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Abstract

Growing complexity in many current computers makes
performance evaluation and characterization both in-
creasingly difficult and increasingly important. For par-
allel systems, performance characterizations can be es-
pecially difficult to obtain, since the hardware is more
complex, and the simulation time can be prohibitive.
The challenge is to design a low-cost and yet flexible and
powerful performance monitoring system to provide sys-
tems implementers and application programmers with
detailed performance information.

This paper describes a performance monitoring sys-
tem for the SHRIMP multicomputer. The system’s core
is a hardware monitor with several novel features includ-
ing multi-dimensional histograms, page tags, histogram
categories, and a threshold interrupt mechanism. We
also describe software applications that make use of
these features. These applications range from fairly sim-
ple code-oriented or data-oriented performance tools, to
more complicated on-the-fly use of the monitor to im-
prove the performance of a shared virtual memory sys-
tem. We have found that the concurrent development
of the hardware and software portions of the system
has led to a novel design that supports a wide range of
hardware and software uses.

1 Introduction

Over the past decade, parallel computers have come into
much more widespread use. In particular, a current fo-
cus of research in the parallel community has been on
“convergence machines” [13], which are created by us-
ing high-performance networks and specially-designed
network interfaces to interconnect commodity PCs or
workstations [3, 16, 24]. In convergence machines, the
design effort is often focused on supporting fast data
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access and communication amongst an application’s co-
operating processes.

Initial design decisions in such efforts are generally
made with the help of analytic methods and simula-
tion results. Many deeper questions about the detailed
behavior of the final system cannot, however, be an-
swered through simulation, because it is too slow to
use on significant applications. Furthermore, it is often
impossible to collect simulation-based results that fully
reflect the effects of multiple processes and the operat-
ing system. Support for monitoring the running system
is needed.

Monitoring methods based entirely on software are
valuable in some cases. Some performance informa-
tion (such as instruction counts or explicit synchroniza-
tion delays) may be both sufficiently coarse-grained and
software-visible that it can be monitored simply by in-
strumenting software or by using techniques like pro-
gram counter sampling [11]. Many current parallel ma-
chines, however, allow implicit communication that is
hard to monitor without hardware support. In cache
coherent, shared-address-space machines, much of the
interprocessor communication occurs via the hardware
cache-coherence mechanism. With communication po-
tentially occurring on any read or write, monitoring
must be very fine-grained. With the latency of such
communication dependent on the dynamic interleaving
of accesses from different processors, it is virtually im-
possible to measure in software, except via simulation.
Even in message passing machines, increased support
for implicit, fine-grained communication has made mon-
itoring difficult.

For these reasons, hardware performance monitors
are an attractive approach for measuring a running sys-
tem’s behavior. These measurements can be used to
modify mutable parts of the system hardware, to help
with software development and tuning, to thoroughly
characterize and evaluate the behavior and performance
of a prototype system, and to guide the design decisions
of future efforts. Furthermore, software can also use
performance information to make on-the-fly decisions
about how to adapt to observed behavior. (For exam-
ple, a parallel application might migrate a page of data
to the processor that references it most often, based on
performance numbers available during execution.)

This paper describes the design and uses of the hard-
ware performance monitor for the Princeton SHRIMP



multicomputer [3]. The main focus of the SHRIMP
project has been on designing hardware and software
support for low-cost, user-level communication mecha-
nisms. Thus, we have designed hardware and software
to monitor system behavior, with a particular emphasis
on monitoring the inter-processor communication statis-
tics. In designing the monitoring system we aimed to
create a simple, yet flexible and powerful hardware mon-
itor and seamlessly integrate it with the higher-level
software layers that take advantage of it. Thus, the
hardware and software in our performance monitoring
system have two primary goals: effective characteriza-
tion of system behavior, and the support of on-the-fly
monitoring by software. The research contributions of
this work are twofold. First, we have designed hardware
that simultaneously supports both general system char-
acterization and on-the-fly software adaptation. Sec-
ond, we have identified and evaluated some of the soft-
ware applications that can make use of this system.

Section 2 gives background information on the
SHRIMP multicomputer. Section 3 describes specific
features of the performance monitoring hardware de-
sign, as well as design alternatives and tradeoffs. Fol-
lowing this, Section 4 presents several examples of using
the performance monitor for fine-grained software sup-
port and gives preliminary evaluations. We discuss re-
lated work in Section 5 and give conclusions in Section
6.

2 SHRIMP: An Overview

The SHRIMP (Scalable High-performance Really In-
expensive Multi-Processor) project at Princeton stud-
ies how to provide high-performance communication
mechanisms in order to integrate commodity desktop
computers such as PCs and workstations into inexpen-
sive, high-performance multicomputers [2, 3]. SHRIMP
nodes are unmodified Pentium PC systems, each con-
figured with disk and standard I/O devices such as
tape drives, monitors, keyboards and LAN adaptors.
The network is the Intel Paragon mesh routing back-
plane [26]. The connection between a network inter-
face and the routing backplane is via a simple signal-
conditioning card and a cable.

Figure 1 shows a SHRIMP multicomputer prototype
system. The highlighted components in the figure cor-
respond to the experimental system components being
designed and implemented at Princeton. The right hand
side of the figure focuses in on a single SHRIMP com-
pute node, a standard PC system.

A main goal of SHRIMP is to provide a low-latency,
high-bandwidth communication mechanism whose per-
formance is competitive with or better than those used
in specially designed multicomputers. The SHRIMP
network interface implements virtual memory-mapped
communication to support protected, user-level message
passing, and fine-grained remote updates and synchro-
nization for shared virtual memory systems. SHRIMP
supports a variety of programming styles by support-
ing communication through either deliberate update or
automatic update. With deliberate update, a processor
sends out data using an explicit, user-level message-send
command. With automatic update, a sending process
can map memory within its address space as a send

buffer; any time the sending process writes to one of
these mapped (outgoing) memory regions, the writes
are propagated automatically to the virtual memory of
the destination process to which it is mapped.

It is in large part this implicit, automatic-update
communication that spurred our monitor design. With-
out hardware monitoring support, one would need to
instrument (i) all writes in the code in order to iden-
tify which resulted in communication, and (ii) all reads
in the code, to see which reads received “old values”
and which got “new” values, and therefore estimate the
message latency. The monitoring hardware makes it
possible to observe events (such as communication on
individual reads and writes) with lower overhead than
software techniques; more importantly though, it lets
us observe events (such as automatic-update message
arrivals) that are not always observable at the software
level.

3 Hardware Monitor Design

A performance monitoring board is located at each
SHRIMP node, and captures information at the arrival
of incoming packets. Figure 2 shows a block diagram
of the performance monitor. Given the monitor’s con-
nectivity, we can observe events on both the network
interface and the EISA bus. The discussion focuses on
network interface behavior, however, since that is where
interesting application communication behavior will be
visible.

The monitor responds to user commands (e.g. start,
stop, etc.) encoded as special EISA bus writes. (EISA
writes are also used to configure the board by reading
or writing its registers, but those connections are not
shown in the figure.) Once the monitoring has begun,
the network interface sends the monitor a copy of each
raw packet as it is received, and the monitor parses the
raw packet data to extract the fields of interest. It then
updates its statistics memory appropriately, checks if
any new EISA commands have been issued, and waits
for the next packet. Like some previous performance
monitors (e.g. [12]) we have a flexible hardware design
based on FPGAs, but we have designed mechanisms
into the monitor for runtime flexibility as well. The
subsections below discuss some of the key features in
more detail.

3.1 Histogram and Trace Modes

The monitor has two modes: histogram mode and trace
mode. In histogram mode, it increments a count asso-
ciated with a runtime-selectable set of packet charac-
teristics; in trace mode it appends packet-specific infor-
mation to a sequential trace in DRAM. A user-writable
register indicates whether the system should operate in
histogram or trace mode. As described in Section 3.4,
we also provide a mechanism for switching dynamically
from histogram to trace mode while data is being col-
lected.

In histogram mode, variables of interest to the exper-
imenter are used to form the address lines of the bank
of DRAM (labeled “histogram and trace memory” in
Figure 2). On each event, the memory contents so ad-
dressed are incremented and written back. At the end
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Figure 1: An overview of the components of the SHRIMP system.

of an experiment the memory contains a histogram of
the various values taken on by the variables. By using
more than one variable to form the address, the result
is a “multi-dimensional” histogram showing the joint
distribution of the variables. The design includes mul-
tiplexing to let users select the bit fields forming the
address. This gives the monitor runtime flexibility to
measure many different combinations of variables and
show correlations between them.

Trace mode shares logic with histogram mode, but
uses it in a complementary way. In trace mode, the
memory bank is addressed using a counter that is incre-
mented after every trace count. The concatenated bit-
fields (which are the addressin histogram mode) are the
data written to the trace memory location; they summa-
rize interesting details about this trace event. (In trace
mode, we also include 20 of the current time bits in each
trace event.) For both modes, the monitor’s design is fa-
cilitated by its relatively modest speed requirements: in
the SHRIMP prototype the minimum inter-packet time
is 625 nanoseconds, so that inexpensive dense DRAMs
are quite suitable for the histogram/trace memory.

3.2 Measurable Variables

The monitor design lets experimenters select combina-
tions of five possible variables for histogram construc-
tion, or for inclusion in the per-packet trace data. These
metrics are:

o Packet latency FEach SHRIMP network inter-
face board and each performance monitor main-
tains a 44-bit global clock register. These are syn-
chronously controlled across the whole system by
10 MHz clock signals distributed by the Paragon
backplane.

At the sending node, the network interface in-
serts its copy of the global clock into each out-
going packet as a timestamp. At the receiving
node, the performance monitor reads its copy of
the global clock as the packet arrives, and sub-
tracts the packet’s timestamp from it; this yields

the packet’s end-to-end hardware latency in 100-
ns. cycles. Since the resulting difference will be
a 44-bit quantity but our DRAM address is only
20 bits wide, we give users optional control over
the latency’s resolution. The default action is to
consider only the lower 20 bits of latency, but at
this point, one can adjust the latency’s resolution
by right-shifting it a user-selectable amount. Val-
ues greater than a user-specified maximum, or less
than a user-specified minimum, force the latency
to all 1’s, or all 0’s, respectively.

e Packet size  As the remaining packet data
streams in, a counter in the monitor keeps track
of the packet’s size in bytes. A 12-bit field is de-
livered to the address multiplexers.

o Packet’s sender The 8-bit identity of the send-
ing node is part of the packet header, and is sent
to the address multiplexers.

o Category User-level software can set a 4-bit cat-
egory register on the monitor board. As described
in Section 4, this allows users to attribute statistics
gathered by the hardware back to the responsible
software constructs.

e Page tag The performance monitor has also
been designed to provide support for coarse-
grained data-oriented statistics, by allowing dif-
ferent pages in memory to be assigned different
page tags, which can then be used in histogram
statistics. The 4-bit tags are stored in SHRIMP’s
incoming page table entries on the network inter-
face board; they are read out at the same time
as the page-mapping information [3]. Updating
page tags requires (protected) memory-mapped
1/0 writes of the appropriate locations in the page
tables.

Once calculated, all five quantities are fed into the
address multiplexer, which generates the memory ad-
dress of the histogram bin that is to be incremented.
This multiplexer is described next.
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Figure 2: Hardware Performance Monitor block diagram.

3.3 Multiplexing Variables for
Flexible Monitoring

Multi-dimensional histograms allow the experimenter to
build up a two, three, four or even five-dimensional ar-
ray of counters in the histogram memory. For exam-
ple, one might want to collect histogram statistics using
both packet size and packet sender, to yield the joint
frequency distribution of these two variables. A corre-
lation between the two might indicate that a particular
SHRIMP node tends to send larger packets on average.
We describe some more elaborate experiments in Sec-
tion 4.

The histogram memory in our design contains one
million 40-bit words, expandable to 16 million words.
The 20-bit address can be composed from the five vari-
ables in a large number of ways. We divide the 20 bits
of address into five fields, each four bits wide, that can
be set independently. Figure 3 illustrates our approach.
In our current design, latency is 20 bits wide, packet
size 1s 12 bits, and sender ID can be an 8-bit quantity.
The other two metrics, page tag and category, are 4-
bit quantities. Thus, there are 12 different 4-bit chunks
to be multiplexed into five possible positions in the ad-
dress. This means there are 12!/(5!- 7!) or 792 possible
multiplexer setups.

The situation is simplified, however, by adding the
restriction that latency fields must be contiguous. That
is, we assume that users would never want to use the 4
high-order latency bits along with the 4 low-order bits,
without using the intervening 12 bits. A final restric-

tion is that the sender ID field must either be used in its
entirety, or not at all. These restrictions drop the num-
ber of possible combinations to 190, all of which can be
selected by the monitor.

More importantly, the two restrictions placed on ad-
dress generation reduce the number of inputs to each
of the five multiplexers. With these restrictions, multi-
plexers can be arranged so that none of them requires
more than 8 inputs. Two of the multiplexers have 7 in-
puts. Since this logic is implemented (as is the bulk of
the design) as part of a FPGA, we can later reprogram
the FPGA to refine this multiplexing scheme if war-
ranted. (We also have incorporated a number of jumper
wires into the design so that additional high-order bits
can be used to address extra memory, without recompil-
ing the FPGA. These jumper wires can be connected to
specific signals either on the performance monitor board
or on SHRIMP’s network interface board.)

3.4 Using the Threshold Register

For performance monitors to be useful in on-the-fly
monitoring, they must be able to interrupt the CPU
on certain “interesting” events. Without this ability,
higher-level software would have to query the monitor
periodically to determine its status. In the histogram-
based monitor, a particular ‘event’ may involve a large
memory region; for instance, detecting packets from a
particular sender would mean checking all 2'? bins with
that sender’s 8-bit address. Thus, reading the histogram
locations intermittently throughout the run of a paral-
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lel application can often be both time-consuming and
disruptive.

The SHRIMP monitor provides efficient support
for selective notification. When running in histogram
mode, the monitor has a threshold-interrupt feature
that notifies the CPU when a count value passes a user-
specified threshold. The threshold register is compared
with the incremented value on each histogram update;
if the value is too big, an interrupt is generated. The
monitor also saves the histogram address that caused
the interrupt. The software interrupt handler can read
the overflow address register to see which bin caused the
interrupt, in order to decide how to react.! This low-
level mechanism can be used by higher-level application
or operating system policies to take software action in
response to monitored behavior.

The monitor can also be configured to use triggered
event tracing. That is, when the monitor detects a
threshold event, it not only signals an interrupt, but
also can switch from histogram to trace mode automat-
ically. This feature allows for long periods of histogram-
based monitoring, followed by detailed tracing once a
particular condition is detected. Triggered tracing and
threshold-based interrupts can both be used in several
interesting ways, including guarding against bin over-
flow, providing on-the-fly information to running soft-
ware, or capturing error traces once an error condition
is detected. Several applications are discussed in more
detail in Section 4.

3.5 Monitor Control Software

Finally, the monitor responds to a set of low-level com-
mands that come in via memory-mapped 1/O writes on
the EISA bus. These commands provide a basic library
of efficient access routines on top of which higher-level
tools can be built. The command set includes opera-
tions to start and stop monitoring, initialize ranges of

1In extreme situations, threshold overflow interrupts can oc-
cur faster than they can be handled. We limit this problem by
queuing overflow addresses, and flagging when the queue has
overflowed.

histogram memory, and read ranges of histogram mem-
ory. In addition, one can adjust the resolution of the
packet latency, switch the address multiplexer/shifter
for the histogram address, and write the category and
threshold registers. Because the monitor board’s reg-
isters are memory-mapped, we can take advantage of
SHRIMP’s automatic update facility; once exported for
remote use, a node’s monitor board registers can even
be written by remote nodes in the system.

The performance monitor’s EISA Interface sees the
commands as writes on the EISA bus, accepts the data,
and acts on that data to update its control registers
and read or write DRAM as needed. To make use of
the monitor’s ability to do fine-grained categorization
of the statistics, we hope to make commands from the
processor to the performance monitor have very low
latency. When commands are generated by the local
node, they incur the overhead of only a single EISA bus
write. With no contention, the latency of this opera-
tion would be roughly 15 processor cycles on the pro-
totype’s 60 MHz Pentiums. For many monitoring uses
(such as initialization and post-experiment reading of
the histogram memory) this overhead is quite tolerable.
To further reduce this overhead, we could take moni-
tor commands from the PC’s Xpress bus rather than
from the EISA bus. This new interface would take ad-
vantage of the fact that SHRIMP’s network interface
board already snoops writes on the Xpress bus to im-
plement automatic update. The processor overhead for
a monitor command would then be just one cycle in the
common case.

To perform a monitoring experiment, user-level soft-
ware running on the PC initializes the histogram mem-
ory (often to all zeroes, but not always) by supplying
addresses and data via the monitor’s EISA bus interface.
The category and threshold registers are also initialized,
as are the bits that indicate whether the monitor should
begin in trace or histogram mode, and whether the mon-
itor should toggle into trace mode when a threshold is
reached. After this initialization, user software can start
the monitor by issuing a special EISA write, and can
similarly stop the monitor and read DRAM locations



using different EISA operations.

4 Software Applications

The mechanisms we have proposed support a wide range
of performance monitoring applications, and features
like page tags, category registers, and general threshold
interrupts facilitate experiments and applications that
were difficult or impossible with previous monitoring
approaches. This section presents several such applica-
tions.

4.1 Using Joint Distributions to
Understand Application Behavior

Our first example motivates the wuse of multi-
dimensional histograms to show application behavior on
several axes at once. Figure 4 shows histogram output
for FFT, a parallel benchmark from the SPLASH-2 suite
[27] using 16 processors on 65,536 complex data points.
Since a 16-node machine and the performance monitor
boards are not completed yet, we gathered this data
using a behavioral simulator of the performance moni-
tor, that is integrated into a Tango-Lite simulator [10]
of a Shared Virtual Memory (SVM) system being built
as part of the SHRIMP project [14]. The performance
monitor simulator is a set of C routines that the SVM
simulator calls, and that mimic the functionality of the
hardware monitor.

w ~ o

Event Count
N

Sender ID 0 o

Packet Size (bin = 16 bytes)

Figure 4: Sender ID and packet size histogram for FFT
on SHRIMP’s Shared Virtual Memory system.

The plot shows event frequency versus both sender
ID and packet size, and represents the summation of
results collected at each nodes. Senders are numbered
from 0 to 15 and go along the left hand side axis in the
horizontal plane. Packet Size is displayed in chunks of
16 bytes, and extends along the right hand side axis in
the horizontal plane. The height (z-axis) at each point
represents the frequency that a packet of a particular
size was sent by a particular processor.

The figure shows the importance of multi-
dimensional histograms; the plot allows us to identify
two very distinct communication behaviors. First, there
is a sharp peak of events for small packet sizes with
sender ID equal to 0. This peak corresponds to short

synchronization messages that are primarily the respon-
sibility (for this application and SVM implementation)
of processor 0. Second, a long, high ridge of events
stretches across all sender ID values, for packet sizes of
roughly 224 bytes (bin 14). These large packets, nearly
uniformly distributed across all processors, correspond
to the larger chunks of data being communicated as the
FFT is solved. Since the FFT is very well load-balanced,
the data communication is nearly even. In our SVM
implementation, much of the communication “should”
occur in chunks roughly equal to the page size (4096
bytes). In the SHRIMP system however, the EISA bus
specification prevents processors from holding the bus
for a full 4096 byte transfer; they must back off and
re-arbitrate about every 224 bytes. This explains the
initially surprising prevalence of packets that size.

This example highlights how multi-dimensional his-
tograms easily show correlations between metrics that
are not available with traditional monitors. With a one-
dimensional histogram of sender ID counts, we would
see a small peak for processor 0, and then roughly even
distribution for the rest of the processors. With a one-
dimensional histogram of packet sizes, we would see a
distribution with peaks at small and large messages, but
would not easily be able to attribute the small messages
to a particular processor.

4.2 Categorizing Statistics by
Code and Data Regions

To understand performance data, one must often be
able to attribute measured statistics to particular soft-
ware causes. Categorizing performance statistics by ei-
ther code or data regions are orthogonal methods and
can each be useful in different cases, depending on
whether bottlenecks are more closely tied to code or
data structure. The monitor’s category register and
page tags facilitate this. Some of the monitor’s address
multiplexer configurations let users choose to have the
histogram category and/or page tags form a portion of
the address. In this way, the monitor essentially keeps
an array of several histograms, each corresponding to
different histogram categories and/or page tags.

The histogram category is stored in a register on the
performance monitoring board. The category is set by
software using monitor commands encoded as memory-
mapped I/O writes. Using SHRIMP’s automatic up-
date facilities for remote memory-mapped operations,
such commands can originate from any node. Since the
writes occur at user-level, both the runtime overhead
and program perturbation incurred by them can be rel-
atively low.

Page tags are stored as part of an existing page-
table in each receiving node’s network interface [3].
In SHRIMP, all arriving packets require a page-table
lookup anyway; for monitoring, the extra page tag bits
are sent over from the network interface board to the
monitor as each packet arrives. Like the category regis-
ter, page tag bits are also set by software. For example,
one can use the page tags to distinguish heap-allocated
memory from static or dynamic data structures, or to
distinguish different variables from each other. Updat-
ing page tag bits requires protected, memory-mapped
I/O writes because it updates the SHRIMP page ta-



ble, which also manages protection for inter-processor
communication. The need for protection makes up-
dating the page table tag a more expensive operation
than writing the histogram category register. For infre-
quent tag changes, the overhead is probably not signif-
icant. If users change tags frequently (for example, to
re-categorize heap memory that is repeatedly allocated
and freed), the overhead may be problematic.

One example of a useful, code-oriented statistics cat-
egorization might be to place statistics into separate
categories according to the procedure the sender or re-
ceiver is in when the message is sent. This can help
users identify portions of the software that are prone to
performance bottlenecks. This functionality is accom-
plished by allowing either the receiver or a particular
sending node to update the monitor’s category register
via memory-mapped writes.

To evaluate the overhead of per-procedure catego-
rization, we have simulated the execution of the per-
formance monitor within a Tango-Lite simulation of an
SVM system running several of the SPLASH-2 bench-
marks on SHRIMP. For categorization at this gran-
ularity, we issue memory-mapped I/O writes at the
beginning and end of each procedure. For programs
(like radiz) with frequent calls to short-duration proce-
dures, command overhead was roughly 62% of the pro-
gram’s unmonitored runtime. For programs with mod-
erate procedure granularity (such as water-spatial) over-
heads were roughly 28%. While far from negligible, this
overhead seems tolerable for per-procedure monitoring
of many programs. For coarse-grained categorizations
(e.g. per-process), the overhead will be considerably
lower. Also, in many applications the category may
only need to be changed at the beginning of each proce-
dure, process, or phase, rather than both at beginning
and end.

4.3 System Debugging Using
Threshold Interrupts

Although the monitor has a single threshold register, it
can mimic having a separate threshold for each bin if the
histogram bins are initialized to the appropriate nonzero
values. That is, if we wish every bin i to overflow after
T; events, we put the maximum bin value 2*° — 1 in the
threshold register, and initialize each bin i to 2'° —1 —
T;. (For uses where the actual counts are important,
software needs to keep records of these initial values.)

Threshold interrupts, along with other monitor fea-
tures, provide support for hardware and software debug-
ging. For example, an operating system programmer
could assert that in a particular section of the code,
only particular processors can write to a memory re-
gion. To verify that this is true, the hardware monitor
is configured to count events by page tag and sender
ID. The pages that should receive no incoming updates
from certain processors are given a specific page tag, the
interrupt threshold is set to 2*° — 1, and the bins that
represent the illegal combinations of sender and tag are
initialized to 2*° — 1. All other bins are initialized to 0.

With this setup, the hardware monitor behaves
much like a logic analyzer, waiting to trigger on the
occurrence of a particular conjunction of events. If one
of the illegal events occurs even once, its initial count

causes the threshold to be exceeded, and an interrupt
occurs. If a legal event occurs enough times to overflow
the counter, that too causes an interrupt. If a trigger
condition occurs, the CPU is interrupted, and a soft-
ware handler decides how (if at all) to respond. This
function is especially useful for catching sporadic sys-
tem bugs, since it allows the code to run at full speed
for a long time.

4.4 Adaptive Page Migration Using
Hardware Monitor Data

The performance monitor can also give performance
feedback to higher-level software on-the-fly. For exam-
ple, in a shared virtual memory (SVM) system built on
top of SHRIMP, we can use threshold interrupts and his-
togram mode to help support adaptive page migration.
The SVM system uses SHRIMP’s automatic update fa-
cility [14], which allows for fine-grained communication
between a pair of processors. Higher-level SVM soft-
ware extends this pairwise mechanism to allow general
support for release-consistent shared memory; the sys-
tem defines a star-shaped communication pattern where
all updates for a particular page are sent back to a
“home” node; the home node manages the versioning of
the page, and sends updates to other nodes as needed.

We are evaluating methods of using performance
monitor feedback to migrate the home node of a page
adaptively. Performance is improved by choosing the
page’s home node to be the processor that performs
the most updates of the page. Adaptive migration is
promising because this fine-grained communication is
difficult to predict in advance, may change throughout
the execution of the program, and is difficult to quantify
without hardware monitoring support.

To implement adaptive migration, we would ideally
measure network activity separately for each page, but
our design relies on page tags instead. For example,
the monitor can keep a three-dimensional histogram of
packet counts per page tag, per sender, and per packet
size. When a histogram bin’s count passes a user-
defined threshold, the monitor interrupts the processor.
Software then reads in all or part of the histogram and
migrates a page if needed. By using different initial val-
ues in the histogram memory, we can implement differ-
ent thresholds for different input combinations. Clearly,
the migration overhead must be balanced against its
benefits; this trade-off is the subject of ongoing work.

5 Related Work

This section discusses the relationship of SHRIMP’s
performance monitor to several previously developed
projects. For example, the Stanford DASH multiproces-
sor [17] included a per-cluster histogram-based perfor-
mance monitor [12]. In the DASH monitor, histogram-
ming is fixed at the time the FPGA was compiled. The
histograms allow statistics to be categorized into two
user and two operating system categories, or by sub-
sets of the data address bits. There was no provision
for runtime flexibility for the data divisions, as allowed
by the page tags as we have proposed. A later DASH
performance monitor configuration was designed specif-
ically to allow CPU interrupts and OS responses based



on observed per-page statistics, but did not allow for
general interrupts based on any observed statistic. In
contrast, our hardware monitor supports both such spe-
cific studies as well as more general monitoring.

Performance monitoring work by Mink et al. shows
some similarities in approach [19, 21, 22]. Their Mul-
tikron and Multikron IT hardware monitors are also
intended to connect to an I/O bus to monitor activ-
ity. Unlike SHRIMP’s monitor however, the Multikron
monitors are not designed to also connect to a mul-
ticomputer network interface, or to collect the sorts
of machine-specific network arrival statistics that our
monitor does. The earlier TRAMS system connects
to the interconnect of an MIMD machine, and counts
events filtered by pattern-matching hardware [5, 21]. To
our knowledge, however, the TRAMS system’s mem-
ory design is not intended to provide general multi-
dimensional histograms as in the SHRIMP monitor.

The performance monitoring system for Cedar used
simple histograms [15], while IBM RP3 used a small set
of hardware event counters [4]. The Intel Paragon in-
cludes rudimentary per-node counters [23], but cannot
measure message latency. Histogram-based hardware
monitors were also used to measure uniprocessor per-
formance in the VAX models 11/780 and 8800 [7, 9].
These monitors offered less flexible histogramming, and
could not categorize statistics based on data regions or
interrupt the processor based on a user-set threshold.

On-chip performance monitors are becoming more
common for CPU chips. For example, Intel’s Pentium
CPU incorporates extensive on-chip monitoring [18].
The Pentium performance counters include information
on the number of reads and writes, the number of read
misses and write misses, pipeline stalls, TLB misses,
etc. Here also, there is no support for categorization of
statistics or for selective CPU notification. In contrast,
the Alpha 21064 does provide some base level of perfor-
mance monitoring with selective CPU notification [8].
Its on-chip cache performance counter is used by ini-
tializing 1t to a particular value, and then decrementing
it whenever a cache miss occurs; when the counter value
reaches zero, the CPU is interrupted.

Some researchers have examined using monitoring
information to guide operating system policy decisions.
For example, Bershad et al. proposed a special-purpose
hardware monitor (Cache Miss Lookaside Buffer) that
would keep per-page statistics on memory behavior in
order to guide operating system decisions about virtual-
to-physical page mappings [1]. Chandra et al. investi-
gated the potential of dynamically using measured data
from a more general purpose hardware performance
monitor to guide operating system scheduling and page
migration decisions [6]. This approach is closer to ours,
but they used an existing performance monitor [12] and
focused their attention mainly on determining appropri-
ate operating system policies.

6 Conclusions

This paper has described the design of the hardware and
software that make up SHRIMP’s performance monitor-
ing system. Our hardware performance monitor design
is simple and flexible, and provides novel instrumen-
tation mechanisms such as multi-dimensional packet-

based histograms, page tags, histogram categories, and
threshold-driven interrupts.

The mechanisms devised for multi-dimensional his-
togramming and statistics categorization allow oper-
ating systems designers and software developers to
gather detailed application and workload statistics, and
to match statistics with particular software-level con-
structs. The threshold-based interrupt mechanism is a
simple, low-cost and yet powerful mechanism to allow
the hardware monitor to interact with operating sys-
tem and application software. The flexibility and var-
ied functionality of the hardware monitor will help us
understand and characterize our current SHRIMP pro-
totype and the measurements and characterizations of
SHRIMP will also guide the design of next-generation
machines.

Ultimately, a primary goal of any parallel computer
is to help programs run fast. In many modern machines
like SHRIMP, much of the designers’ attention is fo-
cused on streamlining the interface between hardware
and software, so that user-level processes can take ad-
vantage of the large compute power in the underlying
machine. The performance monitoring system repre-
sents our response to this problem. It allows architects
to evaluate the success of their design, while allowing
software designers to peer into the black box and un-
derstand the detailed behavior of their code in terms of
specific performance characteristics.
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