all regions and the second represents the energy cost in transition
between modes. The constraint ensures that the execution time deadline is met.
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Again, here the first summation represents the execution time for the regions
and the second represents the execution time cost in transition between modes.

The introduction of the mode variables instead of the voltage variables lin-
earizes the energy and execution time costs Ei and Ti for region i. While SE
and ST are still nonlinear due to the absolute value term, there is no quadratic
dependence on the variables; the Vm term in SE is now a constant. The abso-
lute value dependence can be linearized using a straightforward technique. To
remove the absolute value, |x|, we introduce a new variable y to replace |x| and
add the following additional constraints: − y ≤ x ≤ y . Applying this technique
to SE and ST , the formulation is completely linearized as follows:
Minimize:

R∑
i

R∑
j

N∑
m

Gijkijm Ejm +
R∑
h

R∑
i

R∑
j

DhijehijCE

subject to the constraints:

R∑
i

R∑
j

N∑
m

GijkijmTjm +
R∑
h

R∑
i

R∑
j

DhijthijCT ≤ deadline

N∑
m

kijm = 1

−ehij ≤
N∑
m

(khimV 2
m − kijmV 2

m) ≤ ehij

−thij ≤
N∑
m

(khimVm − kijmVm) ≤ thij

The absolute value operations in the switching time and energy relation-
ships have been removed; the new variables ehij and thij are part of constraints
introduced for their removal, and CE = c × (1 − u), CT = 2×c

IMAX
are constants

related to switching energy and time in the linearized form.
Note that while each edge has a mode-set instruction, if at run-time the mode

value for an edge is the same as the previous one, no transition cost is incurred.
This is due to the nature of the transition cost functions SE and ST , which,
as expected, have nonzero value only if the two modes are distinct. Thus, a
mode-set instruction in the backward edge of a heavily executed loop will be
“silent” for all but possibly the first iteration. A post-pass optimization within
a compiler can easily hoist some such instructions out of the loop.

As mentioned in Section 6.1, the run-time for the MILP solver can be sig-
nificantly reduced by a careful restriction of the solution space. The mode in-
struction on some edge (i, j ) can be forced to have the same value as the mode
instruction on some other edge (u, v), so that −→kij = −→kuv. This reduces the number
of independent variables for the MILP solver, and consequently its run-time.
While this restriction can potentially result in some loss of optimality in the
objective function, the deadline constraints are still met. The practical issues

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



P1: IAZ
CM226A-02 ACM-TRANSACTION August 11, 2004 19:6

26 • F. Xie et al.

in deciding which edges to select for this restriction are discussed in the exper-
imental section.

6.3 Handling Multiple Data Sets

The formulation described thus far optimizes based on a single profile run from
a single input data set. Here, we extend the methodology to cover multiple cat-
egories of inputs. While different data inputs typically cause some variation in
both execution time and energy, one can often sort types of inputs into partic-
ular categories. For example, with mpeg, it is common to consider categories of
inputs based on their motion and complexity.

The MILP-based scheduling algorithm can be adapted to handle multiple
categories of inputs. For each category of inputs, a “typical” input data set is
chosen. The goal is to minimize the weighted average of energy consumption
of different input data sets while making sure that the execution time using
different typical input data sets meets a common or individual deadlines.

The formulation is remodeled as working to minimize:

∑
g

pg

(∑
i

∑
j

∑
m

kijmGijg Ejmg +
∑

h

∑
i

∑
j

DhijgehijCE

)

subject to the following constraints:

∀g
∑

i

∑
j

∑
m

kijmGijgTjmg +
∑

h

∑
i

∑
j

DhijgthijCT ≤ deadline

∑
m

kijm = 1

−ehij ≤
∑

m

(
khimV 2

m − kijmV 2
m

) ≤ ehij

−thij ≤
∑

m
(khimVm − kijmVm) ≤ thij

where

pg The possibility of input category g as input.
kijm The mode variable for mode m on edge (i, j ) as in the single data set

case. Since kijm is assigned regardless of the input, kijm is independent
of input.

Ejmg The energy consumption of region j in mode m for input data in category
g .

Tjmg The execution time of region j in mode m for input data in category g .
Gijg The number of times region j is entered through edge (i, j ) for input

data in category g .
Dhijg The number of times region i is entered through edge (h, i) and exited

through edge (i, j ) for input data in category g .

The other terms are the same as before.
These modifications retain the linearity of the objective function and con-

straints. The objective function now minimizes the weighted average energy
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over the different categories, and the deadline constraints ensure that this
is done while obeying the deadline over all categories. If applicable, this for-
mulation also allows for having a separate deadline for different categories if
needed.

7. DVS IMPLEMENTATION USING PROFILE-DRIVEN MILP

As shown in Figure 15, our optimal frequency setting algorithm works by pro-
filing execution, filtering down to the most important frequency-setting oppor-
tunities, and then sending the results to an MILP solver. This section describes
this flow in greater detail, with the following subsections discussing the profiler,
filter, and solver steps respectively.

7.1 Simulation-Based Program Profiling

As already described, our MILP approach requires profiling data on the per-
block execution time, per-block execution energy, and local path (the entry and
exit for a basic block) frequencies through the program being optimized. While
the local path frequencies need only be gathered once, the per-block execution
times and energies must be gathered once per possible mode setting. This is
because the overlap between CPU and memory instructions will mean that the
execution time is not a simple linear scaling by the clock frequency. (That is, we
assume that memory is asynchronous relative to the CPU and that its absolute
response time is unaffected by changes in the local CPU clock.)

To gather the profile data for the experiments shown here, we use simulation.
We note, however, that other means of profiling would also work well. One could,
for example, use hardware performance counters to profile both performance
and energy data for real, not simulated, application runs [Joseph and Martonosi
2001].

The data shown here have been gathered using the Wattch power/
performance simulator [Brooks et al. 2000], which is based on SimpleScalar
[Burger et al. 1996]. Our simulations are run to completion for the provided
inputs, so we get a full view of program execution. (Sampling methods might be
accurate enough to give good profiles while reducing profile time.) For both our
time/energy profiles and for our experimental results in subsequent sections,
we used the simulation configuration listed in Table I. We assume that the CPU
has three scaling levels for (V, f ). They are a frequency of 200 MHz paired with
a supply voltage of 0.7 V, 600 MHz at 1.3 V, and a maximum performance setting
of 800 MHz at 1.65 V. This is similar to some of the voltage–frequency pairings
available in Intel’s XScale processors [Clark 2001].

Four runs are needed to gather the required information for the program
graph. During the first run, the information about basic blocks of the program
is collected. Basic blocks are identified and labeled and their starting and end-
ing addresses are recorded. During the next three runs, energy consumption
and execution time for each basic block are recorded for three (V, f ) pairs, re-
spectively. During the profiling for (0.7 V, 200 MHz), the local path frequencies
are gathered.
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Table I. Configuration Parameters for CPU Simulation

Parameter Value
RUU size 64 instructions
LSQ size 32 instructions
Fetch Queue size 8 instructions
Fetch width 4 instructions/cycle
Decode width 4 instructions/cycle
Issue width 4 instructions/cycle
Commit width 4 instructions/cycle
Functional Units 4 integer ALUs

1 integer multiply/divide
1 FP add, 1 FP multiply
1 FP divide/sqrt

Branch Predictor Combined, bimodal 2K table
2-level 1K table, 8bit history
1K chooser

BTB 512-entry, 4 way
L1 data-cache 64K, 4-way (LRU)

32B blocks, 1 cycle latency
L1 instruction-cache same as L1 data-cache
L2 Unified, 512K, 4-way(LRU)

32B blocks, 16-cycle latency
TLBs 32-entry, 4096-byte page

7.2 Filtering Edges to Reduce MILP Solution Time

While our MILP approach generally works in practice for even large programs,
the MILP solution time may take hours, which is not desirable. The run-time
can be reduced by adding filtering rules to the MILP approach as discussed in
Section 6.2. The frequencies in certain regions may be linked to (i.e., the same
as) the frequencies in other regions. This reduces the number of independent
variables for the ILP solver. We started with filtering the small basic blocks with
negligible energy consumption. In other words, we forced those small basic
blocks to have the same mode as their precedent basic blocks. This filtering
rule has an unbounded effect on the optimality because it did not take into
consideration the local path information.

We next considered filtering the edges that are considered as candidates for
mode-set instructions. A simple and intuitive rule for doing this is as follows.

Our goal is to identify edges (i, j ) such that the total power consumption of
block j when entered from (i, j ) is relatively negligible. In this case, not much
is lost by giving up the flexibility of independently setting the mode instruction
along (i, j ). If this edge is selected, then its mode value can be made to be
the same as that for edge (k, i), which has the largest count (obtained during
profiling) for all incoming edges to block i. The motivation for this is that it
will result in edge (i, j ) not changing its mode whenever block i is entered
from edge (k, i). This edge filtering rule works better than the filtering rule
for basic blocks. We refine the filter rule further to make the impact local. We
still identify edge (i, j ) and edge (k, i) as described above. However, only if the
energy consumption of block i when entered from edge (k, i) is also relatively
negligible, we assign the mode value for (i, j ) the same as (k, i). This filtering
rule is the rule we used in all experiments.
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Fig. 17. Speedup in MILP solution time when edge filtering is applied.

Table II. Energy Consumption when the MILP Solver is
Run on the Full Set of Program Edges (left) or the Filtered

Subset of Transition Edges (right)

Benchmark All:Energy (µJ) Subset:Energy (µJ)
adpcm/encode 10194.3 10195.4
epic 33021.9 33021.9
gsm/encode 72287.6 72287.6
mpeg/decode 122392.8 122392.8
mpg123 37291.4 37291.4

The selection rule is as follows. We filter out all edges whose total destination
energy is in the tail of the energy distribution that cumulatively comprises less
than 2% of the total energy (for an arbitrarily selected mode). Filtered edges
are still considered as far as timing constraints are concerned, so all deadlines
are met. Filtering only affects the energy achieved.

7.3 Mathematical Programming: Details

Once profiles have been collected and filtering strategies have been applied, the
transition counts and the program graph structure are used to construct the
equations that express DVS constraints. We use AMPL [Fourer et al. 1993] to
express the mathematical constraints and to enable pruning and optimizations
before feeding the MILP problem into the CPLEX solver [ILOG CPLEX 2002].

As shown in Figure 17, our edge filtering method greatly prunes the search
space for the MILP solver, and brings optimization times down from hours to
seconds. (We gather these data for five of the MediaBench applications [Lee
et al. 1997], with a transition time of 12 µs, and transition energy of 1.2 µJ.)

Table II shows that for the benchmarks considered the minimum energy
determined by the solver remain essentially unchanged from the case when
the full set of edges is considered. As discussed in Section 6.2, the deadlines
will still be met exactly, even with the filtering in place.

8. EXPERIMENTAL RESULTS

This section provides experimental results showing the improvements offered
by “real-world optimal” DVS settings chosen by MILP.
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8.1 Benchmarks and Methodology

Our method is based on compile-time profiling and user-provided (or compiler-
constructed) timing deadlines. To evaluate it here, we focus on multimedia
applications in which one can make a solid case for the idea that performance
should meet a certain threshold, but beyond that threshold, further increases
in performance are of lesser value. For example, once you can view a movie or
listen to an audio stream in real-time, there is lesser value in pushing speed
beyond real-time playback; as long as a specified speed level has been reached,
we argue that energy savings should be paramount.

The benchmarks we have chosen are applications from the MediaBench
suite [Lee et al. 1997; MediaBench II 2003], which represent a wide range
of memory access behavior from very little (adpcm/encode) to very intense
(mpg123 and epic). The benchmark gsm has a medium memory access rate,
while mpeg is chosen because it provides multiple input data sets. Unless oth-
erwise specified, we use the inputs provided with the suite, and we run the
programs to completion.

8.2 Impact of Transition Cost

Changing a processor’s voltage and frequency has a cost both in terms of de-
lay and in terms of energy consumption. Thus, the time or energy required to
perform a DVS mode setting instruction can have an important impact on the
DVS settings chosen by the MILP approach, and thus the total execution time
and energy. Frequent or heavyweight switches can have significant time/energy
cost, and thus the MILP solver is less likely to choose DVS settings that require
them.

The first experiment we discuss here shows the impact of transition cost on
minimum energy. As given by the equations in Section 6.2, transition time and
transition energy are both functions of the power regulator capacitance as well
as the values of the two voltages that the change is between. Thus, for a given
voltage difference, one can explore the impact of different switching costs by
varying the power regulator capacitance, c. As c drops, so do both transition
costs.

In the data shown here, we examine five power regulator capacitances. They
show a range of transition costs from much higher to much lower than those typ-
ically found in real processors. A typical capacitance c of 10 µf yields 12 µs tran-
sition time and 1.2 µJ transition energy cost for a transition from 600 MHz/1.3 V
to 200 MHz/0.7 V. This 12 µs transition time corresponds well to published data
for XScale [Intel Corp. 2003b]. We used a wide range of c from 100 to 0.01 µf
in our experiments. In order to focus on transition cost in this experiment, we
hold the deadline constant. In particular, all benchmarks are asked to operate
at a deadline that corresponds to point 5 in Figure 19. This is given, for each
benchmark, by the time in the “Deadline 5” column of Table III. This range of
deadlines will be discussed shortly in more detail when we examine the impact
of different deadlines on energy savings.

Results for five MediaBench benchmarks are shown in Figure 18. For each
benchmark, the energy is normalized to that program running at a fixed
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Table III. Deadline Boundaries and Chosen Deadlines for Benchmarks (ms)

Exec Time (MHz) Deadline
Benchmark 200 600 800 5 4 3 2 1
adpcm/encode 29.5 9.9 7.4 29.0 20.0 10.0 8.1 7.6
epic 152.6 53.6 41.0 150.0 100.0 60.0 50.0 45.0
gsm/encode 334.0 111.4 83.6 333.0 220.0 120.0 100.0 90.0
mpeg/decode 557.6 187.3 141.0 557.6 300.0 190.0 181.0 151.0
mpg123 177.7 59.2 44.4 177.6 100.0 60.0 58.0 45.0

Fig. 18. Impact of transition cost. Energy is normalized to minimum energy without transition.

Fig. 19. Positions of deadlines.

600 MHz clock rate. This clock rate is sufficient to meet the deadline, so for
very high transition costs (c = 100 µf), there are few or no transitions and so
the energy is the same as in the base case. At the highest transition cost shown,
there are fewer than 10 transitions executed for most of the benchmarks across
their whole run.

As c decreases, transition costs drop, and so does the minimum energy. This
is because when transition cost drops, there are more chances to eliminate
the slack by having more and more of the program execute at 200 MHz. For
example, in the mpeg benchmark, zero transitions are attempted at the highest
transition cost, while at the lowest one, a run of the benchmark results in a total
of over 112,000 mode-setting instructions being executed (dynamic counts).

8.3 Impact of Deadline on Program Energy

The second experiment shows the impact of deadline choice on minimum en-
ergy. Although the absolute values of the deadlines vary for each benchmark,
the deadline positions we choose are illustrated abstractly and generally in
Figure 19. For the most aggressive deadlines (these smaller times are towards
the left-hand side) the program must run at the fastest frequency to meet the

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



P1: IAZ
CM226A-02 ACM-TRANSACTION August 11, 2004 19:6

32 • F. Xie et al.

Fig. 20. Impact of deadline on energy. Energy is normalized to the energy of the best of the three
possible single-frequency settings.

deadline. Toward the right-hand side of the figure, denoting the very lax dead-
lines, programs can run almost entirely at the low-energy 200 MHz frequency
and yet still meet the deadline. Between these two extremes, programs will run
at a mix of frequencies, with some number of transitions between them.

To make this more concrete for the benchmarks we consider, Table III in-
cludes the run-times of each benchmark when operating purely at 800, 600, or
200 MHz without any transitions. To test MILP-based DVS on each benchmark,
we choose five application-specific deadlines per benchmark that are intended
to exercise different points along the possible range. These chosen deadlines
are also given in Table III. The results here are shown for a “typical” transition
cost of c = 10 µf.

Figure 20 shows the optimized energies for these experiments. Energies are
normalized to the energy of the best single frequency based on interprogram
DVS scheduling. Moving from deadline 1 (stringent) towards deadline 5 (lax)
the program energy is reduced by nearly a factor of 2 or more. Across the range,
the MILP solver is able to find the operating point that offers minimal energy
while still meeting the deadline. Benchmark adpcm/encode has few memory
operations and the program body consists of big loops entangled with each other,
so no intraprogram adjustment is needed and the single frequency chosen by
interprogram DVS is optimal.

As shown in Figure 21, the chosen deadline can sometimes have an effect
on the required solution time. In some cases (e.g., gsm/encode), the solution
time can dramatically change with changing deadlines, reflecting the changing
complexity of the solution space. While the effect varies with the benchmarks,
in general, deadline 1 is likely to have relatively short solution times because
there are relatively few possible frequency settings that satisfy it. Deadline 5,
on the other hand, tends to have short solution times because the minimum
energy case can be gotten with fairly uniformly slow clock speeds. Deadlines
towards the middle of the space are more likely to cause long run-times be-
cause there is a rich collection of frequency settings that may be possible so-
lutions. In this middle portion of the optimization space, MILP run-times are
heavily sensitive to the MILP solver’s algorithmic approaches. For gsm/encode,
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Fig. 21. MILP solution time (in seconds) for different deadlines.

Table IV. Dynamic Mode Transition Counts

adpcm/encode epic gsm/encode mpeg/decode mpg123
Deadline 1 0 4 1 5 190
Deadline 2 0 519 2777 2645 1559
Deadline 3 0 552 85 5 936
Deadline 4 0 492 8206 2645 1550
Deadline 5 0 4 1845 5 6

the CPLEX solver generates more simplex iterations for the optimization at
deadline 3.

Table IV shows the variations in the dynamic mode transition counts for
the benchmarks for different deadlines (for c = 10 µf transition cost). At the
extremes (deadlines 1 and 5) there are few choices and thus not too many mode
transitions. However, closer to the middle, we see significant mode transitions
for most benchmarks as they have all three (V, f ) choices to draw from. This
demonstrates the ability of the formulation to navigate the range of choices,
and switching many times to find the best (V, f ) choice for each part of the
program.

8.4 Results for Multiple Profiled Data Inputs

The results here demonstrate the resilience of energy choices across different
input data sets as well as the result of optimization for average energy as
formulated previously. We focus here on the mpeg benchmark, and we examine
four different data inputs. The inputs can be considered to fall into two different
categories, based on different encoding options. The first category uses no ‘B’
frames; it includes 100b.m2v and bbc.m2v. The second category uses two ‘B’
frames between I and P frames; it includes flwr.m2v and cact.m2v. All mpeg
files are Test Bitstreams from MpegTv [1998].

Figure 22 looks in detail at the energy (in mJ) for different input data and
profiling runs for the mpeg benchmark. In particular, the x-axis shows four
different input files for the benchmark. For each benchmark, we show the en-
ergy results from four different profiling approaches. The leftmost bar shows
the energy dissipation for an mpeg run on that input file when the profiling
run is also on that input file. The second bar shows the energy dissipation in
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Fig. 22. Dependence of program energy on input data used for MILP profiling.

Fig. 23. Dependence of program runtime on input data used for MILP profiling.

which the profiling data were collected using the flwr input set for all runs. The
third bar shows the energy dissipation when the bbc input was used for the
profiling runs. The rightmost bar shows the energy dissipation when optimiza-
tion is done for the average of flwr and bbc input sets (with equal weight). The
sensitivity of the energy results to the specific profile inputs is fairly modest
overall.

Figure 23 shows program execution times for different input data and pro-
filing runs for the mpeg benchmark. Once again, optimizing based on the flwr
profile data is nearly as good as optimizing based on the identical input data
across the board. The data show that the multi-input case is often nearly as
good as optimizing based on the identical input. An exception, however, is that
optimizing based on the bbc input leads to poor execution time estimation. We
believe this is because the bbc input is from the input category with no ‘B’
frames, so the MILP solver does poorly in estimating the time and energy im-
pact of the code related to their processing. Finally, optimizing for the average
case makes sure that the deadlines are met for both the cases being considered.
Further, Figure 23 also illustrates the representative nature of these two input
sets. Using the average case (rightmost bar) works as well as using the single
profile data set (leftmost bar) across the board—even when the specific data
sets are not included in the average as with cact and 100b. We have similarly
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Table V. Simulation Results of Program Parameters

Noverlap Nnonoverlap tinvariant
Benchmark (kcycles) (kcycles) (µs)
adpcm/encode 1.6 5415.1 1.0
epic 2240.7 19431.6 3567.3
gsm/encode 7.6 43518.4 50.6
mpeg/decode 1443.0 71136.6 2577.0
mpg123 4157.5 16646.1 5615.0

Table VI. Analytically Derived Upper Bound of Energy Saving Ratio for
Different Voltage Levels

Deadline
Benchmark Voltage Levels 1 2 3 4 5
adpcm/encode 3 0.62 0.37 0.02 0.15 0.06

7 0.23 0.02 0.05 0.19 0.08
13 0.11 0.03 0.06 0.09 0.09

epic 3 0.61 0.32 0.04 0.30 0.08
7 0.21 0.22 0.12 0.13 0.10

13 0.10 0.11 0.02 0.03 0.11
gsm/encode 3 0.60 0.37 0.10 0.33 0.12

7 0.21 0.02 0.03 0.17 0.15
13 0.10 0.02 0.05 0.06 0.05

mpeg/decode 3 0.66 0.37 0.03 0.26 0.07
7 0.25 0.02 0.10 0.09 0.08

13 0.13 0.03 0.11 0.11 0.09
mpg123 3 0.65 0.25 0.05 0.31 0.09

7 0.24 0.12 0.18 0.15 0.11
13 0.12 0.02 0.07 0.04 0.02

measured the sensitivity of energy results to specific profile inputs and have
found results as good or better than the run-time results presented here; the
sensitivity is fairly modest overall.

8.5 A Comparison of Analytical and Profile-Driven Results

To better understand energy trends in the discrete voltage case, we compare the
analytical results with the profile-driven results for the same set of benchmarks
considering situations with 3, 7, or 13 available voltage levels. For seven voltage
levels, we used 200, 300, 400, 500, 600, 700, and 800 MHz. For 13 voltage levels,
the range is from 200 to 800 MHz with 50 MHz steps. In all experiments, α =
1.5, vt = 0.45 V, and we considered five different deadlines as elaborated above.
For the profile-driven results, the voltage regulator capacitance c = 0.01 µf is
used.

By using cycle-level CPU simulation to get the key program parameters
Noverlap, Nnonoverlap, and tinvariant for every instruction as shown in Table V, we
plugged values into the analytic models generated in Section 5 and discussed
the resulting maximum energy savings predicted by the models in Table VI.
Now, Table VII gives the energy savings results for the same programs when run
through the MILP-based optimization process. Because the analytical model
makes optimistic assumptions about switching time and energy as well as the
abilities to control for every independent dynamic instruction execution, it is
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Table VII. Simulation Results for Optimized Mode Settings of Energy
Savings for Different Numbers of Voltage Levels

Deadline
Benchmark Voltage Levels 1 2 3 4 5
adpcm/encode 3 0.49 0.23 0.00 0.03 0.01

7 0.16 0.01 0.01 0.04 0.01
13 0.09 0.01 0.02 0.02 0.02

epic 3 0.57 0.30 0.03 0.27 0.05
7 0.18 0.19 0.10 0.10 0.07

13 0.10 0.09 0.01 0.01 0.08
gsm/encode 3 0.57 0.37 0.09 0.32 0.13

7 0.18 0.02 0.03 0.16 0.14
13 0.10 0.02 0.05 0.06 0.05

mpeg/decode 3 0.60 0.34 0.03 0.24 0.05
7 0.21 0.02 0.09 0.08 0.07

13 0.13 0.02 0.11 0.10 0.08
mpg123 3 0.60 0.26 0.06 0.31 0.07

7 0.20 0.12 0.17 0.14 0.10
13 0.12 0.02 0.06 0.04 0.00

expected to be an optimistic bound, and indeed, the savings predicted by the
analytical model exceed those of MILP-based approaches at all but a few points.
(For those points, the simulation energy savings exceeds that of the analytical
model by 0.01. This is because the processor we simulate allows multiple out-
standing cache misses, so not all program parameters are strictly constants.
However, the difference is 0.01, so we feel the estimation from the analytical
model is close enough.) Nonetheless, the general trends in both tables are simi-
lar. Further, the comparison shows that the analytical bounds are close enough
to be of practical value.

Because energy savings is not monotonic with deadline and because the op-
timization space is relatively complex, an MILP-based approach seems to be an
important enabling technique for compile-time, intraprogram DVS.

A second message here is that as we increase the number of available voltage
levels, the benefits of DVS scheduling decrease significantly. In fact it could well
be argued that if circuit implementations permit a very large number of DVS
settings, it may not be worth resorting to intraprogram DVS—a single-voltage
selection can come close enough. This is not surprising given the results for our
model with continuous voltage scaling, which is the limiting case of increasing
the number of discrete levels. We would like to highlight this important by-
product of our modeling—for the case of only interprogram and no intraprogram
DVS, our model can help determine a single optimal voltage based on a few
simple parameters.

We need to point out here that our conclusions do not contradict the conclu-
sions from the Power-Management Point (PMP) scheme [AbouGhazaleh et al.
2003]. The difference comes from the base case. In AbouGhazaleh’s work, the
energy savings are based on the non-DVS case, while the energy in our results
is compared to the minimum energy obtained from the interprogram DVS.

We focus on single-task environments in this paper. However, we also explore
the applicability of intraprogram DVS for real-time multitasking environments.
This is discussed qualitatively in the next section.
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9. CONSIDERING REAL-TIME MULTITASKING ENVIRONMENTS

A real-time system is a system that can support the execution of applications
with time constraints. Time constraints are central to a real-time system be-
cause the failure of timely completion of certain tasks may cause malfunctions.
For example, if a flight controller does not respond to a signal on time, it may
lead to a crash. The time constraints are typically represented as deadlines
on repeatedly invoked tasks [Liu and Layland 1973]. Some tasks, referred to
as periodic tasks, are invoked at regular intervals, while other tasks, referred
to as sporadic tasks, are invoked at arbitrary times with a specified minimum
time interval between invocations. An example of a periodic task is the screen
refresh program, which refreshes a computer screen once every 1/60 s. Hence
1/60 s, the period of the periodic task, is the deadline. The task that responds
to a user clicking a mouse is a sporadic task. It occurs repeatedly but the time
interval between two clicks varies. There is a minimum time interval between
two occurrences, which is determined by human response time. The task has
to be finished within the minimum time interval in order to deal with next
possible mouse movement, so the minimum time interval can be treated as the
deadline.

The goal of a real-time multitasking system is to schedule the tasks so that
each task completes the execution before a specified deadline. This is a schedul-
ing problem. The scheduling model for real-time systems has been proposed and
well studied [Jeffay et al. 1991; Pillai and Shin 2001]. Our discussion is based
on the established real-time system model and we will start by describing the
model. In the following discussion, we will use the terms program and task
alternately.

9.1 Scheduling Model for Multitask Environments

Given a real-time system, a task set is schedulable if every task meets its spec-
ified deadline. For periodic tasks, deadlines are defined as the next invocation
(release) times. For sporadic tasks, deadlines are defined as the sum of the cur-
rent invocation time and the specified minimal time interval. Since determining
the feasibility or schedulability of a task set is beyond our scope, we consider
schedulable task sets only. In particular, we consider independent task sets that
are schedulable under the early deadline first (EDF) scheduling policy using
the highest frequency.

An energy-aware scheduling aims at minimizing the energy consumption
of all tasks while guaranteeing every task meets its deadline. We assume the
scheduler schedules the tasks in EDF order and thereby we focus on voltage
scaling scheduling only. The voltage scaling scheduling can be done by a real-
time scheduler or by mode-set instructions inserted as long as the task set is
schedulable using the assigned DVS settings.

For sporadic tasks, the future invocation time is unknown at compile time.
Since compile-time intraprogram DVS requires everything to be known a priori,
its applicability for sporadic tasks is limited to the following scenario: intrapro-
gram DVS applied on top of dynamic interprogram DVS to get extra energy
savings by slowing down memory-bounded regions. This does not require any
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additional concepts over what has already been established. Thus we will focus
on periodic tasks from now on.

We divide scheduling policies into preemptive scheduling and non-
preemptive scheduling. In preemptive scheduling, a low-priority task can be
suspended on the arrival of a higher priority task. A non-preemptive scheduler,
on the other hand, executes the current task till completion, even if a higher
priority task has arrived. Based on this classification, we will discuss two cases
separately:

(1) non-preemptive scheduling on periodic tasks
(2) preemptive scheduling on periodic tasks

9.2 Non-preemptive Scheduling on Periodic Tasks

9.2.1 Fixed Execution Time. If we assume the execution time of each task
is fixed, we can extend the MILP formulation to multiple tasks easily if every
task is treated as a “region” as shown below.

Minimize: ∑
i

∑
j

∑
m

Eimkijm

Subject to the following constraint:

duij +
∑

m
kijmTim ≤ dvij

dvij ≤ ( j + 1)Pi

duij ≥ jPi

dvhg ≤ duij if (g + 1)Ph ≤ ( j + 1)Pi and h �= i
dvij ≤ duhg if (g + 1)Ph > ( j + 1)Pi and h �= i

N∑
m=1

kijm = 1

where

Pi The period of task i.
kijm The mode variable for the j th invocation of task i. kijm = 1 if and only if

the mode is set to m as a result of the scheduling, and is 0 otherwise.
Eim The energy consumption of task i under mode m.
Tim The execution time of task i under mode m.
duij The start time of the j th invocation of task i.
dvij The finish time of the j th invocation of task i.

The objective is to minimize the total energy consumption of all tasks corre-
sponding to one scheduling cycle. This then repeats itself due to the periodicity
of the schedule. The start time and finish time of each task are introduced to
indicate the execution order of tasks. The deadline of each task is defined as
the next release time of the task. The first three time constraints guarantee
the deadline of each task is met and no task gets executed before its release
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time. The next two constraints make sure only one task is executed at one time.
These two constraints also imply the EDF execution order [Jeffay et al. 1991].
Now we can express the multitask scheduling problem as an MILP problem.
Note that only one frequency is assigned for each task in each invocation, so
the MILP formulation is for interprogram DVS and voltage scaling happens
between programs. We do not take into consideration the switching overhead,
thus the MILP formulation actually gives the upper bound of energy savings
for interprogram DVS.

We could also express the multitask voltage scheduling as an intraprogram
DVS MILP problem as shown:
minimize:

∑
i

∑
j

(∑
r

∑
m

Eirmkijrm +
∑

r

∑
s

DirsSE (−→kijr,
−→kijs)

)

subject to the following constraint:

duij +
∑

r

∑
m

kijrmTirm +
∑

r

∑
s

DirsST (−→kijr,
−→kijs) ≤ dvij

dvij ≤ ( j + 1)Pi

duij ≥ jPi

dvhg ≤ duij if (g + 1)Ph ≤ ( j + 1)Pi and h �= i
dvij ≤ duhg if (g + 1)Ph > ( j + 1)Pi and h �= i

N∑
m=1

kijrm = 1

where

Pi The period of task i.
kijrm The mode variable for region r of task i in the j th invocation. kijrm = 1

if and only if the mode is set to m as a result of the scheduling, and is 0
otherwise.

Eirm The energy consumption for region r of task i under mode m.
Tirm The execution time of region r for task i under mode m.
Dirs The transition times from region r to region s for task i.
duij The starting time of the j th invocation of task i.
dvij The finish time of the j th invocation of task i.

Every program is divided into regions by voltage scaling points (mode-set in-
structions). A region is a piece of static code between two scaling points, which
can be a basic block or a function or even the whole program. The switching costs
are incorporated into the formulation as overheads. Other items are similar to
the interprogram formulation: the goal is to minimize the energy consumption
for all tasks and the constraints guarantee meeting the deadlines. The optimal-
ity of intraprogram DVS over interprogram DVS in term of energy savings can
be easily proved because interprogram MILP formulation is only a subcase of
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intraprogram formulation by forcing all regions within a program to have the
same voltage/frequency. In summary, compile-time intraprogram DVS is opti-
mal compared to interprogram DVS if we assume non-preemptive scheduling
for periodic tasks with fixed execution time.

If the execution time is not fixed but the execution time for each invocation
is known, it is similar to the fixed execution time case and can be handled in a
similar way.

9.2.2 Variable Execution Time. If the execution time of the tasks is not
known at compile time, scheduling policies will make an estimation of the execu-
tion time. The worst-case execution time (WCET) is usually used for this. While
using WCET guarantees the deadline requirements, the static scheduling is not
optimal in terms of reducing energy by utilizing the slacks produced by early
completion. Dynamic scheduling policies can take advantage of these slacks
and thus reduce more energy. As a static scheduling technique, compile-time
intraprogram DVS is not optimal. However, it is possible to apply compile-time
intraprogram DVS on top of a dynamic DVS scheduling. As illustrated in the
analytical model in Section 5, intraprogram DVS can slow down the memory-
bounded regions without increasing the execution time. If the memory-bounded
regions do not change in each invocation, we can apply intraprogram DVS to
slow down those regions. The slowdown will not affect DVS decisions made by
dynamic scheduling, so compile-time intraprogram DVS will contribute extra
energy savings to energy savings from dynamic interprogram DVS.

The MILP formulation for this subcase is the same as in Section 6 except for
deadlines. Deadlines are substituted by the actual execution times and then
the MILP solver will identify those memory-bounded regions and assign the
lowest frequency to those regions.

9.3 Preemptive Scheduling on Periodic Tasks

Preemptive scheduling allows low-priority tasks to be preempted, so differ-
ent parts of the program can run at different frequencies. It behaves some-
what “intraprogram” DVS and usually obtains more energy savings than non-
preemptive scheduling. We will discuss the applicability of intraprogram DVS
for two subcases: fixed execution time and variable execution time.

9.3.1 Fixed Execution Time. If the execution time of each task is fixed in
each invocation, for preemptive-scheduling-based EDF scheduling, the task set
is schedulable when the following necessary and sufficient condition is satisfied
[Liu and Layland 1973]:

∑
i

Ci

Pi
≤ 1

where Ci is the execution time of task i and Pi is the period of task i. Once the
condition is satisfied, the deadline requirements will be met.
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The MILP formulation of this case is given below:
minimize

∑
t

(∑
r

∑
m

ktrm Etrm +
∑

r

∑
s

DtrsSE

)

subject to the following constraints:

∑
t

1/Pt

(∑
r

∑
m

ktrmTtrm +
∑

r

∑
s

DtrsST

)
≤ 1

∑
m

ktrm = 1

where

ktrm The mode variable in mode m of region r for task t.
Etrm The energy consumption of region r in mode m for task t.
Ttrm The execution time of region r in mode m for task t.
Dtrs The number of transition times from region r to region s for task t.

Compared to the non-preemptive case, the formulation is much simpler. The
objective function is to minimize the total energy consumption of all tasks. We
only need to guarantee that the necessary and sufficient condition for schedu-
lability is met. The deadline requirements for each task in each invocation are
met automatically once we use the EDF scheduling policy.

Here compile-time intraprogram DVS is more efficient than interprogram
DVS for two reasons:

(1) Intraprogram will take advantage of memory-bounded regions.
(2) Interprogram DVS scheduling is a subcase of intraprogram DVS.

9.3.2 Variable Execution Time. If the execution time of each task varies in
each invocation, we can apply the same scheme as the non-preemption case: if
memory-bounded regions do not change in each invocation, intraprogram will
be used on top of interprogram DVS and set the mode setting for memory-
bounded regions only.

9.4 Summary for Multitask Environments

In this section, we discussed cases where compile-time intraprogram DVS can
be applied alone to reduce energy consumption and cases where intraprogram
DVS can be used on top of interprogram DVS to get extra energy savings. For
all cases, MILP can be used as the optimization tool to find out optimal voltage
scaling values.

When everything (the task set, the actual execution time and the invoca-
tion time of each task) is known a priori, compile-time intraprogram DVS
alone can achieve more energy savings than interprogram DVS. This includes
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two subcases:

—non-preemptive scheduling on periodic tasks with fixed execution time;
—preemptive scheduling on periodic tasks with fixed execution time.

When some information (the release time or the actual execution time) is un-
known at compile-time, intraprogram DVS, if possible, will slow down memory-
bounded regions to get extra energy savings. Two subcases belong to this
category:

—sporadic tasks with stable memory-bounded regions;
—periodic tasks with variable execution time and stable memory regions.

In summary, interprogram DVS is efficient in dynamic multitasking environ-
ments while intraprogram DVS is useful in static multitasking environments
and certain dynamic environments.

10. DISCUSSION

This paper examines the opportunities and limits of DVS scaling through de-
tailed modeling for analysis, and exact mathematical optimization formulations
for compiler optimization. While this study offers useful insight into, and tech-
niques for compiler-optimized DVS, there are subtleties and avenues for future
work that we will touch on briefly here.

In the analytical model we ignore delay and energy penalties for DVS. This
was required because it was not possible to a priori predict how many times,
and between what voltages, the switches will happen. This potentially made
the model optimistic in terms of achievable energy savings. It remains open to
see if we can extend the model to account for these costs.

The second optimistic assumption of fine-grain control on the level of gran-
ularity of control for DVS mode setting, while optimistic, is not practical. We
cannot insert mode-setting instructions dynamically. However, we can poten-
tially insert mode-setting instructions for every instruction, and that represents
reasonably fine grain control.

On the optimization side, a key issue in the formulation of the problem con-
cerns which code locations are available for inserting mode-set instructions.
While our early work focused on methods that considered possible mode sets at
the beginning of each basic block, we feel that edges are more general because
MILP solutions may assign a different frequency to a basic block depending on
the entry path into it. On the other hand, this generalization will warrant cer-
tain code optimizations when actually implemented in a compiler. First, anno-
tating execution on an edge would, if implemented naively, add an extra branch
instruction to each edge because one would need to branch to the mode-set in-
struction and then branch onward to the original branch destination. Clearly,
optimizations to hoist or coalesce mode-set instructions to avoid extra branches
can potentially improve performance.
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11. SUMMARY

This paper seeks to address the basic questions regarding the opportunities
and limits for compile-time mode settings for DVS. When and where (if ever) is
this useful? What are the limits to the achievable power savings?

We start by providing a detail analytical model that helps determine the
achievable power savings in terms of simple program parameters, the memory
speed, and the number of available voltage levels. This model helps point to
scenarios, in terms of these parameters, for which we can expect to see signifi-
cant energy savings, and scenarios for which we cannot. One important result
of this modeling is that as the number of available voltage levels increase, the
energy savings obtained decrease significantly. If we expect future processors
to offer fine-grain DVS settings, then compile-time intraprogram DVS settings
will not yield significant benefit and thus will not be worth it.

For the scenarios where compile-time DVS is likely to yield energy savings—
few voltage settings, lax program deadlines, memory-bound computation—
selecting the locations and values of mode settings is nonobvious. Here, we
show how an extension of the existing MILP formulation for this can handle
fine-grain mode settings, use accurate energy penalties for mode switches and
deal with multiple input data categories. Through careful filtering of indepen-
dent locations for mode-setting instructions, we show how this optimization can
be done with acceptable solution times. Finally, we apply this to show how the
available savings can be achieved in practice.
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