
.

0018-9162/97/$10.00 © 1997 IEEE44 Computer

Trends in
Shared Memory
Multiprocessing

P
rogress in shared memory multiprocessing
research has led to its industrial recogni-
tion as a key technology for application
domains such as decision support systems
and multimedia processing. Although uni-

processor performance continues to increase roughly
50 percent each year, developers have recognized that
these applications have computational needs that cur-
rent uniprocessors cannot meet. Because such applica-
tions often have inherent parallelism, parallel processing
is an effective way to meet their computational needs.

Like uniprocessors, current shared memory multi-
processors are often built from high-performance
microprocessors, so there is a clear transition path
from uniprocessor to multiprocessor program imple-
mentations. The challenge lies in making this transi-
tion as smooth as possible, both in performance and
the programming required to achieve it.

The first step in meeting this challenge is to carefully
examine the current use of shared memory multipro-
cessing and arrive at intelligent projections of future
use based on application and technology trends. The
second step is to begin filling gaps in programming
models and architectures for shared memory multi-
processing. Finally—and possibly concurrently with
the second step—researchers must look at ways to
make the development of parallel software more fea-
sible, including the development of compilers and
tools. In this article, we look at the issues in these three
steps. We also show how architectural issues are tightly
interwoven with application trends.

APPLICATION AREAS
Research has focused heavily on scientific applica-

tions—sometimes to the detriment of other important
domains. Commercial applications have been sadly
neglected. Most users do not develop their own appli-
cations, primarily because they lack the appropriate
tools and the shared memory programming paradigm
is far from easy to manage.

Dominant domains
Figure 1 shows the dominant applications in the

1995 market and the projected market for the same

applications in 2000, according to Dataquest. An
“application” not shown, but nonetheless an impor-
tant piece of software for a shared memory machine,
is the operating system.

• Databases. Commercial databases are primarily
online transaction processing systems, such as air-
line reservation systems or decision support sys-
tems, such as the selection of addresses for
direct-mail campaigns. Database vendors typically
support both shared memory and message-passing
versions of their products. Significant concerns
include reliability, availability, and serviceability.

• File servers. Commercial file servers service a large
number of workstations or PCs. Concerns include
the performance of the I/O subsystem (both on
the network and disk sides) and reliability, avail-
ability, and serviceability.

• Scientific and engineering. These applications
include those used both commercially and in
research. They typically solve some scientific or
engineering problem, such as the simulation of
physical phenomena and the simulation of engi-
neering systems. Even when run on a shared
memory architecture, these applications can use
a message-passing style of programming, typically
with a message-passing library, such as MPI
(Message-Passing Interface).

• Media and e-mail servers. These servers service a
large number of accesses, or hits, to a widely
available information pool. Once again, reliabil-
ity, availability, and serviceability are important
concerns.

• Other commercial applications. These applications
do not fall into any of the above categories, such as
customized applications developed by end users.

Figure 2 shows scientific and engineering and other
commercial applications in the context of cost per
machine for the 1995 market, according to Dataquest.
As the figure shows, 79 percent of the 1995 server mar-
ket (combined bars for <$10,000, <$50,000, and
<$250,000) was covered by machines below $250,000.
These machines, which typically have fewer than 16

Current application and technology trends are causing researchers and develop-
ers to revisit shared memory multiprocessing. The authors look at what is needed
to maintain growth, particularly for commercial applications.

Per Stenström
Chalmers
University of
Technology

Erik Hagersten
Sun
Microsystems
Inc.

David J. Lilja
University of
Minnesota,
Minneapolis

Margaret
Martonosi
Princeton
University

Madan
Venugopal
Silicon
Graphics

Th
em

e
Fe

at
ur

e

processors, probably dominated the market for one of
three reasons or some combination: they were afford-
able, many small machines are more available to users
than one large machine, programs could not scale
beyond 16 processors.

Although predicting the future computer market is
difficult at best, two trends seem to be emerging: the
continued domination of small and medium machines
(Figure 2) and a slower annual growth for scientific
and engineering applications relative to commercial
ones (Figure 1).

Applications used in research
Shared memory multiprocessing research has

recently begun focusing on engineering and scientific
applications that run on hundreds of processors.
While pushing scalability in this area is an interesting
open problem, this area is not very representative of
how servers are used. As Figure 2 shows, machines
above $1 million represent only three percent of the
server market revenue for engineering and scientific
applications. Moreover, according to Dataquest, the
annual growth from 1995 to 2000 is expected to be
only 14 percent for this size server—a smaller increase
than all the other server price categories.

This suggests increasing research activities that tar-
get other applications and smaller servers, which would
address the remaining 97 percent of the market.

Compared with the scientific and engineering appli-
cations used in research, commercial applications typ-
ically have a larger code size, a much larger data set,
fewer floating point operations, a different branch
behavior, more users, higher use of the operating sys-
tem, more context switches, and a higher I/O rate.1

Because reliability is important in commercial servers,
the research community must begin to address not
only performance issues, but also reliability, avail-
ability, and serviceability.

Another obstacle is that few studies include the
effects of the operating system. The NAS and Splash
parallel benchmarks are just two examples of the one-
track emphasis on scientific and engineering research
applications. There is a pressing need for a more real-
istic evaluation framework for shared memory mul-
tiprocessing research.

MODELS AND ARCHITECTURES
Parallel programming models and emerging hard-

ware technology are becoming increasingly discon-
nected. Many computer manufacturers are producing
systems that are based on the shared memory model
at the same time that many parallel applications are
being based on a message-passing model. Actually,
the community in general seems confused about how
to define a smooth line from the parallel algorithm,
the programming model by which it is implemented,
and the system architecture that realizes it. Adding to
the problem is the lack of standards to port applica-
tions among shared memory systems.

Figure 1. (a) 1995 and (b) 2000 market volume for servers. The market has grown and is projected to grow 15 percent annually.

December 1997 45

.

Database
32%

File server
32%

Scientific and
engineering

16%

Scientific and
engineering

14%

File server
25%

Print server
9% Print server

7%
Media

and e-mail
6%

Media
and e-mail

8%

Other
5%

Other
7%

Database
39%

(a) (b)

0

5

10

15

20

25

30

1

5 5

2 3

19

25 24

9 8

<$10,000 <$50,000 <$250,000 >$1M

Pe
rc

en
t

Commercial
Scientific
and engineering

<$1M

Figure 2. 1995 market
volume by machine
price. Only a small
percentage is
occupied by scientific
and engineering
applications, yet that
is where most
research efforts are
concentrating.

So
ur

ce
: D

at
aq

ue
st

So
ur

ce
: D

at
aq

ue
st

.

46 Computer

Defining characteristics
The programming model is the interface between

the programmer and the machine. The architecture is
the underlying structure of the machine itself. The
choice of a specific programming model determines
how a programmer views the machine, independent of
the machine’s actual structure. For example, in dis-
tributed shared memory architectures such as the
Stanford DASH and the Silicon Graphics Origin, the
memory is physically distributed among processors.
The hardware passes messages to automatically ensure
cache coherence while providing the illusion of a sin-
gle shared global address space to the programmer.

Consequently, every processor uses the same name
to refer to the same global location in memory, which
makes sharing data among processors relatively sim-
ple. In a message-passing programming model, on the
other hand, each processor has its own private address
space. To have processors share data, the program-
mer must include explicit send and receive state-
ments in the source code.

It is thus possible to implement a message-passing
model on top of a shared memory machine and vice
versa.

Model-architecture trade-offs
Performance is generally higher when the program-

ming model matches the underlying architecture, but
architects can write an application for a particular
architecture, making it insensitive to variations in
memory access delays. Although writing applications
for specific architectures is time-consuming and largely
defeats the ease of use that comes with the shared mem-
ory model, for production-level code (written once and
executed many times), designers may want to extract
as much performance as possible by tuning the code
in this manner. Performance models that estimate the
effects of variable access costs would make it easier to
write such applications, as we describe later.

Scalability issues
The shared memory model enables incremental par-

allelization at varying levels of granularity. Because
this model features a low access latency, programmers
can efficiently parallelize loops that contain very little
work. In fact, this feature is one reason designers have
been able to port large, legacy serial applications to
shared memory systems. Although much less than
ideal scalability often results, the performance
enhancements and resulting speedups are desirable to
many users, as we describe later.

The message-passing model’s high scalability is
often attributed to the new message-passing version
of the code. However, parallelizing the code usually
forces extensive algorithmic changes to achieve that
scalability—changes that could also be implemented
with a shared memory model. In fact, a message-pass-

ing model on a shared memory machine can offer both
good performance and portability.

Moreover, we have found that scalability is possible
with the shared memory model, although most people
seem to believe otherwise. For example, consider the
results in Table 1 of implementing Aerosoft’s GASP, a
computational fluid dynamic application, on the Silicon
Graphics Origin 2000 system. The table shows the
computation time and speedup in 10 time steps. The
problem involved a 321 × 321 × 101 grid (10.4 million
grid points) with 512 zones, requiring 2.8 Gbytes of
memory and about 1 Gbyte of disk space. The Origin
2000 system it ran on has 128 processors, 4-Mbyte
caches, and 16 Gbytes of memory. We removed the
startup overhead from the first step so that the I/O cost
usually amortized over hundreds of steps did not affect
the speedup. All CPU times are from within GASP.

As the table shows, shared memory architectures
can scale well for a scientific application. In fact, the
parallel implementation used for the Origin 2000 was
originally developed for a bus-based multiprocessor.2

Some believe that massively parallel message-pass-
ing systems will be more scalable than shared memory
architectures for database applications. However,
according to results of the decision-support benchmark
TPC-D (http://www.tpc.org), shared memory imple-
mentations can outperform massively parallel message-
passing systems, even at 128 processors. In fact, the
current performance leader, the Sun E10000 (64 proces-
sors at 300 Gbytes) is a shared memory architecture.
Compared with message-passing systems, the E10000’s
sharing of memory and I/O makes database partition-
ing less critical to performance,3 and porting a database
to other shared memory architectures is much easier.

Misconceptions about shared memory scalability
will continue until the community begins separating
algorithm, implementation, and architecture issues
when reporting parallel results. Performance studies
comparing the two models on similar algorithms4 are
required to clarify the distinction between the algo-
rithm and the programming model. These studies,
combined with a widely adopted standard for shared
memory parallel programming, may naturally lead to
greater use of the shared memory model in the soft-
ware development community.

PARALLEL SOFTWARE DEVELOPMENT
To make it easier to develop parallel software,

research must extend work in automatic (compiler)
parallelization techniques and in developing tools to
aid performance tuning.

Parallelization techniques
Although explicit manual parallelization remains

the most common means for exploiting parallelism,
automatic compiler parallelization is moving closer to
reality. Several significant challenges remain, however.

There is a
pressing
need for a
more realistic
evaluation
framework
for shared
memory
multiprocess-
ing research.

Broadening application areas. Compilers can paral-
lelize many interesting types of scientific code.5 They
are also identifying parallelism for an increasing num-
ber of applications that involve loop-oriented code.5

However, broadening applications to include other
commercial code is proving difficult. Such code is
often several magnitudes larger than loop-oriented
code and more complex. Further, large classes of appli-
cations such as databases, telecommunications, geo-
graphic information systems, graphics, and stock and
option trade systems run sequentially on shared mem-
ory parallel machines. Some of these do not have the
structure characteristic of scientific and engineering
applications, so parallelizing them may be much more
challenging. However, the payoff may also be greater.

One problem is how to identify parallelism that
spans procedure boundaries. This typically involves
including memory accesses through pointers where
data dependencies are difficult to analyze. How to
uncover data dependencies when pointers are involved
remains one of the most significant obstacles to fully
identifying program parallelism. Some strides have
been made in analyzing C programs with pointers,
but loops with very dynamic access patterns remain
unparallelized. In such cases, interactive paralleliza-
tion techniques may offer promise. In these tech-
niques, compilers query users for higher level program
information that may aid them in identifying paral-
lelism or deducing when perceived dependencies need
not impede parallelization.

Some experimental and commercial compilers have
tackled this parallelism problem by applying compiler
analysis passes interprocedurally. With techniques like
making arrays private and conducting an interproce-
dural analysis, researchers can identify much coarser
grained parallelism in the code, which may reduce
both the code’s synchronization and memory costs.

Another parallelization method used by applica-
tions experts is algorithm recognition and substitu-
tion. Many linear algebra algorithms, for example,
have interesting parallel variants. Compilers often do
some of the simpler cases of recognize and substitute,
such as optimizing sum reductions. The compiler com-
munity should consider identifying the next few exam-
ples of recognize and substitute—and not just for
scientific computing.

Managing parallelism. In many cases, compilers can
successfully identify sufficient parallelism in major
program loops. However, although some of these pro-
grams exhibit excellent speedups, others have prop-
erties, like memory behavior, that limit speedup.
Parallelizing compilers often aggressively parallelize
as many loops as possible, which can cause fine-
grained loops to be parallelized in ways that lead to
extreme true or false sharing. In some cases, these
parallelized loops with sharing problems perform
much worse than if the loop had executed sequen-

tially. Better memory analysis and combinations of
communication and computation analysis6 could
limit the number of poor parallelization choices. In
some cases, the compiler can adequately analyze
memory behavior, but it often has insufficient con-
trol of the memory hierarchy. Instruction-set archi-
tectures that let compilers have better control of
caches could improve memory behavior.

Thus, although parallelizing compilers have become
quite good at identifying parallelism, they are less
adept at predetermining the degree of it. As a result,
a compiler-parallelized application may execute its
computation on more processors than it can effec-
tively use, not only wasting processors that could be
applied to other useful work but sometimes even slow-
ing down the computation itself. This waste of com-
putational resources becomes more acute with the
number of processors, particularly for parallel com-
puters used as multiprogrammed computational
servers. Preliminary work shows the promise of adapt-
ing processing as the program runs. The idea is to limit
the processes allocated according to system load and
the application’s available parallelism. Such ap-
proaches let the system use as many processors as pos-
sible without overloading.

Other issues. Even with state-of-the-art compiler
technology, automatic parallelization of large appli-
cations is not fully practical. Thus, compilers should
provide feedback to the user to assist in manual par-
allelization. For example, the compiler gathers much
useful information about memory behavior and
dependencies. Even if it does not succeed in automatic
parallelization, the information gathered during
analysis may help the programmer manually paral-
lelize or optimize the application. Formal mechanisms
that convey pertinent information from an analysis
would also be useful.

Another issue, which affects both portability and
ease of use, is the need to standardize compiler direc-
tives. Despite differences in shared memory multi-
processors, no standard for shared memory paralleli-
zation directives or compiler flags exists. Distributed
memory machines have had success with standards
such as the Message-Passing Interface (MPI). Such
work must continue.

December 1997 47

.

Table 1. Speedups for the parallel version
of the GASP computational fluid dynamic
application running on Silicon Graphics

Origin 2000.

Number of CPU time Parallel
processors (hr:min:sec) speedup

1 03:28:28 1.00
2 01:44:49 1.99

16 00:14:14 14.65
32 00:07:24 28.17
64 00:03:52 53.91

128 00:02:20 89.34

48 Computer

Performance tools
Because manual parallelization is still the method

most often used, programmers must have perfor-
mance tools to tune their code. Unfortunately, despite
the great importance of parallel performance analy-
sis to good program speedups, parallel tools are still
relatively immature.

Many tools provide basic high-level information on
the program’s computational performance and coarse-
grained communication behavior. In shared memory
multiprocessors, it is relatively easy to monitor and
display statistics about interprocessor synchroniza-
tion, for example. Fine-grained user-level timers have
begun to appear on commercial multiprocessors,
which also provide accurate timing statistics.

Memory behavior, however, is still quite difficult to
monitor, primarily because software has traditionally
been presented with the abstraction of a uniform high-
speed memory. Unlike branch instructions—which
alter control flow depending on the path taken—loads
and stores offer no direct mechanism to determine if
a particular reference was a hit or a miss. Shared mem-
ory parallel programs communicate via shared data,
so statistics on memory accesses are crucial because
they reveal much about the program’s interprocessor
communication behavior.

Another issue related to monitoring memory behav-
ior is the need for models that can accurately predict
performance levels. Such models would estimate the
effects of variable access costs, which would help users
see the performance they could achieve when paral-
lelizing applications. For system designers, these mod-
els could suggest the required balance between processor
performance and memory latencies and bandwidths.
The lack of such models will become an increasing
obstacle as processor technology continues to change
and memory hierarchies become more complex.

Some work is already being done to observe mem-
ory behavior. Recently, many commercial CPUs have
provided on-chip memory-event counters that the user
can access. However, although these counters offer
good aggregate views of memory behavior, it is not
easy to determine if a particular reference hits or
misses in the cache. Instead, the miss counter value
must be read just before the reference is executed and
just after, which sequentializes the pipeline. A more
general approach might be to combine lightweight
cache miss traps with performance counters in han-
dler software.

At the software level, tools have also been hobbled
by the lack of standardization in programming inter-
faces. With so many parallel languages and program-
ming environments, tool interoperability is nearly
impossible. As the community reaches consensus on a
handful of common parallel programming models, it
will become feasible to develop well-tested, widely
used code for these models. Furthermore, we believe

that integrating the tool infrastructure with a full pro-
gramming and compilation environment offers the
best hope that performance tools will become part of
the standard program development cycle.

ARCHITECTURAL DESIGN DRIVERS
Given the current application and technology trends,

we believe many proposed architectural design solu-
tions may be inadequate because they fail to address
relevant applications, the increasing speed gap between
processor and memory technology, and the effects of
processor technology. Moreover, many of the tech-
niques we describe here apply primarily to scientific
and engineering workloads. For other commercial
workloads, the community still lacks experience
because effective evaluation methodologies are not yet
available. Current simulation-based approaches have
severe shortcomings to realistically model the often
complex interaction between software, processor,
memory, and I/O subsystems in a commercial context.

Application push
Small-scale multiprocessors offer a uniform mem-

ory access model and are often called symmetric mul-
tiprocessors. Because of the efforts invested in
designing them, symmetric multiprocessor and single
processor computational nodes have become natural
building blocks for larger configurations. The
HP/Convex Exemplar, Sequent NUMA-Q, and Origin
2000 are examples. Although offering attractive cost,
these systems have a nonuniform memory access
model to the software. In this model, processors
observe different access latencies to local and remote
memories, which makes it difficult to tune the system
for performance. Research has thus concentrated on
techniques that aim to eliminate the NUMA model’s
negative effect on performance. These techniques fall
(roughly) into two categories: latency reduction and
latency tolerance.

Latency reduction. Efficient cache management is
critical to reduce memory access latency, and signifi-
cant research in cache coherence maintenance over
the past several years7 has responded to this need.
Although fairly efficient solutions exist for scientific
applications, it is unclear how commercial workloads
interact with the proposed techniques.

Increasing cache capacity is a natural weapon to
reduce memory latency. For some scientific and engi-
neering codes, fairly small caches may suffice because
the most performance-sensitive working sets in these
applications typically grow slowly with problem size.8

However, it is currently unclear how working sets for
data-intensive applications, such as online transaction
processing and decision support systems, grow with
problem size. Designers can also reduce memory access
latencies in NUMA systems by carefully laying out data
in page-size chunks across the distributed memory mod-

Despite the
great
importance
of parallel
performance
analysis to
good
program
speedups,
parallel tools
are still
relatively
immature.

.

ules. While such NUMA policies have proved effective
for important scientific applications, it is not clear how
useful they are for other commercial applications.

Latency tolerance. When latency cannot be reduced,
techniques tolerate it by overlapping computation
with communication. Recent research has distilled
some promising latency toleration techniques but at
the cost of higher memory system bandwidth. Also,
each approach has weaknesses.

Relaxing memory consistency undoubtedly enables
many of the standard optimization tricks for uniproces-
sor systems, but it does not hide all latency because ulti-
mately the system must respect interthread data
dependencies. As the latencies increase, these depen-
dencies further erode performance. Data prefetching
hides latency by letting a node signal that data is needed
in advance. However, most existing prefetch
approaches are useful only for the regular access pat-
terns typically found in scientific applications. Finally,
multithreading switches between independent threads
when a long-latency operation is encountered. This
approach requires hardware support for fast thread
switches and more application parallelism to be effec-
tive. Two trends can make it more useful against mem-
ory access latencies. First, as the speed gap between
processors and memories increases, thread-switch over-
head will be less of a concern. Second, the difficulty of
extracting more instruction-level parallelism at an
affordable complexity level may lead to an increased
interest in multithreaded architectures.

Commercial applications are often very difficult to
parallelize using traditional approaches. They typi-
cally contain many loops with early exit conditions,
such as do-while loops. Parallelizing these loops
requires architectural and compiler support for
thread-level speculative execution. Small granularity
loops with low trip counts, also common in these
applications, typically require fast communication and
synchronization to be efficiently parallelized.

Parallelizing programs with extensive memory alias-
ing, which often occurs when using pointers, requires
hardware support for data speculation or runtime
dependence checking between threads. No system cur-
rently provides these features at a level that can sup-
port difficult-to-parallelize applications.

Technology push
Designers of high-performance microprocessors have

had the luxury of borrowing architectural ideas from
mainframe and supercomputer systems. As a result,
almost all microprocessors available today use tech-
niques such as out-of-order execution, register renam-
ing, branch prediction, and multiple instruction issue
per cycle to provide high uniprocessor performance.

Unfortunately, this grab bag of performance-
enhancement tricks is now essentially empty. Within
the next decade, it will be possible to integrate a bil-

lion transistors on a single component. Performance
enhancement techniques will become critical as the
community looks for the best way to exploit these
huge numbers of transistors to deliver high perfor-
mance. Should system designers build a single proces-
sor, should they follow the current trend and construct
an entire shared memory multiprocessor system on a
chip, or are more innovative solutions possible?

While there are many interesting suggestions for how
to use these transistors,9 processor technology and
application changes will likely drive computer archi-
tects to develop radically new approaches for exploit-
ing parallelism. Examples include the concurrent
multithreaded architecture in the Multiscalar
machine,10 the superthreaded architecture,11 and the
single-program speculative multithreaded architec-
ture.12 These approaches provide multiple program
counters to support thread-level parallelism, but each
individual thread can simultaneously exploit instruc-
tion-level parallelism. Additionally, the use of control
speculation allows concurrent multithreaded architec-
tures to parallelize loops with early exit conditions.
Their hardware support of either data speculation or
runtime data dependency checking can help solve the
problem of limited parallelism due to memory aliasing.

It would thus be feasible to use these or other new
types of processor architectures as the individual com-
putational nodes of a shared memory multiprocessor
system. Furthermore, trends in distributed systems are
to interconnect multiple heterogeneous systems using
standardized data communication networks, such as
Asynchronous Transfer Mode, Fibre Channel, and
High-Performance Parallel Interface. These networks
provide sufficiently high bandwidth and low latency.
This allows the collection of systems to be viewed as a
single, large metasystem13 on which very large applica-
tions can be executed.

However, although these systems provide multiple
levels of parallelism, their complex hierarchies severely
complicate the tasks of the compiler and application
programmer. Increasing the power of individual com-
putational nodes will put additional stress on the
memory system and the interconnection network,
exacerbating problems from memory delays.
Nevertheless, the tremendous opportunities these
complex systems offer for improving performance will
force system architects and software designers to
develop new strategies to exploit them.

I n the past several years, research in shared memory
multiprocessing has clearly paid off commercially.
Several vendors are now selling cost-effective com-

mercial multiprocessors that improve the performance
of many important applications. However, additional
hurdles must be overcome for multiprocessing to con-
tinue to offer large performance improvements on a
wider variety of applications.

Processor
technology
and applica-
tion changes
will likely
drive
computer
architects
to develop
radically new
approaches
for exploiting
parallelism.

December 1997 49

.

50 Computer

A major challenge is to address the particular con-
cerns of commercial code, but perhaps the greatest
challenge is to develop new techniques in the face of
a moving hardware target. The community must
somehow improve the software and keep pace with
constant increases in integration level, on-chip paral-
lelism, and memory hierarchy complexity. ❖

Acknowledgments
We thank Yale Patt, who initiated the set of task forces

that allowed us to develop our thoughts in a creative
environment in Hawaii. We also thank the anonymous
reviewers and those at Silicon Graphics who contributed
their thoughts: Dan Lenoski, Brond Larson, Woody
Lichtenstein, John McCalpin, and Jeff McDonald.

References
1. A. Grizzaffi Maynard et al., “Contrasting Characteristics

and Cache Performance of Technical and Multi-User Com-
mercial Workload,” in Proc. Int’l Conf. Architectural Sup-
port for Programming Languages and Operating Systems,
IEEE CS Press, Los Alamitos, Calif., 1994, pp. 145-155.

2. M. Venugopal, D. Slack, and R. Walters, “A Commer-
cial CFD Application on a Shared Memory Multi-
processor,” in High Performance Computing, S. Sahni,
V. Prasanna, and V. Bhatkar, eds., McGraw-Hill, New
York, 1995, pp. 305-310.

3. B. Carlile, “Seeking the Balance: Large SMP Ware-
houses,” Database Programming Design, Aug. 1996,
pp. 44-48.

4. S. VanderWiel, D. Nathanson, and D. Lilja, “Complex-
ity and Performance in Parallel Programming Lan-
guages,” in Proc. Int’l Workshop High-Level Parallel
Programming Models and Supportive Environments,
IEEE CS Press, Los Alamitos, Calif., 1997, pp. 3-12.

5. R. Wilson et al., “An Infrastructure for Research on Par-
allelizing and Optimizing Compilers,” SIGPlan Notices,
Dec. 1994, pp. 31-37.

6. J. Anderson and M. Lam, “Global Optimizations for
Parallelism and Locality on Scalable Parallel Machines,”
in Proc. SIGPlan Conf. Programming Language Design
and Implementation, ACM Press, New York, 1993, pp.
112-125.

7. P. Stenström et al., “Boosting the Performance of Shared
Memory Multiprocessors,” Computer, July 1997, pp.
63-70.

8. E. Rothberg, J. Pal Singh, and A. Gupta, “Working Sets,
Cache Sizes, and Node Granularity Issues for Large-Scale
Multiprocessors,” in Proc. Int’l Symp. Computer Architec-
ture, IEEE CS Press, Los Alamitos, Calif., 1993, pp. 14-25.

9. Computer, special issue on billion-transistor architec-
tures, D. Burger and J. Goodman, eds., Sept. 1997, pp.
46-93.

10. G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar
Processors,” in Proc. Int’l Symp. Computer Architecture,

IEEE CS Press, Los Alamitos, Calif., 1995, pp. 414-425.
11. J.-Y. Tsai and P.-C. Yew, “The Superthreaded Architec-

ture: Thread Pipelining with Runtime Data Dependence
Checking and Control Speculation,” in Proc. Int’l Conf.
Parallel Architectures and Compilation Techniques,
IEEE CS Press, Los Alamitos, Calif., 1996, pp. 35-46.

12. P. Dubey et al., “Single-Program Speculative Multi-
threading (SPSM) Architecture: Compiler-Assisted Fine-
Grained Multithreading, in Proc. IFIP WG 10.3 Conf.
Parallel Architectures and Compilation Techniques,
IEEE CS Press, Los Alamitos, Calif., 1995, pp. 109-121.

13. L. Smarr and C. Catlett, “Metacomputing,” Comm.
ACM, June 1992, pp. 45-52.

Per Stenström is a professor of computer engineering
at Chalmers University of Technology. He is on the
editorial board of Journal of Parallel and Distributed
Computing. Stenström received an MS in electrical
engineering and a PhD in computer engineering from
Lund University. He is a member of the IEEE Com-
puter Society, IEEE, ACM, and SIGArch.

Erik Hagersten is the chief architect for Sun Microsys-
tems’ High-End Server Engineering group. Hagersten
received an MS in electrical engineering and a PhD in
computer science, both from the Royal Institute of
Technology in Stockholm.

David J. Lilja is an associate professor and the director
of graduate studies in computer engineering in the Dept.
of Electrical and Computer Engineering at the Univer-
sity of Minnesota, Minneapolis. Lilja received a PhD and
an MS, both in electrical engineering, from the Univer-
sity of Illinois at Urbana-Champaign, and a BS in com-
puter engineering from Iowa State University. He is a
senior member of the IEEE, a member of the ACM, and
a distinguished visitor of the IEEE Computer Society.

Margaret Martonosi is an assistant professor of elec-
trical engineering at Princeton University. Martonosi
received a BS from Cornell University and an MS and
a PhD from Stanford University, all in electrical engi-
neering.

Madan Venugopal is a member of the technical staff
at Silicon Graphics Computer Systems. Venugopal
received a BTech in naval architecture and shipbuild-
ing from the University of Cochin, an MASc in
mechanical engineering from the University of British
Columbia, and an SM and a PhD in ocean engineer-
ing from the Massachusetts Institute of Technology.
He is a member of the IEEE Computer Society.

Contact Stenström at the Dept. of Computer Engi-
neering, Chalmers University of Technology, S-412 96
Göteborg, Sweden; pers@ce.chalmers.se; http://
www.ce.chalmers.se/~pers.

.

