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Abstract

Recentlytherehasbeena surge of interestin developingperfor-
mancedebuggingtoolsto helpprogrammerstunetheirapplications
for bettermemoryperformance[2, 4, 10]. Thesetools vary both
in the detail of feedbackprovided to the user, and in the run-
time overheadof usingthem. MemSpy[10] is a simulation-based
tool which gives programmersdetailedstatisticson the memory
systembehaviorof applications. It providesinformation on the
frequencyandcausesof cachemisses,andpresentsit in termsof
source-leveldataandcodeobjectswith which the programmeris
familiar. However, using MemSpyincreasesa program’s execu-
tion time by roughly 10 to 40 fold. This overheadis generally
acceptablefor applicationswith executiontimes of severalmin-
utesor less,but it can be inconvenientwhen tuning applications
with very long executiontimes.

This paperexaminesthe use of trace samplingtechniquesto
reducethe executiontime overheadof tools like MemSpy. When
simulatingonetenthof thereferences,wefind thatMemSpy’sexe-
cutiontime overheadis improvedby a factorof 4 to 6. Thatis, the
executiontimewhenusingMemSpyis generallywithin a factorof
3 to 8 times the normalexecutiontime. With this improvedper-
formance,we observeonly small errorsin theperformancestatis-
tics reportedby MemSpy. On moderatesizedcachesof 16KB to
128KB, simulatingasfew asonetenthof the references(in sam-
plesof 0.5M referenceseach)allowsus to estimatetheprogram’s
actualcachemissratewith anabsoluteerrorno greaterthan0.3%
onourfive benchmarks.Theseerrorsarequitetolerablewithin the
contextof performancedebugging.With largercacheswecanalso
obtain good accuracyby using longer samplelengths. We con-
cludethat,usedwith care,tracesamplingis a powerful technique
that makespossibleperformancedebuggingtools which provide
bothdetailedmemorystatisticsand low executiontime overheads.

1 Introduction

Moderncomputersexhibit an increasinglywide gapbetweenpro-
cessorandmemoryspeeds.With increasesin processorclock rates
outpacingimprovementsin memoryspeeds[6], memorysystem
performancehasbecomeasignificantbottleneckto achievinggood
overall applicationperformance.Cachemisseson typical current
generationuniprocessorscanincur delaysof tensof processorcy-
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cles, and in multiprocessormachines,remotememory latencies
can be hundredsof cycles. For an applicationto achievegood
performance,it mustuselocality to exploit thememoryhierarchy
effectively.

The applicationprogrammerhasconsiderableflexibility in tun-
ing the programfor better memory systemperformance.How-
ever, tuning the memorybehaviorof largeprogramsis a complex
task requiring detailedinformationon the program’s accesspat-
terns. Someperformancemonitoring systems(such as MTOOL
[3, 4]) give only codeorientedinformationindicatingthe amount
of memoryoverheadin particular loops or procedures.This in-
formationis useful for initial queriesaboutapplicationbehavior;
however, it is often not detailedenoughto help the userfix the
application’s performancebottlenecks.Detailedstatisticssumma-
rizing the frequencyand causesof cachemisses,as well as the
behaviorof different data structuresin the code, are extremely
useful in understandingand fixing memorybottlenecks. Gener-
ally thesedetailedstatisticscan be gatheredin oneof two ways,
using(i) hardwareperformancemonitorsor (ii) softwaresimula-
tion. Softwaresimulationis the morewidely applicableof these
approaches,becausemost machinesdo not provide support for
hardwareperformancemonitoring. Furthermore,softwaresimula-
tion allowsprogrammersto evaluateapplicationperformancewith
differentcachesizesandspeeds.

Unfortunately, detailedsoftwaresimulationcan often be quite
slow. However, careful attentionto the simulation environment
canreducesimulationoverhead,makingdetailedsoftwaresimula-
tion fastenoughto bepartof aninteractiveperformancedebugging
tool. An exampleof this is MemSpy[10]. MemSpygives pro-
grammersdetailed,data-orientedinformation to help locate and
fix memorybottlenecksin their code. Its output presentsusers
with statisticsin terms of sourcelevel data objects,as well as
codeobjects. MemSpy’s simulationoverheadis approximatelya
factorof 10 to 40 timesthe actualexecutiontime of the program.
For applicationswith relativelyshortrun times(up to a few min-
utes) this overheadis often acceptable,given the utility of the
datait produces.For applicationswith longer run times, several
approachesareavailableto reducethe simulationtime. Thesein-
cludescalingdatasetsandcachesize,or for iterativealgorithms,
reducingthenumberof iterationsstudied.While theseapproaches
are often useful for certainclassesof problems,we believe that
thecomplementaryapproachof tracesamplingis a promisingand
moregeneralmethodfor reducingsimulationoverhead.

Referencetrace samplingis the techniqueof simulating only
randomlychosenportionsof a referencetrace,ratherthansimu-
lating the full trace. Intuitively, this promisessignificantspeedup,
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sinceoneincursthe full simulationoverheadonly on a fractionof
the full referencestream.If onesamplessuchthat only onetenth
of the referencesaresimulated,onecanhopefor a speedupof up
to a factor of ten. Our resultsshow that significantperformance
improvementscan be obtainedusing samplingwithin MemSpy.
Whensimulatingone tenthof the total references,we get 4 to 6
fold speedupscomparedto non-trace-sampledMemSpy. For the
benchmarksstudiedhere, this reducesMemSpy’s overheadto a
factor of 3 to 8. With executiontime overheadsin this range,
MemSpy’s performancebecomescompetitivewith othertools [4]
that presentlessdetailedstatistics.

This papermakesseveralmain contributions. As previously
stated,we show that within the contextof a performancedebug-
ging tool, referencetracesamplingcanbe usedeffectively to im-
provethetool’sperformance.Wego on to presentresultsshowing
how the accuracyof the sampledresultsvarieswith key param-
eterssuchas numberof samples,samplelength, andcachesize.
We find that the parametersettingsrequired for accuratesam-
pled output do not excessivelylimit performance.For example
in 16KB and128KB caches,whensimulatingaboutone tenthof
the total referencesin about20 samplesof 0.5M referenceseach,
the absoluteerrorsin cachemiss rateneverexceed0.3%. Larger
caches(e.g.,1MB) canobtaingoodaccuracyby usinglongersam-
ples (4 million to 8 million referenceseach),while continuingto
only sampleone tenth of the referencestotal. Programsrunning
with largercacheswill generallymakemoretotal datareferences,
in order to make use of the cache,so we do not considerindi-
vidual samplesof this length to be a seriousrestriction. Finally,
we presentperformanceresultswhich show the successof this
approach,andpresentsuggestionsfor further optimizations.

The paperis structuredasfollows. Sections2 and3 give back-
groundinformationon tracesamplingand on the MemSpytool.
In Section 4, we describeour sampling implementationwithin
MemSpy. Section5 describesour architecturalassumptionsand
benchmarkapplications,before presentingresults in Section 6.
Section7 discussespossibleextensionsto our currentapproachto
incorporatesetsampling, aswell astime sampling,andto support
samplingin multiprocessorsimulations. We presentour conclu-
sionsin Section8.

2 Trace Sampling Background

MemSpyimplementsreferencetracesamplingby gatheringevenly
spacedsamplesto besimulatedfrom thefull referencetrace.This
is illustratedin Figure 1. The samplingratio is the ratio of the
total numberof referenceswithin the samples,divided by the to-
tal numberof references. Thus, the performanceimprovement
possiblein a samplingsystemis limited by the reciprocalof the
samplingratio. For example,if oneusesa samplelengthof 0.5M
referencesanda samplingintervalof 5M references,thesampling
ratio would thenbe 1/10, andone could not expectmore than a
factor of 10 speedupover full simulation.

Referencetracesamplingis subjectto two types of inaccura-
cies. First, the samplesgatheredmay not be representativeof the
full trace.This error is commonto all formsof sampling,includ-
ing the programcountersamplingalreadyusedin a numberof
performancemonitoring systems[1, 3, 4, 5]. This sort of error
can generallybe controlledby taking a numberof samplesover
the courseof the program’s execution. Section6.1 discussesthe
relationshipbetweenaccuracyandthe numberof samplestaken.

The secondinaccuracyoccursbecausethe stateof the cacheis

Figure1: Samplesin referencetrace.

Sample length

Sampling interval

References

unknownat thebeginningof eachsample(becausethecache’s true
statedependson eventswhich haveoccurredduring the unmoni-
toredsectionof the program.)Therefore,within eachsample,the
first referenceto eachcacheline (for a direct-mappedcache)is an
unknownreferencethat could eitherbe a hit or a miss. Estimat-
ing the miss ratio of theseunknownreferencescan be a source
of inaccuracywhenusingreferencetracesampling.Becauseany-
wherefrom noneto all of the unknownreferencescould actually
bemisses,missratecalculationsfor thesampledependbothon the
numberof knownmissesandthe numberandmissrateof theun-
known references.By using longersamplelengths,we canmake
thenumberof unknownreferenceslesssignificantwhencompared
to knownmisses.Section6.3will discusstherelationshipbetween
samplelengthandthe accuracyof missratestatistics.

Severalstudieshaveexaminedthe applicability of samplingin
thecontextof architecturalstudiesof cacheperformance.Lahaet
al. [8] studiedthe accuracyof memoryreferencetracesampling
using cachesthat were 128KB in size and smaller. Their study
concludesthat sampling techniquesallow accurateestimatesof
the miss rate for cachesof this size. However, their resultswere
presentedwith samplelengthsof 60,000referencesevery100,000
references,or asamplingratioof 0.6. Samplingratiosin this range
offer little promisefor improvedperformance.Furthermore,they
presentedsimulationdataonly for cacheswith 1024linesor fewer,
sosamplelengthsof 60,000werein generallong enoughto prime
the cache.

Wood et al. [15] developeda model for estimatingthe miss
ratesof unknownreferencesin sampledtraces. They found that
their model predictedthe behaviorof unknownreferencesbetter
than severalpreviousmethods[8, 14]. Most importantly, they
point out that unknownreferencestypically havemiss ratessig-
nificantly higherthanthe application’s steadystatemissrate. We
will evaluatethe effectivenessof the Wood et al. estimatorson
our benchmarks.

In laterwork, Kessleret al. [7] studiedtracesamplingfor large
secondarycachesof 1MB to 16MB, andwith samplingratiosdown
to 1/10. For theirbenchmarks,theynotedthatunknownreferences
at the beginningof a samplecandominateknown misses,poten-
tially makingmissrateestimatesquite inaccurate.We believethis
large inaccuracyarosein part becausethe benchmarksthey used
hadfew cachemisses.(Sevenof the eight traceshadmissesper
instruction(MPI) valuesless than 0.003, while one had an MPI
of roughly0.021. With a cachemisslatencyof 20 cycles,anMPI
of 0.003correspondsto spendingonly 6% of programruntimein
memorystalls.) Thus, for thesebenchmarks,the total numberof
known missesin eachsamplewasoften very small.

Fromaperformancedebuggingpointof view, it is not important
to pinpoint with high accuracythe miss rateof applicationswith
very low miss rates.The primary purposeof MemSpyis to tune
applicationswith poor memorysystembehavior. Theseprograms
will typically have higher miss rates; their larger proportionof

1[7] does not report cache miss rates directly.
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known missesto unknownreferenceswill allow miss ratesto be
estimatedmore accurately. Also, within the contextof a perfor-
mancedebuggingtool (asopposedto moreforwardlooking archi-
tecturalstudies),it is still quiterelevantto focuson smallercaches
than those used by Kessler et al. With smaller (e.g., primary,
on-chip) caches,sampling’s accuracyimproves. Finally, within
the context of performancedebugging,we can tolerateslightly
larger errors in the statisticsgenerated.To tune an application,
one needsto havea good idea of the locationand magnitudeof
the bottlenecks,but not a perfectlyprecisecachemissratevalue.
We will showthat tracesamplingreproducesMemSpy’s statistics
with quite acceptableaccuracyin mostcases.

For thesereasons,we feel that tracesamplingis a promising
approachto reducingthe executiontime of performancedebug-
ging tools like MemSpy. In this paper, our goal is not simply to
reiteratethe resultsgiven by Laha et al. or Kessleret al., but to
reevaluatetheefficacyof tracesamplingin a new context. In this
new context, performancedebugging,our constraintson the ac-
curacyof resultsmay besomewhatlooser, while theperformance
savingsofferedby samplingareof centralimportance.

3 MemSpy Background

This sectiongivesa brief summaryof MemSpy’s featuresin order
to understandhow tracesamplingwill affect their accuracy.

MemSpy is a performancedebuggingtool designedto help
programmerslocateand fix memorybottlenecksin applications.
MemSpyfirst helpsin locatingbottlenecksby providinghigh level
information to guide the user towardspotential memory bottle-
necks. This high level information (illustrated by the MemSpy
output in Figure 2) breaksdown the total executiontime of the
programby procedures.Within eachprocedure,MemSpypresents
a breakdownof how much time was spentin memorystalls due
to cachemisses,versushow muchtime wasspentin computation.

Figure2: Initial MemSpyoutputdisplay.

MemSpycanthenhelp in fixing bottlenecksby providingmore
detailed, low-level information on source-levelcode and data
objects. For theseMemSpy statistics, data objects correspond
roughlyto particularclassesof datain aprogram,andcodeobjects
correspondto procedures.For eachdataobjectin eachprocedure,
MemSpyprovidesinformationon thenumberof cachemisses,the
percentageof the total memorystall time incurred,andthecauses
of the cachemisses. An exampleof this sort of information is
shownin Figure3.

MemSpyhasbeenusedto tunea numberof applications,asde-
scribedin [10]. The detailed,data-orientedinformationgiven by

Figure3: DetailedMemSpyoutputdisplay.

MemSpyhasbeeninstrumentalin understandingandfixing a va-
riety of performancebugs,suchas interferencebetweendifferent
datastructuresin the cacheand excesscommunicationin paral-
lel programs.However, collecting this informationcomesat the
costof higherexecutiontime overheadthan tools which provide
only high level statistics[3, 4]. Dependingon the referencerate
and miss rate of the application,the MemSpy overheadis typi-
cally a factor of 10 to 40 times the actualexecutiontime of the
application. Table1 gives the overheadsfor runningthe original
MemSpy for the applicationsused in this study, when simulat-
ing a 128KB cache2. The runswereperformedon a DECstation
5000/240with 80 megabytesof memory. Section5.2 givesmore
detailedinformationon the characteristicsof eachbenchmark.

Table1: Original MemSpyoverheads.(128KB cache)

Actual MemSpy
Application Exec. Time Exec. Time Overhead

(sec.) (sec.) Factor
MP3D 41.7 954.6 22.9
MATMAT 66.1 998.7 15.1
TRI 73.5 782.1 10.6
ESPRESSO 23.5 866.0 36.9
PTHOR 16.0 672.8 42.1

To understandthis performanceoverhead,we examinethe se-
quenceof operationsMemSpy usesto simulatea memory ref-
erence.At compile time, eachmemoryreferencein the original
applicationassemblycodeis instrumentedwith a procedurecall to

2Note that these baseline overheads already represent an improvement over
those presented in [10].
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thememorysystemsimulator. At run time, within this procedure,
MemSpyperformsthe following actions:

1. Saveapplicationregistersso that the memorysystemsimu-
lator will not destroythem.

2. Usea cachesimulatorto determinewhetherthe referenceis
a cachehit or a cachemiss.

3. UpdateMemSpystatisticsfor the relevantcodeanddataob-
jects.

4. Restoreapplicationregistersto their original values.

5. Returncontrol to the application.

Cachesimulationand statisticsupdatescan take from roughly
20 cycles (if the referenceis a cachehit), to roughly 200 cycles
(if thereferenceis a cachemiss). Savingandrestoringapplication
registerscompriseroughly 60 cycles. Even in applicationswith
poor memorybehavior, generallya majority of the referencesare
still cachehits, sowe find thebulk of MemSpy’soverheadis spent
in savingandrestoringregisterswhenswitchingfrom application
to MemSpyand vice versa. While we are currentlyworking on
techniquesto reducethis overhead,this paperfocuseson using
trace samplingas an orthogonaltechniquefor improving Mem-
Spy’s performance.

4 Implementation of Trace Sampling

Our discussionof thetracesamplingimplementationwithin Mem-
Spy is divided into two subsections.The first dealswith perfor-
manceissuesin the implementation,while the seconddealswith
issuesrelatedto the accuracyof the results.

4.1 Performance Issues

Obviously, our primary purposein usingtracesamplingis to im-
proveMemSpy’s performance.Therefore,it is importantto pro-
ducea samplingimplementationwhich promisessubstantialper-
formanceimprovementsoverthecurrentfull-tracesimulation.We
haveseenthat the bulk of MemSpy’s time is spentin the register
savesandrestoresrequiredwhenswitchingfrom applicationto the
memorysimulatorand vice versa. So, an implementationwhich
simply turnsoff simulationwithin theMemSpysimulatorwill not
improveperformancesignificantly. Rather, to be worthwhile the
implementationmust circumventthe overheadsof registersaves
andrestoreswheneverthe simulationis turnedoff.

To accomplishthis, we modify the normal MemSpy assem-
bly time instrumentationof memory references. In addition to
the usual call to the MemSpy memorysimulator, additional in-
strumentationis added. In this extra instrumentation,a sampling
counteris decrementedandcheckedagainstzeroto seeif simula-
tion is currentlyON or OFF. If simulationis OFF, controlbranches
aroundthememorysimulatorprocedurecall. If simulationis ON,
the simulatoris calledas in a full simulation. Figure4 illustrates
the original andnew instrumentation.

Section6.6will showthatthis implementationgivesusasizable
performanceimprovement. A samplingratio of 1/10 leadsto 4
to 6 fold performanceimprovements.Section6.6 also discusses
waysof further reducingthis overhead.

Figure4: Inlined assemblycodefor sampling.

Call MemSpy

lw r13, foo

Instrumentation for
Full MemSpy

no_sim: Restore one appl register

lw r13, foo

Instrumentation for
Sampled MemSpy

Original Code

lw r13, foo Store one appl. register
Load count of nbr_refs_off
Decrement count
Store count
If count !=0, jump to no_sim
Call MemSpy

4.2 Accuracy Issues

As we notedearlier, tracesamplingis subjectto two orthogonal
formsof inaccuracy:

Error due to non-representative samples: The deviation be-
tweenthe application’s true miss ratewhen fully simulated,
andtheapplication’s truemissratemeasuredduringsampled
regionsonly.

Error due to unknown references: Within eachsample,thede-
viation betweentheapplication’s estimatedmissrate(includ-
ing anestimateof themissrateof unknownreferences),and
the application’s true missrateduring the sampledregion.

For the resultspresentedin this paper, the truemissrateduring
sampledregionsis generallya goodestimateof the application’s
trueoverallmissrate. The error in this estimatecanbecontrolled
by increasingthenumberof samplestaken.The bulk of the error
we measureis of the secondtype: error due to unknownrefer-
ences. For a particularsample,the cachemiss rate, � , can be
expressedas

��� �����	��

� � �
� � ��


where
���

is thenumberof knownhits,
�	�

is thenumberof known
missesin the sample,



is the numberof unknown references,

and
�

is the fraction of unknown referenceswhich are actually
cachemisses. Knowing

���
,
���

, and



, we can estimate� by
estimatingthe unknownreferencemiss rate,

�
. Wood et al. [15]

showthat miss ratesfor unknownreferencesare typically higher
thantheoverall applicationmissrate,so assumingthat

�
is equal

to the steadystatemiss ratewill result in optimistic performance
estimates.Theyintroducea methodfor estimating

�
by estimating

the fraction of time that lines in the cachearedead(i.e. will not
bereferencedagainbeforea newline replacesthemin thecache).
In Section6.4,we will evaluatethis method’seffectivenesswithin
our framework. Note that one can always computea rangeof
possible��� valuesby allowing

�
to vary from 0 to 1. Thus, ���

canbe expressedwith symmetricerrorboundsasfollows:

� � � � � �
0 � 5
�����
������
�� � 5 
������������
 � 1�

In general,one can reducethe error due to unknownreferences
by lengtheningsamplesso that known missesdominateunknown
references.Howeverfor a fixed desiredsamplingratio, increases
in samplelengthmustbetradedoff againstthenumberof samples
taken.Sections6.1 and6.3 discussthis tradeoff in moredetail.

Becausewe are studying trace samplingwithin the MemSpy
context,it is importantto alsostudyhow errorsin cachemissrate

Page4



translateinto errors in the statisticsreportedby MemSpy. Will
errorsin cachestatisticsfor individual datastructures,aswell as
overallcachestatistics,beacceptable?Will thesamplingapproach
be accurateenoughto allow the program’s true bottlenecksto be
identified? Section6.5 discussesthe errors in MemSpy metrics
which we haveobservedfor the benchmarksstudied.

5 Experimental Setup

This sectionbriefly presentsnecessarybackgroundinformationon
the architecturesandthe benchmarkapplicationswe examined.

5.1 Architectures Simulated

Thestatisticsshownhereweregatheredusinga very simplemem-
ory simulatorthat doesnot modelnetworkcontention.While the
modelis simple,we havefoundthatit capturesmostof the impor-
tant memorysystembehaviorin applicationsusedwith MemSpy.
In thesestudies,cacheare direct mapped,and have one of the
following organizations:(i) 16KB, with 16 byte lines,(ii) 128KB,
with 32 byte lines, or (iii) 1MB, with 64 byte lines. The 16KB
cacheis a typical sizefor anon-chipfirst level cache.The128KB
cacherepresentsa reasonablesizefor anoff-chip cache.The1MB
cache,large by today’s standards,might be usedas a secondary
cache.

5.2 Benchmark Applications

The resultsof tracesamplingstudiesareclearlydependenton the
applicationsusedfor gatheringthe results. For our benchmarks,
we havefound that samplingprovidessignificantexecutiontime
benefitswith little sacrificein accuracy. For tuning the memory
behaviorof theseapplications,the sampledresultsare in most
ways interchangeablewith the full-trace results.

The applicationspresentedhere span a wide rangeof mem-
ory behaviors.Two of the benchmarks,MP3D and PTHOR,are
applicationsfrom theSPLASHbenchmarksuite[12]. Their mem-
ory systemperformancehasbeenstudiedextensivelyin the past.
Likewise, thememoryreferencingcharacteristicsof MATMAT [9]
and TRI [11] havealso beenstudied. (We useuntunedversions
of theseapplications,to observebehaviortypical of applications
onemight usewith MemSpy.) The fifth application,ESPRESSO,
from the SPECbenchmarksuite [13], has much bettermemory
performancethan the others(0.2% cachemiss rate on a 128KB
cache).This applicationis useful for showinghow samplingbe-
haveson applicationswith very low miss rates. Of the five, it
is the most sensitive,in termsof relativeerror, to changesin the
lengthof individual samplesandtheparticular

�
estimatechosen.

Table2 givessomebasicinformationon eachof the applications
studied,including their cachemissratesfor a 128KB cache.

6 Results

This sectionpresentsour resultson theaccuracyandperformance
of tracesamplingwithin MemSpy. In general,we find that trace
samplingis quiteeffectiveat reproducingthestatisticsfrom a full
tracerun of MemSpy. As a preview, Table3 comparesestimated
cachemissratesfrom samplingto (i) theprogram’s truemissrate
calculatedoverall referencesand(ii) theprogram’s truemissrate

Table2: Application Characteristics

Application DataSetSize Refs True Miss
(MB) (M) Rate(%)

MP3D:
Hypersonic 33.4 150.4 3.8

Particle-based
Simulator
MATMAT:

BlockedMatrix 6.4 139.7 18.2
Multiply

TRI:
Triangular 68.2 109.8 6.1

SparseMatrix
Solver

ESPRESSO:
Boolean 1.3 143.8 0.2
Function

Minimizer
PTHOR:

DiscreteLogic 4.6 67.2 4.0
Simulator

calculatedover only thosereferencesoccurringduringa sample.3

In eachof the applications,the absoluteerror in miss ratenever
exceeds0.4%. Errorsin this rangearegenerallyacceptablefor use
in a performancedebuggingcontext. MemSpy’s executiontime
overheadfor theseapplicationsgenerallyrangedfrom factorsof
3 to 8. This overheadmakesMemSpyan attractivealternativeto
otherlessdetailedperformancemonitoringtools.

Table 3: Estimatedand True Miss Rates. (128KB cache,10%
samplingratio, 0.5M Refs/sample)

Overall True Estimated
True Miss Rate Miss Rate

Miss Rate During During
Appl. Samples(%) Samples(%)
MP3D 3.8 3.8 3.5
MATMAT 18.2 17.9 17.8
TRI 6.1 6.4 6.1
ESPRESSO 0.23 0.14 0.20
PTHOR 4.0 3.8 3.7

While this datashowsreasonableaccuracyfor tracesamplingin
oneconfiguration,a moregeneralevaluationof tracesamplingfor
performancedebuggingmust examineseveralissues. The most
importantquestionsto be answeredare:

� How doesthe numberof samplestakenaffect the error due
to non-representativesamples?

� How doesthe accuracyvary with cachesize?

� How doesthe lengthof eachsampleaffect the error due to
unknownreferences?

3Except when stated otherwise, all estimated miss rates in this section are
reported using a � of 0.5 as in Equation 1. This allows us to separate the issue
of � estimation from the other issues being studied.
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Figure5: RelativeError vs. Numberof Samples.(128KB cache,0.5M Refs/sample)

� How well canwe estimatethe miss rate for unknownrefer-
ences?

� How does sampling affect specific MemSpy output, such
as the orderingof memorybottlenecksand statisticson the
causesof cachemisses?

� Subject to constraintson accuracy, what performanceim-
provementcan we expectwhen incorporatingsamplinginto
MemSpy?

To someextent, thesequestionsare all interrelated. The per-
formancegainsrealizedfrom tracesamplingareboundedby the
samplingratio, which is the product of the numberof samples
takenduring a run, multiplied by the samplelength,anddivided
by the trace length. However, choosingthe samplelength and
the numberof sampleshas implications for the accuracyof the
resultingrun as well. The cachesize being simulatedis also a
strongdeterminantof samplingaccuracy, with implicationson the
requiredsamplelength. We must also examinehow theseerrors
in the overall miss rate translateinto errorsin MemSpymetrics.
If we understandeachof thesetrendsand tradeoffs, we can de-
cide when,and to what extent,additionalsamplingerror may be
acceptedin exchangefor betterperformance.

6.1 Accuracy vs. Number of Samples

Thenumberof samplestakenpartlydetermineshowrepresentative
the tracewill be of the overall programperformance.Intuitively,
a single large samplewill not reproducethe overall program’s
behavioras well as severalsmallerones. Programbehaviorcan
vary over the run time of theprogram,with somephases(suchas
initialization)characterizedby verypoormemorysystembehavior
while otherphaseshavemuchbettercacheperformance.Lahaet
al. [8] mentiontheimportanceof capturingrepresentativesamples
and presentdata indicating that using 35 sampleswas generally
sufficient to characterizethemissratesfor their Lisp benchmarks.
Here,we presentmorecomprehensivedatashowinghow accuracy
variesacrossa wide rangeof valuesfor numberof samples.To

do this, we fix the total numberof referencessimulatedandvary
the numberof samplestaken. This allows us to study the effect
of changingthe numberof samples,while holding the sampling
ratio (and thereforeperformance)constant. To study the repre-
sentativenessof differentcollectionsof samples,we examinethe
deviationbetweenthe true missrateduring sampledregions,and
the application’s overall true miss rate. (This is the error due to
non-representativesamplesmentionedin Section4.2.) Note that
we arenot studyingtheeffectsof unknownreferencesin this sec-
tion.

Figure 5 presentsthe relative deviationbetweenthe true miss
rateduringsampledregionsandtheoverall truemissrate,plotted
againstthe numberof samplestaken. (In this case,the sampling
ratio was1/10.) Threeof theapplications:MATMAT, MP3D, and
PTHOR,showexcellentbehavior. Evenafter as few as 10 sam-
ples, the relativeerror in thesethreecasesis roughly 5% or less.
Exceptfor initialization periods,MP3D, MATMAT, andPTHOR
arecharacterizedby relativelyconstantmemorybehaviorthrough-
out their program.For thesetypesof programs,fewersamplesare
requiredto capturethe “typical” memorybehavior. A fourth pro-
gram,TRI, showslarge relativefluctuationsin error for lessthan
20 samples,but settlesdown with greaternumbersof samples.
Comparingthetruemissrateovertime for TRI with thatof MP3D
(Figure6), we seethatTRI’s missratefluctuatesmuchmorewith
time than that of MP3D. Thus, moresamplesareneededto cap-
tureits behavior. Finally, thefifth application,ESPRESSO,shows
relative errorsgreaterthan 20% evenat 100 samples. Espresso
hasa very low missrate,so eventiny fluctuationsin its absolute
miss rate over time show up as large relative swings. When an
applicationhasso few knownmissesover its entireexecution,the
relative error due to samplingis higher. However, the absolute
error from samplingmay still be quite small. Low-miss-rateap-
plications typically do not requirememorysystemtuning at all,
so MemSpy’s performanceon themis lessrelevant.

As expected,thepresenceof phasesin thememorybehaviorof
a program(suchasTRI) mandatestheuseof moresamplesto ac-
curatelyrepresentits memorybehavior. HereMemSpycanlever-
ageoff users’knowledgeof how their programsbehave. When
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Figure6: Overall True Miss Ratevs. Time. (128KB Cache)

programmersknow that their applicationhas basically constant
memorybehavior, theycanrequestthata reducednumberof sam-
ples be taken,for higher performance.While usersdo not want
full controlof thesamplingsetup,directiveslike theseallow them
to speedup the tuning processin specific cases. Furthermore,
sincetuningis iterative,userscanchooseto haveonly a few sam-
plescollectedin early runs,andthensimulatea higherfractionof
referencesasthey moveto moredetailedtuning.

6.2 Accuracy vs. Cache Size
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Figure 7: Relative Error vs. CacheSize. (10% samplingratio,
0.5M Refs/sample)

As previous studieshave shown [7, 15], the accuracyof miss
rateestimatesis a strongfunction of the cachesizeused. Figure
7 showsthe relativeerror in cachemissrateestimatesfor 16KB,
128KB and1MB cachesat a samplingratio of 1/10,with a sample
lengthof 0.5M references.Here, theseerrorsareshownrelative
to the true miss rateduring the sample. Within eachsample,the
bestwe can hopeto achieveis to re-createthe true miss rate of
that sample. The error with respectto the overall miss ratemay
be slightly moreor lessthanthe error shownhere,dependingon
how accuratelythe sampledregionscapturethe behaviorof the
full trace.

For the16KB and128KB caches,the relativeerrorsareall less
than10%,with oneexception.Espresso’s missratehasa relative
error of nearly40% for the 128KB cache.However, its absolute
miss rate (.144% within the sampledregions) is so small that
theselarge relative errorsare neithersurprisingnor problematic,
from a performancedebuggingpoint of view. SinceESPRESSO’s
memorystall time is a small fraction of its total executiontime,
eventhesampledversionof MemSpywill accuratelypointout that

ESPRESSOdoesnot have any substantialmemoryperformance
bottlenecks.

With 1MB caches,the relative error is greaterthan 10% for
four of the five applications. The higher relative errorsnoticed
here are due to two factors. First, as the cachesize increases,
morereferencesareneededto prime the cachestate.This causes
the numberof unknown referencesto increase. Second,as the
cachesize increases,the application’s cachemiss rate generally
decreases.This causesa decreasein thenumberof knownmisses.
FromEquation1, bothof theseeffectstendto increasethesizeof
theerrorboundson estimatedmissrate. To improvethemissrate
estimateswith large cachesizes,we havetwo options. First, we
can reduce



’s significancein the equation,by lengtheningeach

sampletaken. Alternatively, we can improve our estimateof
�

,
the miss rate for unknownreferences.The following subsections
addressthesetwo issues. Note first however, that despite the
largerelativeerror, the absoluteerrorsremainquitesmall. Figure
8 showsa plot for the1MB cacheof boththetruecachemissrate
(stars)andthesampledcachemissrate(circles)with errorbounds
as expressedin Equation1. Absoluteerror of this magnitudeis
generallyconsideredacceptablewhentuning programs.
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Figure 8: Actual and estimatedcachemiss rates. (1MB Cache
10% samplingratio, 0.5M Refs/sample)

6.3 Accuracy vs. Sample Length

Section6.2 illustratesthefact thata singlechoiceof samplelength
maynot work effectively acrossa rangeof cachesizesandappli-
cationbehaviors.For larger caches,unknownreferencesbecome
significant,andonemustuselongersamplesto mitigatetheir ef-
fect.

To gatherthe data shown here,we divide the trace into con-
tiguoussamples,and collect data for all of them, averagingthe
results.This allowsusto studymoresamplesperapplicationthan
if we restrictedourselvesto a samplingratio of, say, 1/10. The
errorsareshownrelativeto the truemissrateduringthesampling
region.

Figure 9 showsrelative errors in miss rate estimatesfor the
five benchmarkapplicationswith a 1MB cache. As expected,
longersamplesdramaticallyimproveaccuracy. At 8M references
per sample,all applicationshave relative errors less than 10%.
Absoluteerrorson theseapplicationsareall under0.1%. For even
moderatelylong runningapplications,8M referencesper sample
is not a prohibitively long samplelength. To collect 50 samples
of this size with a samplingratio of 1/10, the total application
would needto have4 billion datareferences.Assumingonedata
referenceevery 3 instructions,this would be roughly 12 billion
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Figure9: RelativeError vs. SampleLength. (1MB cache)

instructions,or about2 minutesof executiontime on a 100MIPS
machine. We feel that theseare not prohibitive requirementson
eitherthe run time or the referencerateof a program.

6.4 Miss Rate of Unknown References

Section6.3 shows that reducingerror by using longer samples
works quite well. However, many interestingapplicationsdo not
haverun timeslong enoughto uselong samplesizesand aggres-
sivesamplingratios. For this reason,we now evaluatea proposed
model for estimatingthe miss rate of unknownreferences,

�
, in

Equation1.

Woodet al. [15] developeda renewaltheoreticmodel for esti-
matingthe missratesof unknownreferences.The modelpredicts�

basedon two characteristics.(We refer to their estimateas
� � .)

The first characteristic
���	��
	� 4 is the ratio of the amountof time a

cacheline holdsa memoryline which will not bereferencedagain
(deadtime) dividedby thetotal time thatmemoryline spentin the
cache(generationtime). This ratio approximatesthe probability
that theunknownreferenceswill bedirectedat “dead” lines in the
cache,andwill thereforebe cachemisses.The secondcharacter-
istic usedin this model is the numberof cachelines referenced
during a sample. This accountsfor the fact that many short and
evenmoderatelength sampleswill not referenceall lines of the
cache. Thus not all the dead lines estimatedby

���	�

��
will be

referenced.
Column three of Table 4 shows the estimatesof

�
that are

obtainedby calculating“true” dead times and generationtimes
basedon all referencesin the trace (not just referenceswithin
the sampledregions). Howeverwith sampling,it is not realistic
to monitor deadand generationtimes on all references,so the
rightmost column shows the same

�
estimatorcalculatedusing

only deadtimesandgenerationtimesfor generationswhich were
containedwithin simulationON periods.A generationis defined
to start and end with a cachemiss. Thus, within a sampling
system,collectinggenerationdatarequiresthat two knownmisses

4[15] referred to this as ��� ����� .

Table 4: Accuracy of
�

estimators. (1MB Cache,
0.5Mrefs/sample)

Actual
� � � �

Application
�

(All Refs) (Sampled) � �
MP3D .966 .952 .637 2.8
MATMAT .880 .882 .854 21.3
TRI .877 .903 .942 11.5
ESPRESSO .116 .823 .990 0.04
PTHOR .267 .205 .468 3.3

occur to a particularcacheline within a particularsample. With
low miss ratesandshort samples,manycachelines do not meet
this requirement,so this model doesnot measuretheir behavior.
Thus the model is inaccuratein two ways. First, the model is
skewedtowardscountingstatisticson shortergenerationswhich
canfit within the sample.Second,statisticsfor cachelines which
have such generationsare applied to other cachelines as well.
For MP3D andPTHOR,the error in the sampled

� � is especially
pronounced.The error with ESPRESSOis also large, becauseit
has very few generationstotal. Here,

� � severelyoverestimates�
, becausecachelines with poor behaviorare more likely to be

countedthanthosewith goodbehavior. Intuitively, we seethatthe
accuracyof theWoodet al. modelimproveswhentherearemore
known missesin a sample. However, it is exactly under these
conditions that unknown references,



, are small with respect

to known misses. When
� �

is lessdominant,
�

simultaneously
becomesmoreimportantto relativeerrorand lessaccurate.

We can use a heuristicmetric to evaluatethe degreeof error
in
� � by computingthe averagenumberof knowngenerationsper

sample.This metric, � � in Table4, is computedby dividing the
total numberof generationsin thesampledregionsby theproduct
of the numberof samplesand the numberof cachelines. When
thereis onegenerationper cacheline per sample, � � will equal
1. When thereare a large numberof generationsper cacheline
persample,� � will begreaterthan1. Intuitively, we expect

� � to
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be moreaccuratewhena large numberof generationswereused
in calculatingit. For our benchmarks,� � increasesmonotonically
with the absolutedeviationof

� � from
�

, indicatingit is effective
in gaugingthe deviationin the estimate.

Table 5: Using
� � in miss rate calculations. (1MB cache,0.5M

Refs/sample)

Application Actual Using
� � Using

� � 0 � 5
Miss Miss Error Miss Error
Rate Rate (%) Rate (%)

MP3D 1.61 1.21 -24.8 .92 -42.9
MATMAT 1.30 1.29 -0.8 1.14 -12.3
TRI 2.38 2.42 1.7 1.93 -18.9
ESPRESSO .011 0.08 627 0.04 263.6
PTHOR .92 1.09 18.5 1.11 20.7

Table5 showsa summaryof missrateestimationsbasedon
� �

andthe deviationfrom the true missratevalue. Not surprisingly,
in spiteof its inaccuracies,

� � performsbetterthanmoresimplistic
models,suchasassuming

� � 0 � 5. For ESPRESSO,however, it
overestimatesthe miss rate for unknownreferences,which leads
to a largeabsoluteerror in the estimatedmissrate.

We feel that
� � estimationwithin the MemSpy systemcould

be improved further. A major feature of the MemSpy tool is
the presentationof statisticsin termsof dataobjects,as well as
code objects. Thus, within that framework, it would be quite
natural to keepdeadtime and generationstatisticson individual
datastructures.Thesecouldbeusedto betterestimatethebehavior
of unknownreferencesto thesedatastructures.

Finally, althoughanaccurateestimationof
�

wouldbehelpful in
somesituations,theability to provideerrorboundsaroundthemiss
rateestimatemakesthe accuracyof the estimationlesscrucial.

6.5 Error in MemSpy Metrics

Until this point, we have presentedour resultsin termsof their
effect on theoverallcachemissrate. However, MemSpypresents
moredetailedstatisticsthanjust the cachemissrate;we now ex-
aminethe sensitivityof thesestatisticsto inaccuraciesintroduced
by sampling.

The key statisticspresentedby MemSpy fall into three basic
categories.First, MemSpypresentsdisplayswhich showmemory
stall time as a percentageof total executiontime (memorystall
time pluscomputetime) for differentcodeanddataobjectsin the
application.This allowstheuserto determineif memorybehavior
is a significantbottleneckor not. Becauseof sampling,both the
memory stall time (estimatedcachemiss rate multiplied by the
latencyof a cachemiss) and the total executiontime potentially
canbeinaccurate.However, we find that thesamplingof compute
time is in generalquite accurate. Thus, the main error in the
percentagememorystall time follows directly from theerrorin the
cachemiss rate. Relativeerrorsin estimatingthis metric parallel
the errors in cachemiss rate estimates.The magnitudeof these
errors is largely determinedby the cachemiss latency and the
relative magnitudeof the computetime. When computetime is
small, theerrorin this fractionwill roughlymatchtheerror in the
cachemiss rate. However, the presenceof a large computetime
in thedenominatorof theexpression:

��� ��� ����� �	��

� � ����� � �
candecreasethe sensitivityof this statisticto errorsin missrate.

Table6: Memory bottleneckidentificationin PTHOR.

DataObject Procedure Memory Stall Time (%)
True Sampled

ElementArray EvalElement 16 15
ElementArray StimFanOuts 11 12
FreeList for
GateChanges EvalElement 9 9
Time Valid EvalElement 6 6

MemSpy’s secondtype of statisticbreaksdown memorystall
time by procedure–datapairings. In this way, MemSpy allows
the userto seewhich datastructuresaremost responsiblefor the
program’s poor memory performance. We can collect this bot-
tleneckinformation from a full MemSpyrun, and compareit to
a sampledMemSpy run. For a 128KB cache,and a sampling
ratio of 1/10, we find excellentagreementbetweenthe sampled
and true statistics. For the four applicationsstudied(we omitted
ESPRESSOsincetheoverallmissrateindicatesit needslittle tun-
ing), theorderingsof bottlenecksreportedby thesamplingversion
exactlymatchedtheorderingsfor the trueversionthroughthe top
90%of thememorystall time. As anexample,Table6 showsthe
bottleneckorderings,andpercentagebreakdownsfor PTHOR.

MemSpy also presentsa breakdownof the causesof a bin’s
cachemisses.In sequentialprograms,a cachemisscaneitherbe
a cold missor a replacementmiss. Cold missesoccurwhenmem-
ory is referencedfor the first time in a program. Replacement
missesoccur when data which was previously in the cachehas
beenreplacedby other data beforeit is re-referenced.Unfortu-
nately, accuratereproductionof thesestatisticsis morechalleng-
ing. Therearetwo possibletypesof errorswhich cancausethese
statisticsto be inaccuratewhensampling.The first erroroccursif
a cacheline is referencedfor the first time during a periodwhen
simulationis turnedoff. In this case,this cold miss will not be
noted,so the first subsequentreferencethat occurswhensimula-
tion is on, will be countedas a cold miss. In reality, it was a
replacementmiss.

The secondtype of error pertainsto correctly attributing the
causeof a replacementmiss. For eachreplacementmiss, Mem-
Spyrecordsthedataitem which causedthereplacement,so that it
cangive statisticson which dataitemscausedreplacementmisses
to other data items. If a cacheline is pushedout of the cache
during a period when samplingis off, then no statisticswill be
recordedindicatingwhich dataitem pushedit out. If a subsequent
replacementmiss occurs,one of two things may happen. First,
interveningreferencesto that line may occurbetweenwhensam-
pling is turnedon, andwhenthe replacementmissoccurs. In this
case,a Cause data structureis updatedto indicate the first of
theseinterveningreferencesis the replacementcause.This infor-
mationis correctin onesense,sincethesereferenceswould have
causeda replacementmissaswell; they aresimply not the direct
causeof replacementthat would havebeenseenin the full trace.
In the secondcase,if no interveningreferencesoccur, then the
causeof replacementis consideredto beunknown. In general,we
havefoundthatwith severeinterference,replacementsoccuroften
enoughthat the sampledversionis ableto detectandindicatethe
problem. As the usersbegin to to fine tunetheir code,they may
chooseto simulatea higher fraction of references,to detectthe
moresubtleperformancebugs.
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6.6 Performance

Having presentedstatisticson the accuracyof a sampledversion
of MemSpy, we now evaluateits performance.Thegoalof imple-
mentingtracesamplingwithin MemSpyis to reducetheexecution
timeoverheadneededto collectMemSpystatistics.Section4 gave
a descriptionof our currentsamplingimplementation.To reiter-
ate, for every assemblylevel call to the MemSpysimulator, we
add extra instrumentationwhich decrementsa referencecounter
andbranchesaroundthe simulatorcall if simulationis OFF. This
introducesanoverheadof 6 instructionsperinstrumentedmemory
reference.When simulation is ON, there is additionaloverhead
to (i) saveapplicationregisters,(ii) switch to the simulator, (iii)
simulate, (iv) restoreapplicationregistersand (v) return to the
application.
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Figure 10: SampledMemSpy performanceoverhead. (128K
cache)

Figure10 showsthesimulationoverheadof all five benchmarks
underdifferentconfigurations.All overheadsshownare for sim-
ulationsof 128KB caches. (Overheadsfor othercachesizesare
similar, althoughslightly dependentontheapplication’smissrate.)
The bars labeled“Full” show the (multiplicative) overheadof a
full MemSpysimulationascomparedto theuninstrumentedappli-
cationrun. Thebarslabeled“1/10” showtheoverheadfor sampled
runswith a samplingratio of 1/10. At this ratio, theoverheadsare
reducedby roughly4 to 6 fold from the original MemSpyimple-
mentation.They now rangefrom 2.9 for TRI to 16 for PTHOR.
Four of the five benchmarkshaveoverheadslessthan8.

Theseare acceptableoverheadsin many cases,given the de-
tailedstatisticsMemSpyprovides.Nonetheless,we shouldexam-
ine why thespeedupobtainedwasnot closerto 10, the reciprocal
of the samplingratio. The third bar for eachapplication(“0”)
showstheoverheadwhenthereferenceinstrumentationis present,
but thesimulatoris nevercalled,a samplingratio of 0. Thefourth
barfor eachapplication(“Proc”) showstheoverheadwhenno ref-
erenceinstrumentationis added;all overheadhereis dueto Mem-
Spy’s logging of procedureentriesandexits, aswell asMemSpy
initialization time. The differencein height betweenthe “1/10”
barsand the “0” barsrepresentsthe costof referencesimulation.
The differencein height betweenthe “Proc” and “1/10” bars is
the costof both referencesimulationandadditionalinstrumenta-
tion for sampling. For most applications,referencesimulationis
responsiblefor roughly half of the overheadin a run. MemSpy’s
procedurelogging is responsiblefor muchof the restof the over-
head,with theadditionalsamplinginstrumentationresponsiblefor
up to about25%of theoverhead.To reduceMemSpy’s overhead,

onecould considerapproacheswhich try to reduce(i) procedure
loggingoverhead,(ii) samplinginstrumentationoverhead,and(iii)
simulationoverhead. The following paragraphsdiscusseachof
thesethreeaxesfor optimization.

Procedurelogging overheadcould be reducedto somedegree
throughsimpleoptimizationsof the logging code;however, pro-
cedureeventscannotbe sampledas with memoryevents,since
procedurecalls and returns must occur in matchedpairs to to
maintainthe stateof the stack.

The secondsourceof overhead,samplinginstrumentation,is
definedasthe additionalinstructionsneededto switch simulation
ON and OFF, as opposedto simulating all references. In the
implementationpresentedhere,this overheadis primarily the six
additionalinstructionsper memoryreferencewhich allow control
to brancharoundthe memorysimulatorwhensimulationis OFF.
To try to avoid this overhead,we haveimplementeda preliminary
versionof a moreaggressiveapproach.In this newapproach,con-
trol switchesbackandforth betweentwo differentversionsof the
application:oneversionfully instrumentedto simulateall memory
references,andanotherversiononly instrumentedto log procedure
entriesandexits,notmemoryreferences.Theprogramexecutesin
the fully instrumentedversionwhensimulationis turnedON, and
thenswitchesto theminimally instrumentedversionwhensimula-
tion is turnedOFF. Thesemodeswitchesaredeterminedby virtual
timer interruptsusing the UNIX setitimer call. This version
is still subject to the overheadof procedureevent logging, and
in addition, has double the applicationcode size (becausethere
aretwo versionsof all applicationcode),which hasa detrimental
effect on instructioncachebehavior. For thesereasons,its per-
formancebenefitsthus far havebeenmoderateat best. It offers
no betterthana 20% speedupfor the benchmarkspresentedhere.
However, furtherwork on efficiently handlingthemodeswitch in
this approachmaymakethis anattractivealternativeto our initial
implementation.

The third overhead,simulationoverhead,is comprisedof both
thetime spentto simulatethememorysystem,aswell asthetime
spentsavingand restoringregistersin order to “context switch”
to the memorysimulator. For the simplememorysimulatorused
here,registersavesandrestoresareresponsiblefor morethanhalf
of the “simulation” overhead.Oneway to reducethe time spent
performing registersavesand restoreswould be to circumvent
theseregisteroperationsfor all cachehits. We haveimplemented
thisoptimizationin thefollowing way. Oneachmemoryreference,
we savea small subsetof the applicationregisters,and then do
a preliminary check to determineif the memory referenceis a
cachehit. If it is a hit, we brancharoundthe memorysimulation
and remainingregistersavesand restores.We needonly restore
the small subsetof registerswe savedbeforethe hit check. An
untunedimplementationof this optimizationoffersa further12 to
23% speedupto the benchmarksshownhere.

7 Discussion

The previoussectionhasshownthat, for the benchmarksconsid-
ered,referencetracesamplingis effectiveat improvingMemSpy’s
performance,with only a smalldecreasein theaccuracyof there-
portedstatistics. This sectionwill addressesseveralside issues
not yet touchedupon.
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7.1 Applications Suitable for Trace Sampling

While we considerthe benchmarksusedhereto be representative
of applicationsusedwith MemSpy, not all programsbeing tuned
will be amenableto sampling. In general,we can divide appli-
cationsroughly into the categoriesshownin Table7. This table
divides programsaccordingto two characteristics,miss rate and
total references.It showsthattheapplicationsmostsuitedto sam-
pling generallycoincidewith the applicationsthat needmemory
tuning. Applications with high miss ratesand many references
aremostamenableto sampling.A largenumberof knownmisses
decreasestheeffect of unknownreferences;a long referencetrace
allowsenoughsamplesto betaken,with eachsamplelong enough
to prime the cache.By contrast,applicationswith low missrates
and few referenceshave little needfor MemSpy tuning, so the
high error due to unknownreferencesis not relevant. Applica-
tions with high miss rates,but few referenceswill likely havean
executiontime shortenoughto be run without sampling.

Table7: Applicationsamenableto samplingandMemSpy.

Miss Numberof References
Rate Few Moderate Many

low No UseMemSpy, UseMemSpy,
MemSpy without with long
needed sampling samples

med. UseMemSpy, UseMemSpy, UseMemSpy,
without possible with medium

sampling sampling samples
high UseMemSpy, UseMemSpy, UseMemSpy,

without with with short
sampling sampling samples

7.2 Avoiding Periodic Behavior

One of the pitfalls of trace sampling is the possibility that the
sampleswill repeatedlycoincidewith periodicapplicationphases,
resulting in a cachemiss estimatethat is not necessarilyrepre-
sentativeof the programasa whole, evenwhengatheringa large
number of samples. While we have not implementedit here,
a straightforwardsolution is to usesampleswhoselength varies
randomlyarounda chosenmean,with a specifiedvariance.This
would introducesomerandomnessinto the samplinginterval, to
makeit lesslikely to repeatedlycoincidewith a particularphase
of the application.

7.3 Set Sampling

Up to this point, this paperhasonly treatedissuesrelatedto time
sampling.In setsampling,onesimulatesthe behaviorof selected
cachelinesor sets,ratherthansimulatingtheentirecache.Froma
performancestandpoint,an implementationof setsamplingoffers
speedupssimilar to thosein our current implementationof time
sampling.As with time sampling,onecouldaugmenttheapplica-
tion assemblycodeto brancharoundthe MemSpyprocedurecall
for referenceswhich arenot to be simulated.As describedin [7],
onecould usea bit maskto selectsomefractionof the addresses
to simulate.This implementationwould requirethe samenumber
of instructionsasour currenttime samplingimplementation.

Setsamplingis promisingfrom anaccuracystandpointaswell.
Whereastime samplingsuffers from errorsdueto unknownrefer-
ences,in setsamplingthe cachestateis alwaysknown; thereare
no unknownreferencesto contendwith. However, setsamplingis
still subjectto inaccuracieswhenthesetschosenfor samplingare
not representativeof the overall cachebehavior. Since the cho-
sensetsare fixed over the durationof the trace,set samplingis
moresensitivethantimesamplingto errorfrom non-representative
samples. A combinationof both approachesmay be the most
promisingalternative;thus, for a given performancegoal, neither
samplingmethodneedbe pushedinto the extremeregionswhere
it is lessaccurate.

7.4 Multiprocessor Behavior

MemSpyis designedto be usedwith both sequentialand shared
memoryparallelprograms.However, we havethusfar only exam-
inedissuesrelatedto tracesamplingin sequentialreferencetraces.
The paralleldomainhasits own uniquecharacteristicsthat affect
the accuracyandperformanceof a samplingMemSpyimplemen-
tation.

On sharedmemorymultiprocessors,“typical” cachemiss rates
can be considerablyhigher than on a sequentialmachine. Data
sharing betweenprocessorscan result in frequent invalidation
misses,whicharelikely to increasetheknownmissesanddecrease
the effect of unknownreferences.However, the disadvantageis
thata parallelmachinecanhavea muchlargeramountof stateto
be primedat the startof eachsample.In additionto determining
whetherthe referenceis a cachehit or miss, the simulatormay
also needto determinewhich other processorshavecopiesof a
cacheline, in orderto determinewhetherinvalidationsareneeded.

Furthermore,our currentparallelsimulatoris designedto inter-
leaveexecutionof multiple threadson a uniprocessor. In orderto
simulatea realistic interleavingof programthreads,the simulator
doesfrequentcontextswitchesbetweenthreads,always running
the one that is “farthest behind”. Maintaining this proper inter-
leavingwill interferewith runningtheprogramat full-speedwhen
not instrumented,becausethe simulatorwill still have to check
for contextswitches. We intend to examineways of doing peri-
odic low overheadchecksto determinewhethercontextswitches
needto occur, ratherthanthe currentmethodof checkingfor po-
tential contextswitcheson eachmemoryreference.We will also
examinethepotentialof parallelsimulationon a truemultiproces-
sor, to eliminatetheneedfor thesecontextswitches,andimprove
performance.

8 Conclusions

We havepresentedan analysisof the effectivenessof tracesam-
pling within the context of a performancedebuggingtool. In
general,we found that samplingparametersettings(suchassam-
ple length and numberof samples)requiredfor good accuracy
also allowed significant performanceimprovements. With sam-
ple lengthsof roughly 4M references,all benchmarkscould be
sampledwith less than 0.5% absoluteerror in cachemiss rate,
evenin large1MB caches.With this setup,MemSpyperformance
improvementsof 4 to 6 fold wereobtained.In general,the sam-
ple lengthrequiredto achievegoodaccuracywill increaseas the
application’s miss rate decreases.This meansthat performance
debuggingis an excellentapplicationof memoryreferencetrace
sampling. Sincewe expectthe target applicationsto havefairly
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high miss rates,we shouldbe able to useshortersamplelengths
to achievea particular level of accuracy. This in turn allows us
to usemoreaggressivesamplingratios(with higherperformance)
whengeneratingMemSpystatistics.

We arealso able to reproducethe moredetailedstatisticspro-
ducedby MemSpywith good accuracy. In the four applications
studied, the sampledversion of MemSpy producedan ordering
of programmemorybottleneckswhich exactly matchedthe true
programbottlenecksfor all bottleneckstotalling up to 90% of the
memorystall time. Thepercentagesof memorystall time incurred
by different programdatastructureand proceduresalso retained
usefulaccuracy, within 20% of their true values.

Performancedebuggingis especiallysuitedto samplingimple-
mentations,becauseit is an iterative processwith different de-
greesof accuracywarrantedat differentstages.Samplingallows
the MemSpyuser to get a fast initial view of programbehavior
using samplingratios of 1/10 or less. Then, as the usersbegin
to fine tuneperformance,they canswitch to highersamplingra-
tios which may providebetteraccuracyfor capturingmoresubtle
details of programbehavior. Used with care, samplingcan al-
low accurateestimatesof detailedmemorysystemstatisticsto be
producedwith executiontime overheadsthatarecompetitivewith
othermuchlessdetailedperformancemonitors.
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