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Abstract

Recentlytherehasbeena sumge of interestin developingperfor-
mancedebuggingoolsto helpprogrammersunetheirapplications
for bettermemoryperformanceg?2, 4, 10]. Thesetools vary both
in the detail of feedbackprovidedto the user and in the run-
time overheadf usingthem. MemSpy[10] is a simulation-based
tool which gives programmergetailedstatisticson the memory
systembehaviorof applications. It providesinformation on the
frequencyand causef cachemisses,andpresentst in termsof
source-levedataand codeobjectswith which the programmeiis
familiar. However using MemSpyincreasesa programs execu-
tion time by roughly 10 to 40 fold. This overheadis generally
acceptabldor applicationswith executiontimes of severalmin-
utesor less,but it can be inconvenientwhen tuning applications
with very long executiontimes.

This paperexaminesthe use of trace samplingtechniquesto
reducethe executiontime overheadbf tools like MemSpy When
simulatingonetenthof thereferenceswe find thatMemSpys exe-
cutiontime overheads improvedby afactorof 4 to 6. Thatis, the
executiontime whenusingMemSpyis generallywithin afactorof
3 to 8 timesthe normal executiontime. With this improvedper-
formance we observeonly small errorsin the performancestatis-
tics reportedby MemSpy On moderatesized cachesof 16KB to
128KB, simulatingas few asonetenthof the referencegin sam-
plesof 0.5M reference®ach)allows us to estimatethe programs
actualcachemissratewith anabsoluteerrorno greaterthan0.3%
onourfive benchmarksTheseerrorsarequitetolerablewithin the
contextof performancelebugging.With largercacheave canalso
obtain good accuracyby using longer samplelengths. We con-
cludethat, usedwith care,tracesamplingis a powerful technique
that makespossibleperformancedebuggingtools which provide
both detailedmemorystatisticsandlow executiontime overheads.

1 Introduction

Moderncomputersexhibit anincreasinglywide gap betweenpro-
cessoandmemoryspeedsWith increasesn processoclock rates
outpacingimprovementsn memoryspeedg6], memorysystem
performancdasbecomea significantbottleneckto achievinggood
overall applicationperformance. Cachemisseson typical current
generatioruniprocessorsanincur delaysof tensof processocy-
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cles, and in multiprocessomachines,remote memory latencies
can be hundredsof cycles. For an applicationto achievegood
performanceit mustuselocality to exploit the memoryhierarchy
effectively.

The applicationprogrammeihasconsiderabldlexibility in tun-
ing the programfor better memory systemperformance. How-
ever, tuning the memorybehaviorof large programss a complex
task requiring detailedinformation on the programs accesspat-
terns. Some performancemonitoring systems(suchas MTOOL
[3, 4]) give only codeorientedinformationindicatingthe amount
of memoryoverheadn particularloops or procedures.This in-
formationis usefulfor initial queriesaboutapplicationbehavior;
however it is often not detailedenoughto help the userfix the
applications performancebottlenecks.Detailedstatisticssumma-
rizing the frequencyand causesof cachemisses,as well asthe
behaviorof different data structuresin the code, are extremely
usefulin understandingand fixing memory bottlenecks. Gener-
ally thesedetailedstatisticscan be gatheredn one of two ways,
using (i) hardwareperformancemonitorsor (ii) softwaresimula-
tion. Softwaresimulationis the morewidely applicableof these
approacheshecausemost machinesdo not provide supportfor
hardwareperformancenonitoring. Furthermoresoftwaresimula-
tion allows programmerso evaluateapplicationperformancevith
different cachesizesand speeds.

Unfortunately detailedsoftwaresimulation can often be quite
slow. However careful attentionto the simulation environment
canreducesimulationoverheadmakingdetailedsoftwaresimula-
tion fastenoughto be partof aninteractiveperformanceebugging
tool. An exampleof this is MemSpy[10]. MemSpygives pro-
grammersdetailed, data-orientednformation to help locate and
fix memorybottlenecksin their code. Its output presentsusers
with statisticsin terms of sourcelevel data objects, as well as
codeobjects. MemSpys simulationoverheads approximatelya
factorof 10 to 40 timesthe actualexecutiontime of the program.
For applicationswith relatively shortrun times (up to a few min-
utes) this overheadis often acceptablegiven the utility of the
datait produces.For applicationswith longerrun times, several
approachesire availableto reducethe simulationtime. Thesein-
cludescalingdatasetsand cachesize, or for iterative algorithms,
reducingthe numberof iterationsstudied. While theseapproaches
are often useful for certainclassesof problems,we believethat
the complementarapproactof tracesamplingis a promisingand
more generalmethodfor reducingsimulationoverhead.

Referencetrace samplingis the techniqueof simulating only
randomlychosenportionsof a referencetrace, ratherthan simu-
lating the full trace. Intuitively, this promisessignificantspeedup,



sinceoneincursthe full simulationoverheadnly on a fraction of
the full referencestream.If one samplessuchthatonly onetenth
of the referencesre simulated,onecanhopefor a speedumf up
to a factor of ten. Our resultsshow that significantperformance
improvementscan be obtainedusing samplingwithin MemSpy
When simulatingone tenth of the total referenceswe get4 to 6
fold speedupsomparedto non-trace-sampletemSpy For the
benchmarksstudied here, this reducesMemSpys overheadto a
factor of 3 to 8. With executiontime overheadsn this range,
MemSpys performancébecomessompetitivewith othertools[4]
that presentiessdetailedstatistics.

This papermakesseveralmain contributions. As previously
stated,we showthat within the contextof a performancedebug-
ging tool, referenceracesamplingcan be usedeffectively to im-
provethetool’s performance We go on to presentesultsshowing
how the accuracyof the sampledresultsvarieswith key param-
eterssuchas numberof samples samplelength, and cachesize.
We find that the parametersettingsrequired for accuratesam-
pled output do not excessivelylimit performance.For example
in 16KB and 128KB cacheswhen simulatingaboutone tenth of
the total referencesn about20 samplesof 0.5M referencesach,
the absoluteerrorsin cachemissrate neverexceed0.3%. Larger
cacheqe.g.,1MB) canobtaingoodaccuracyby usinglongersam-
ples (4 million to 8 million referencesach),while continuingto
only sampleone tenth of the referencegotal. Programsrunning
with largercacheswill generallymakemoretotal datareferences,
in orderto make use of the cache,so we do not considerindi-
vidual samplesof this lengthto be a seriousrestriction. Finally,
we presentperformanceresultswhich show the successof this
approachandpresentsuggestiongor further optimizations.

The paperis structuredasfollows. Sections2 and3 give back-
groundinformation on trace samplingand on the MemSpytool.
In Section4, we describeour samplingimplementationwithin
MemSpy Section5 describesour architecturalassumptionsand
benchmarkapplications, before presentingresultsin Section 6.
Section7 discussepossibleextensiongo our currentapproacho
incorporatesetsampling aswell astime sampling,andto support
samplingin multiprocessoisimulations. We presentour conclu-
sionsin Section8.

2 Trace Sampling Background

MemSpyimplementgeferencdracesamplingby gatheringevenly
spacedsampledo be simulatedfrom the full referencdrace. This
is illustratedin Figure 1. The samplingratio is the ratio of the
total numberof referencesithin the samplesdivided by the to-
tal numberof references. Thus, the performanceimprovement
possiblein a samplingsystemis limited by the reciprocalof the
samplingratio. For example,if oneusesa samplelengthof 0.5M
referencesinda samplinginterval of 5M referencesthe sampling
ratio would then be 1/10, and one could not expectmorethan a
factor of 10 speedupver full simulation.

Referencetrace samplingis subjectto two typesof inaccura-
cies. First, the samplegyatherednay not be representativef the
full trace. This erroris commonto all forms of sampling,includ-
ing the programcountersamplingalreadyusedin a numberof
performancemonitoring systems[1, 3, 4, 5]. This sort of error
can generallybe controlled by taking a numberof samplesover
the courseof the programs execution. Section6.1 discusseghe
relationshipbetweenaccuracyand the numberof samplestaken.

The secondinaccuracyoccursbecausedhe stateof the cacheis
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Figure1: Samplesn referencerace.

unknownatthe beginningof eachsample(becausé¢hecachestrue

statedependn eventswhich have occurredduring the unmoni-
toredsectionof the program.) Therefore within eachsample,the

first referenceo eachcacheline (for a direct-mappeaache)is an

unknownreferencethat could eitherbe a hit or a miss. Estimat-
ing the miss ratio of theseunknownreferencescan be a source
of inaccuracywhenusing referencearacesampling. Becauseany-
wherefrom noneto all of the unknownreferencesould actually
bemissesmissratecalculationdor the sampledependbothonthe

numberof knownmissesandthe numberand missrate of the un-

known referencesBy usinglongersamplelengths,we canmake
thenumberof unknownreferencesesssignificantwhencompared
to knownmisses.Section6.3will discussherelationshipbetween
samplelengthandthe accuracyof missrate statistics.

Severalstudieshave examinedthe applicability of samplingin
the contextof architecturabktudiesof cacheperformanceLahaet
al. [8] studiedthe accuracyof memoryreferencetrace sampling
using cachesthat were 128KB in size and smaller Their study
concludesthat sampling techniquesallow accurateestimatesof
the missrate for cachesof this size. However their resultswere
presentedvith samplelengthsof 60,000referencegvery100,000
referencespr asamplingratio of 0.6. Samplingratiosin thisrange
offer little promisefor improvedperformance Furthermorethey
presentegimulationdataonly for cacheswith 1024linesor fewer,
sosamplelengthsof 60,000werein generalong enoughto prime
the cache.

Wood et al. [15] developeda modelfor estimatingthe miss
ratesof unknownreferencesn sampledtraces. They found that
their model predictedthe behaviorof unknownreferencesetter
than severalpreviousmethods[8, 14]. Most importantly they
point out that unknownreferencegypically have miss ratessig-
nificantly higherthanthe applications steadystatemissrate. We
will evaluatethe effectivenessof the Wood et al. estimatorson
our benchmarks.

In laterwork, Kessleretal. [7] studiedtracesamplingfor large
secondarygacheof 1MB to 16 MB, andwith samplingratiosdown
to 1/10. Fortheir benchmarkstheynotedthatunknownreferences
at the beginningof a samplecan dominateknown misses poten-
tially makingmissrate estimateguite inaccurate We believethis
large inaccuracyarosein part becausehe benchmarkghey used
hadfew cachemisses. (Sevenof the eight traceshad missesper
instruction(MPI) valueslessthan 0.003, while one had an MPI
of roughly0.02. With a cachemisslatencyof 20 cycles,an MPI
of 0.003correspondso spendingonly 6% of programruntimein
memorystalls.) Thus, for thesebenchmarksthe total numberof
known missesin eachsamplewas often very small.

Froma performancelebuggingoointof view, it is notimportant
to pinpointwith high accuracythe missrate of applicationswith
very low missrates. The primary purposeof MemSpyis to tune
applicationswith poor memorysystembehavior Theseprograms
will typically have higher miss rates; their larger proportion of

1[7] does not report cache miss rates directly.
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known missesto unknownreferenceswill allow miss ratesto be

estimatedmore accurately Also, within the contextof a perfor-

mancedebuggingool (asopposedo moreforwardlooking archi-

tecturalstudies),t is still quiterelevantto focuson smallercaches
than those used by Kessleret al. With smaller (e.g., primary,

on-chip) caches,samplings accuracyimproves. Finally, within

the context of performancedebugging,we can tolerate slightly

larger errorsin the statisticsgenerated. To tune an application,
one needsto havea good idea of the location and magnitudeof

the bottleneckshut not a perfectly precisecachemissrate value.
We will showthattracesamplingreproducesviemSpys statistics
with quite acceptableaccuracyin mostcases.

For thesereasonswe feel that trace samplingis a promising
approachto reducingthe executiontime of performancedebug-
ging tools like MemSpy In this paper our goal is not simply to
reiteratethe resultsgiven by Lahaet al. or Kessleret al., but to
reevaluatehe efficacy of tracesamplingin a new context. In this
new context, performancedebugging,our constraintson the ac-
curacyof resultsmay be somewhatooser while the performance
savingsofferedby samplingare of centralimportance.

3 MemSpy Background

This sectiongivesa brief summaryof MemSpys featuresn order
to understanchow tracesamplingwill affect their accuracy

MemSpy is a performancedebuggingtool designedto help
programmerdocate and fix memorybottlenecksin applications.
MemSpyfirst helpsin locatingbottleneckdy providinghigh level
information to guide the user towards potential memory bottle-
necks. This high level information (illustrated by the MemSpy
outputin Figure 2) breaksdown the total executiontime of the
programby proceduresWithin eachprocedureMemSpypresents
a breakdownof how muchtime was spentin memorystalls due
to cachemissesyersushow muchtime wasspentin computation.

MemSpy: Program Overview
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Figure2: Initial MemSpyoutputdisplay

MemSpycanthenhelpin fixing bottlenecksy providingmore
detailed, low-level information on source-levelcode and data
objects. For these MemSpy statistics, data objects correspond
roughlyto particularclasseof datain a program,andcodeobjects
correspondo proceduresFor eachdataobjectin eachprocedure,
MemSpyprovidesinformationon the numberof cachemissesthe
percentagef the total memorystall time incurred,andthe causes
of the cachemisses. An exampleof this sort of informationis
shownin Figure 3.

MemSpyhasbeenusedto tunea numberof applicationsasde-
scribedin [10]. The detailed,data-orientednformationgiven by
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Figure 3: DetailedMemSpyoutputdisplay

MemSpyhasbeeninstrumentain understandin@ndfixing a va-

riety of performanceébugs, suchasinterferencebetweendifferent
datastructuresin the cacheand excesscommunicationin paral-
lel programs. However collecting this information comesat the
costof higherexecutiontime overheadthantools which provide
only high level statistics[3, 4]. Dependingon the referencerate
and miss rate of the application,the MemSpy overheadis typi-

cally a factor of 10 to 40 times the actual executiontime of the
application. Table 1 givesthe overheaddor runningthe original

MemSpy for the applicationsusedin this study when simulat-
ing a 128KB caché. The runswere performedon a DECstation
5000/240with 80 megabyteof memory Section5.2 givesmore
detailedinformationon the characteristicef eachbenchmark.

Table1: Original MemSpyoverheads(128KB cache)

Actual MemSpy
Application || Exec. Time | Exec. Time | Overhead

(sec.) (sec.) Factor
MP3D 41.7 954.6 22.9
MATMAT 66.1 998.7 15.1
TRI 73.5 782.1 10.6
ESPRESSQ 235 866.0 36.9
PTHOR 16.0 672.8 42.1

To understandhis performanceoverheadwe examinethe se-
quenceof operationsMemSpy usesto simulatea memory ref-
erence. At compile time, eachmemoryreferencein the original
applicationassemblycodeis instrumentedvith a procedurecall to

?Note that these baseline overheads already represent an improvement over
those presented in [10].
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the memorysystemsimulator At run time, within this procedure,
MemSpyperformsthe following actions:

1. Saveapplicationregistersso that the memorysystemsimu-
lator will not destroythem.

2. Usea cachesimulatorto determinewhetherthe references
a cachehit or a cachemiss.

3. UpdateMemSpystatisticsfor the relevantcodeand dataob-
jects.

4. Restoreapplicationregistersto their original values.

5. Returncontrolto the application.

Cachesimulationand statisticsupdatescan take from roughly
20 cycles(if the referenceis a cachehit), to roughly 200 cycles
(if thereferencds a cachemiss). Savingandrestoringapplication
registerscompriseroughly 60 cycles. Evenin applicationswith
poor memorybehavior generallya majority of the referencesre
still cachehits, sowe find the bulk of MemSpys overheads spent
in savingandrestoringregisterswhen switchingfrom application
to MemSpyand vice versa. While we are currently working on
techniquesto reducethis overhead,this paperfocuseson using
trace samplingas an orthogonaltechniquefor improving Mem-
Spy’s performance.

4 Implementation of Trace Sampling

Our discussiorof the tracesamplingimplementatiorwithin Mem-
Spy is divided into two subsections.The first dealswith perfor-
manceissuesin the implementationwhile the seconddealswith
issuesrelatedto the accuracyof the results.

4.1 Performance |ssues

Obviously our primary purposein usingtracesamplingis to im-

prove MemSpys performance.Therefore,it is importantto pro-

ducea samplingimplementationwhich promisessubstantialper-
formancemprovement®verthe currentfull-trace simulation. We

haveseenthat the bulk of MemSpys time is spentin the register
savesandrestoregequiredwhenswitchingfrom applicationto the
memorysimulatorand vice versa. So, an implementatiorwhich

simply turnsoff simulationwithin the MemSpysimulatorwill not

improve performancesignificantly Rather to be worthwhile the

implementationmust circumventthe overheadf registersaves
andrestoresvheneverthe simulationis turnedoff.

To accomplishthis, we modify the normal MemSpy assem-
bly time instrumentationof memory references. In addition to
the usual call to the MemSpy memory simulator additionalin-
strumentatioris added. In this extrainstrumentationa sampling
counteris decrementednd checkedagainstzeroto seeif simula-
tion is currentlyON or OFF If simulationis OFF, controlbranches
aroundthe memorysimulatorprocedurecall. If simulationis ON,
the simulatoris calledasin a full simulation. Figure4 illustrates
the original and new instrumentation.

Section6.6will showthatthisimplementatiorgivesusasizable
performancamprovement. A samplingratio of 1/10 leadsto 4
to 6 fold performanceamprovements.Section6.6 also discusses
ways of further reducingthis overhead.

Original Code

Store one appl. register

Iwris, foo Load count of nbr_refs_off

Decr enent count

Store count
‘ Cal | MenBpy

If count !'=0, junp to no_sim
/ no_sim

Restore one appl register
Cal | Mentpy

lwri13, foo lwr13, foo

Instrumentation for
Sampled MemSpy

Instrumentation for
Full MemSpy

Figure4: Inlined assemblycodefor sampling.

4.2 Accuracy Issues

As we noted earlier, trace samplingis subjectto two orthogonal
forms of inaccuracy:

Error due to non-representative samples; The deviation be-
tweenthe applications true miss rate when fully simulated,
andthe applications true missrate measuredaluring sampled
regionsonly.

Error due to unknown references: Within eachsample the de-
viation betweerthe applications estimatedmissrate (includ-
ing an estimateof the missrate of unknownreferences)and
the applications true missrate during the sampledregion

For the resultspresentedn this paper the true missrateduring
sampledregionsis generallya good estimateof the applications
true overallmissrate. The errorin this estimatecanbe controlled
by increasingthe numberof samplegaken. The bulk of the error
we measureis of the secondtype: error dueto unknown refer-
ences. For a particularsample,the cachemiss rate, m, can be
expresseds

m = M + [I,U
CH+ M+ U

whereH}, is thenumberof knownhits, A}, is thenumberof known
missesin the sample,U is the numberof unknown references,
and p is the fraction of unknown referenceswhich are actually
cachemisses. Knowing Hy, My, andU, we can estimatem by
estimatingthe unknownreferencemissrate,x. Wood et al. [15]
showthat miss ratesfor unknownreferencesare typically higher
thanthe overall applicationmissrate, so assuminghat u is equal
to the steadystatemissratewill resultin optimistic performance
estimates.Theyintroducea methodfor estimatingu by estimating
the fraction of time thatlines in the cacheare dead(i.e. will not
be referencedagainbeforea newline replaceshemin the cache).
In Section6.4, we will evaluatethis methods effectivenesswvithin
our framework. Note that one can always computea range of
possiblem’ valuesby allowing p to vary from 0 to 1. Thus,m’
canbe expressedvith symmetricerror boundsas follows:

. M,+05U 5U
m =
Hy+ My +U Hp+M+U

(1)

In general,one can reducethe error due to unknownreferences
by lengtheningsamplesso that known missesdominateunknown

referencesHoweverfor a fixed desiredsamplingratio, increases
in samplelengthmustbe tradedoff againsthe numberof samples
taken. Sections6.1 and 6.3 discussthis tradeof in more detail.

Becausewe are studying trace samplingwithin the MemSpy
context,it is importantto alsostudyhow errorsin cachemissrate
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translateinto errorsin the statisticsreportedby MemSpy Wiill
errorsin cachestatisticsfor individual datastructuresaswell as
overallcachestatistics be acceptable®Vill thesamplingapproach
be accurateenoughto allow the programs true bottlenecksto be
identified? Section6.5 discusseghe errorsin MemSpy metrics
which we haveobservedor the benchmarkstudied.

5 Experimental Setup

This sectionbriefly presentsiecessarpackgroundnformationon
the architecturesandthe benchmarkapplicationswe examined.

5.1 Architectures Simulated

The statisticsshownhereweregatheredisinga very simplemem-
ory simulatorthat doesnot model network contention.While the
modelis simple,we havefoundthatit capturesnostof theimpor-
tant memorysystembehaviorin applicationsusedwith MemSpy
In thesestudies,cacheare direct mapped,and have one of the
following organizationsy(i) 16KB, with 16 bytelines, (i) 128KB,
with 32 byte lines, or (iii) 1MB, with 64 byte lines. The 16KB
cacheis atypical sizefor an on-chipfirst level cache.The 128KB
cacherepresents reasonablsizefor anoff-chip cache.The 1MB
cache,large by today’s standardsmight be usedas a secondary
cache.

5.2 Benchmark Applications

The resultsof tracesamplingstudiesare clearly dependenbn the

applicationsusedfor gatheringthe results. For our benchmarks,
we havefound that samplingprovidessignificantexecutiontime

benefitswith little sacrificein accuracy For tuning the memory
behaviorof theseapplications,the sampledresultsare in most

waysinterchangeablgvith the full-trace results.

The applicationspresentedhere spana wide range of mem-
ory behaviors. Two of the benchmarksMP3D and PTHOR, are
applicationdrom the SPLASHbenchmarlsuite[12]. Their mem-
ory systemperformancehasbeenstudiedextensivelyin the past.
Likewise,the memoryreferencingcharacteristicef MATMAT [9]
and TRI [11] havealso beenstudied. (We use untunedversions
of theseapplications,to observebehaviortypical of applications
onemight usewith MemSpy) The fifth application,ESPRESSO,
from the SPECbenchmarksuite [13], has much bettermemory
performancethan the others(0.2% cachemiss rate on a 128KB
cache). This applicationis useful for showinghow samplingbe-
haveson applicationswith very low miss rates. Of the five, it
is the most sensitive,in termsof relative error, to changesn the
lengthof individual samplesandthe particulary estimatechosen.
Table 2 givessomebasicinformationon eachof the applications
studied,including their cachemissratesfor a 128KB cache.

6 Results

This sectionpresentour resultson the accuracyandperformance
of tracesamplingwithin MemSpy In general,we find thattrace
samplingis quite effective at reproducinghe statisticsfrom a full
tracerun of MemSpy As a preview Table 3 comparesestimated
cachemissratesfrom samplingto (i) the programs true missrate
calculatedover all referencesnd (ii) the programstrue missrate

Table2: Application Characteristics

True Miss
Rate (%)

DataSetSize| Refs
(MB) (M)

Application

MP3D:
Hypersonic 33.4
Particle-based
Simulator
MATMAT:
Blocked Matrix 6.4
Multiply
TRI:
Triangular 68.2
SparseMatrix
Solver
ESPRESSO:
Boolean 1.3
Function
Minimizer
PTHOR:
DiscreteLogic 4.6 67.2 4.0
Simulator

150.4 3.8

139.7 18.2

109.8 6.1

143.8 0.2

calculatedover only thosereferencesccurringduring a samples
In eachof the applications,the absoluteerror in miss rate never
exceed®).4%. Errorsin this rangearegenerallyacceptabldor use
in a performancedebuggingcontext. MemSpys executiontime
overheadfor theseapplicationsgenerallyrangedfrom factors of
3 to 8. This overheadmakesMemSpyan attractivealternativeto
otherlessdetailedperformancemonitoringtools.

Table 3: Estimatedand True Miss Rates. (128KB cache,10%
samplingratio, 0.5M Refs/sample)

Overall True Estimated
True Miss Rate Miss Rate
Miss Rate During During

Appl. Sampleq%) | Sampleq%)
MP3D 3.8 3.8 35
MATMAT 18.2 17.9 17.8
TRI 6.1 6.4 6.1
ESPRESSQ 0.23 0.14 0.20
PTHOR 4.0 3.8 3.7

While this datashowsreasonabl@ccuracyfor tracesamplingin
oneconfigurationa moregeneralevaluationof tracesamplingfor
performancedebuggingmust examineseveralissues. The most
importantquestiongo be answeredare:

e How doesthe numberof samplestakenaffect the error due
to non-representativeamples?

¢ How doesthe accuracyvary with cachesize?

e How doesthe length of eachsampleaffect the error due to
unknownreferences?

SExcept when stated otherwise, al estimated miss rates in this section are
reported using a p of 0.5 asin Equation 1. This allows us to separate the issue
of u estimation from the other issues being studied.
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Figure5: RelativeError vs. Numberof Samples.(128KB cache,0.5M Refs/sample)

¢ How well canwe estimatethe miss rate for unknownrefer-
ences”?

e How does sampling affect specific MemSpy output, such
as the orderingof memory bottlenecksand statisticson the
causeof cachemisses?

e Subjectto constraintson accuracy what performanceim-
provementcan we expectwhenincorporatingsamplinginto
MemSpy?

To someextent, thesequestionsare all interrelated. The per-
formancegainsrealizedfrom trace samplingare boundedby the
samplingratio, which is the product of the numberof samples
takenduring a run, multiplied by the samplelength, and divided
by the trace length. However choosingthe samplelength and
the numberof sampleshasimplicationsfor the accuracyof the
resultingrun as well. The cachesize being simulatedis also a
strongdeterminanbf samplingaccuracywith implicationson the
requiredsamplelength. We mustalso examinehow theseerrors
in the overall miss rate translateinto errorsin MemSpymetrics.
If we understandeachof thesetrendsand tradeofs, we can de-
cide when,andto what extent,additionalsamplingerror may be
acceptedn exchangédor betterperformance.

6.1 Accuracy vs. Number of Samples

Thenumberof samplegakenpartly determinehow representative
the tracewill be of the overall programperformance Intuitively,
a single large samplewill not reproducethe overall programs
behavioras well as severalsmallerones. Programbehaviorcan
vary overthe runtime of the program with somephasegsuchas
initialization) characterizety very poor memorysystembehavior
while other phaseshavemuch bettercacheperformance Laha et
al. [8] mentiontheimportanceof capturingrepresentativeamples
and presentdataindicating that using 35 sampleswas generally
sufficientto characterizeéhe missratesfor their Lisp benchmarks.
Here,we presentmorecomprehensiveatashowinghow accuracy
variesacrossa wide rangeof valuesfor numberof samples.To

do this, we fix the total numberof referencesimulatedand vary
the numberof samplestaken. This allows us to study the effect
of changingthe numberof samples,while holding the sampling
ratio (and thereforeperformance)constant. To study the repre-
sentativenessf differentcollectionsof sampleswe examinethe
deviationbetweenthe true missrate during sampledregions,and
the applications overall true missrate. (This is the error due to
non-representativeamplesmentionedin Section4.2.) Note that
we arenot studyingthe effectsof unknownreferencesn this sec-
tion.

Figure 5 presentghe relative deviationbetweenthe true miss
rateduring sampledregionsandthe overall true missrate, plotted
againstthe numberof samplesaken. (In this case,the sampling
ratiowas1/10.) Threeof the applications:MATMAT, MP3D, and
PTHOR, show excellentbehavior Even after as few as 10 sam-
ples, the relativeerrorin thesethreecasesis roughly 5% or less.
Exceptfor initialization periods,MP3D, MATMAT, and PTHOR
arecharacterizedy relatively constanimemorybehaviorthrough-
outtheir program.For thesetypesof programsfewersamplesare
requiredto capturethe “typical” memorybehavior A fourth pro-
gram, TRI, showslarge relativefluctuationsin errorfor lessthan
20 samples,but settlesdown with greaternumbersof samples.
Comparinghetrue missrateovertime for TRI with thatof MP3D
(Figure6), we seethat TRI's missrate fluctuatesmuchmorewith
time thanthat of MP3D. Thus, more samplesare neededo cap-
tureits behavior Finally, thefifth application ESPRESSOshows
relative errorsgreaterthan 20% evenat 100 samples. Espresso
hasa very low missrate, so eventiny fluctuationsin its absolute
miss rate over time show up as large relative swings. When an
applicationhasso few knownmissesoverits entireexecution the
relative error due to samplingis higher However the absolute
error from samplingmay still be quite small. Low-miss-rateap-
plicationstypically do not require memory systemtuning at all,
so MemSpys performanceon themis lessrelevant.

As expectedthe presencef phasesn the memorybehaviorof
a program(suchas TRI) mandateshe useof moresampleso ac-
curatelyrepresentts memorybehavior Here MemSpycanlever-
age off users’knowledgeof how their programsbehave. When
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programmersknow that their application has basically constant
memorybehavior they canrequesthata reducechumberof sam-

ples be taken, for higher performance.While usersdo not want

full controlof the samplingsetup,directiveslike theseallow them

to speedup the tuning processin specific cases. Furthermore,
sincetuningis iterative,userscanchooseto haveonly a few sam-
plescollectedin early runs,andthensimulatea higherfraction of

referenceasthey moveto moredetailedtuning.

6.2 Accuracy vs. Cache Size
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Figure 7: Relative Error vs. CacheSize. (10% samplingratio,
0.5M Refs/sample)

As previous studieshave shown [7, 15, the accuracyof miss
rate estimateds a strongfunction of the cachesize used. Figure
7 showsthe relative errorin cachemissrate estimatedor 16KB,
128KB and1MB cachesata samplingratio of 1/10,with asample
length of 0.5M references.Here, theseerrorsare shownrelative
to the true miss rate during the sample Within eachsample,the
bestwe can hopeto achieveis to re-createthe true miss rate of
that sample. The error with respectto the overall miss rate may
be slightly more or lessthanthe error shownhere,dependingon
how accuratelythe sampledregions capturethe behaviorof the
full trace.

Forthe 16KB and128KB cachestherelativeerrorsareall less
than 10%, with oneexception.Espress® missrate hasa relative
error of nearly 40% for the 128KB cache.However its absolute
miss rate (.144% within the sampledregions)is so small that
theselarge relative errorsare neither surprisingnor problematic,
from a performancelebuggingpoint of view. SinceESPRESSG
memorystall time is a small fraction of its total executiontime,
eventhe sampledversionof MemSpywill accuratelypointoutthat

ESPRESSQloesnot have any substantialmemory performance
bottlenecks.

With 1MB caches,the relative error is greaterthan 10% for
four of the five applications. The higher relative errors noticed
here are due to two factors. First, as the cachesize increases,
morereferencesre neededo prime the cachestate. This causes
the numberof unknownreferencedo increase. Second,as the
cachesize increasesthe applications cachemiss rate generally
decreasesThis causes decreasén the numberof knownmisses.
From Equationl, both of theseeffectstendto increasethe size of
the errorboundson estimatedmissrate. To improvethe missrate
estimateswith large cachesizes,we havetwo options. First, we
canreducelU’s significancein the equation,by lengtheningeach
sampletaken. Alternatively, we canimprove our estimateof p,
the missrate for unknownreferences.The following subsections
addressthesetwo issues. Note first however that despitethe
largerelative error, the absoluteerrorsremainquite small. Figure
8 showsa plot for the 1MB cacheof boththe true cachemissrate
(stars)andthe sampledcachemissrate(circles)with errorbounds
as expressedn Equationl. Absoluteerror of this magnitudeis
generallyconsideredacceptablevhentuning programs.

3

True Miss Rate
Estimated Miss Rate

Miss Rate (%)

N
I

MP3D MATMAT TRI ESPRESSO PTHOR

Figure 8: Actual and estimatedcachemiss rates. (IMB Cache
10% samplingratio, 0.5M Refs/sample)

6.3 Accuracy vs. Sample Length

Section6.2illustratesthefact thata singlechoiceof sampleength
may not work effectively acrossa rangeof cachesizesand appli-
cationbehaviors.For larger cachesunknownreferencedecome
significant,and one mustuselongersamplesto mitigatetheir ef-
fect.

To gatherthe datashown here, we divide the trace into con-
tiguous samples,and collect datafor all of them, averagingthe
results. This allows usto studymoresamplesperapplicationthan
if we restrictedourselvesto a samplingratio of, say 1/10. The
errorsareshownrelativeto the true missrate duringthe sampling
region.

Figure 9 showsrelative errorsin miss rate estimatesfor the
five benchmarkapplicationswith a 1MB cache. As expected,
longersamplesdramaticallyimprove accuracy At 8M references
per sample,all applicationshave relative errors less than 10%.
Absoluteerrorson theseapplicationsareall under0.1%. Foreven
moderatelylong running applications,8M referencegper sample
is not a prohibitively long samplelength. To collect 50 samples
of this size with a samplingratio of 1/10, the total application
would needto have4 billion datareferencesAssumingonedata
referenceevery 3 instructions,this would be roughly 12 billion
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instructions,or about2 minutesof executiontime on a 100 MIPS
machine. We feel that theseare not prohibitive requirementon
eitherthe run time or the referencerate of a program.

6.4 Miss Rate of Unknown References

Section 6.3 showsthat reducing error by using longer samples
works quite well. However many interestingapplicationsdo not
haverun timeslong enoughto uselong samplesizesand aggres-
sive samplingratios. For this reasonwe now evaluatea proposed
model for estimatingthe miss rate of unknownreferencesg, in
Equationl.

Woodet al. [15] developech renewaltheoreticmodelfor esti-
matingthe missratesof unknownreferencesThe modelpredicts
1 basedon two characteristics(We referto their estimateasp’.)
The first characteristicP,..4* is the ratio of the amountof time a
cacheline holdsa memoryline which will notbe referencecgain
(deadtime) divided by thetotal time thatmemoryline spentin the
cache(generationtime). This ratio approximateghe probability
thatthe unknownreferencewill be directedat “dead” linesin the
cache,andwill thereforebe cachemisses.The secondcharacter-
istic usedin this modelis the numberof cachelines referenced
during a sample. This accountsfor the fact that many shortand
evenmoderatelength sampleswill not referenceall lines of the
cache. Thus not all the deadlines estimatedby Pj..q Will be
referenced.

Column three of Table 4 shows the estimatesof p that are
obtainedby calculating“true” deadtimes and generationtimes
basedon all referencesn the trace (not just referenceswithin
the sampledregions). Howeverwith sampling,it is not realistic
to monitor dead and generationtimes on all referencesso the
rightmost column showsthe samep estimatorcalculatedusing
only deadtimesandgeneratiortimesfor generationsvhich were
containedwithin simulationON periods. A generationis defined
to start and end with a cachemiss. Thus, within a sampling
system,collectinggeneratiordatarequiresthattwo knownmisses

4[15] referred to this as piong-

Table 4: Accuracy of p estimators. (IMB Cache,
0.5Mrefs/sample)
Actual u u
Application 7 (All Refs) | (Sampled)| G
MP3D .966 .952 .637 2.8
MATMAT .880 .882 .854 21.3
TRI 877 .903 .942 115
ESPRESSQ .116 .823 .990 0.04
PTHOR .267 .205 .468 3.3

occurto a particularcacheline within a particularsample. With
low missratesand shortsamplesmany cachelines do not meet
this requirementso this model doesnot measuretheir behavior
Thus the model is inaccuratein two ways. First, the model is
skewedtowardscounting statisticson shortergenerationsvhich
canfit within the sample.Second statisticsfor cachelines which
have such generationsare applied to other cachelines as well.
For MP3D and PTHOR, the errorin the sampledy’ is especially
pronounced.The error with ESPRESSQs also large, becauset
hasvery few generationdotal. Here, ' severelyoverestimates
1, becausecachelines with poor behaviorare morelikely to be
countedthanthosewith goodbehavior Intuitively, we seethatthe
accuracyof the Wood et al. modelimproveswhentherearemore
known missesin a sample. However it is exactly underthese
conditions that unknown references,U, are small with respect
to known misses. When M, is lessdominant,x simultaneously
becomesnoreimportantto relative error and lessaccurate.

We can use a heuristic metric to evaluatethe degreeof error
in ' by computingthe averagenumberof known generationper
sample. This metric, G, in Table4, is computedby dividing the
total numberof generationsn the sampledregionsby the product
of the numberof samplesand the numberof cachelines. When
thereis one generationper cacheline per sample,G, will equal
1. Whenthereare a large numberof generationger cacheline
persample G will begreaterthanl. Intuitively, we expecty’ to
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be more accuratewhen a large numberof generationsvere used
in calculatingit. Forourbenchmarks@, increasesnonotonically
with the absolutedeviationof x’ from g, indicatingit is effective
in gaugingthe deviationin the estimate.

Table 5: Using ' in miss rate calculations. (LMB cache,0.5M
Refs/sample)

Application || Actual Using o' Usingu = 0.5
Miss || Miss | Error || Miss | Error
Rate | Rate| (%) || Rate| (%)
MP3D 1.61 | 1.21|-24.8| .92 | -42.9
MATMAT 1.30 || 1.29| -0.8 || 1.14| -12.3
TRI 238 || 242 1.7 | 1.93| -18.9
ESPRESSQ| .011 || 0.08 | 627 || 0.04| 263.6
PTHOR .92 1.09| 185 || 1.11 | 20.7

Table5 showsa summaryof missrate estimationsasedon p’
andthe deviationfrom the true missrate value. Not surprisingly
in spiteof its inaccuraciesy’ performsbetterthanmoresimplistic
models,suchasassumingu = 0.5. For ESPRESSOhowever it
overestimateshe miss rate for unknownreferencesyhich leads
to a large absoluteerrorin the estimatedmissrate.

We feel that p’ estimationwithin the MemSpy systemcould
be improved further A major feature of the MemSpy tool is
the presentatiorof statisticsin termsof dataobjects,as well as
code objects. Thus, within that framework, it would be quite
naturalto keep deadtime and generationstatisticson individual
datastructures.Thesecouldbe usedto betterestimatehe behavior
of unknownreferenceso thesedatastructures.

Finally, althoughanaccurateestimatiorof . would be helpfulin
somesituationstheability to provideerrorboundsaroundthe miss
rate estimatemakesthe accuracyof the estimationlesscrucial.

6.5 Error in MemSpy Metrics

Until this point, we have presentedur resultsin termsof their
effect on the overall cachemissrate. However MemSpypresents
more detailedstatisticsthanjust the cachemissrate; we now ex-
aminethe sensitivity of thesestatisticsto inaccuraciesntroduced
by sampling.

The key statisticspresentedoy MemSpyfall into three basic
categories First, MemSpypresentgisplayswhich showmemory
stall time as a percentageof total executiontime (memory stall
time plus computetime) for differentcodeand dataobjectsin the
application. This allows the userto determingf memorybehavior
is a significantbottleneckor not. Becauseof sampling,both the
memory stall time (estimatedcachemiss rate multiplied by the
latency of a cachemiss) and the total executiontime potentially
canbeinaccurate.However we find thatthe samplingof compute
time is in generalquite accurate. Thus, the main error in the
percentagenemorystall time follows directly from the errorin the
cachemissrate. Relativeerrorsin estimatingthis metric parallel
the errorsin cachemiss rate estimates. The magnitudeof these
errorsis largely determinedby the cachemiss latency and the
relative magnitudeof the computetime. When computetime is
small, the errorin this fractionwill roughly matchthe errorin the
cachemissrate. However the presencedf a large computetime
in the denominatoiof the expression:M em/(Compute + Mem)
candecreaséhe sensitivity of this statisticto errorsin missrate.

Table6: Memory bottleneckidentificationin PTHOR.

Data Object Procedure || Memory Stall Time (%)
True Sampled
ElementArray | EvalElement|| 16 15
ElementArray | StimFanOuts| 11 12
FreeList for
GateChanges| EvalElement|| 9 9
Time Valid | EvalElement| 6 6

MemSpys secondtype of statistic breaksdown memory stall
time by procedure—dataairings. In this way, MemSpy allows
the userto seewhich datastructuresare mostresponsibldor the
programs poor memory performance. We can collect this bot-
tleneckinformation from a full MemSpyrun, and compareit to
a sampledMemSpy run. For a 128KB cache,and a sampling
ratio of 1/10, we find excellentagreemenbetweenthe sampled
andtrue statistics. For the four applicationsstudied(we omitted
ESPRESSGincethe overallmissrateindicatesit needdittle tun-
ing), the orderingsof bottleneckgeportedby the samplingversion
exactlymatchedhe orderingsfor the true versionthroughthe top
90% of the memorystall time. As anexample,Table6 showsthe
bottleneckorderings,and percentagéreakdowngor PTHOR.

MemSpy also presentsa breakdownof the causesof a bin’s
cachemisses.In sequentiabrogramsa cachemiss caneitherbe
acold missor areplacemeniniss. Cold missesoccurwhenmem-
ory is referencedfor the first time in a program. Replacement
missesoccur when datawhich was previouslyin the cachehas
beenreplacedby other databeforeit is re-referenced.Unfortu-
nately accuratereproductionof thesestatisticsis more challeng-
ing. Therearetwo possibletypesof errorswhich cancausethese
statisticsto beinaccuratevhensampling. The first error occursif
a cacheline is referencedor the first time during a periodwhen
simulationis turnedoff. In this case,this cold misswill not be
noted,so the first subsequenteferencethat occurswhen simula-
tion is on, will be countedas a cold miss. In reality, it was a
replacementniss.

The secondtype of error pertainsto correctly attributing the
causeof a replacemenmiss. For eachreplacementniss, Mem-
Spyrecordsthe dataitem which causedhe replacementso thatit
cangive statisticson which dataitems causedeplacemenimisses
to other dataitems. If a cacheline is pushedout of the cache
during a period when samplingis off, then no statisticswill be
recordedndicatingwhich dataitem pushedt out. If a subsequent
replacemenmiss occurs,one of two things may happen. First,
interveningreferencedo thatline may occurbetweenwhensam-
pling is turnedon, andwhenthe replacemenimissoccurs. In this
case,a Cause datastructureis updatedto indicate the first of
theseinterveningreferencess the replacementause.This infor-
mationis correctin one sense sincethesereferencesvould have
causeda replacementniss aswell; they are simply not the direct
causeof replacementhatwould havebeenseenin the full trace.
In the secondcase,if no interveningreferencesoccur, then the
causeof replacemenis consideredo be unknown. In generalwe
havefoundthatwith severenterferencereplacementsccuroften
enoughthat the sampledversionis ableto detectandindicatethe
problem. As the usersbeginto to fine tunetheir code,they may
chooseto simulatea higher fraction of referencesfo detectthe
more subtleperformancebugs.

Page9



6.6 Performance

Having presentedstatisticson the accuracyof a sampledversion
of MemSpy we now evaluatdts performance The goal of imple-
mentingtracesamplingwithin MemSpyis to reducethe execution
time overheadheededo collectMemSpystatistics.Sectiond gave
a descriptionof our currentsamplingimplementation.To reiter-
ate, for every assemblylevel call to the MemSpy simulator we
add extra instrumentationwhich decrements referencecounter
andbranchesaroundthe simulatorcall if simulationis OFF. This
introducesan overheadf 6 instructionsperinstrumentednemory
reference. When simulationis ON, thereis additional overhead
to (i) saveapplicationregisters,(ii) switch to the simulator (iii)
simulate, (iv) restoreapplicationregistersand (v) returnto the
application.
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Figure 10: SampledMemSpy performanceoverhead. (128K
cache)

Figure10 showsthe simulationoverheadf all five benchmarks
underdifferentconfigurations.All overheadshownare for sim-
ulationsof 128KB caches. (Overheaddor other cachesizesare
similar, althoughslightly dependenbntheapplications missrate.)
The barslabeled“Full” show the (multiplicative) overheadof a
full MemSpysimulationascomparedo the uninstrumenteappli-
cationrun. Thebarslabeled‘1/10” showtheoverheador sampled
runswith a samplingratio of 1/10. At this ratio, the overheadsire
reducedby roughly 4 to 6 fold from the original MemSpyimple-
mentation. They now rangefrom 2.9 for TRI to 16 for PTHOR.
Four of the five benchmark$iave overheaddessthan 8.

Theseare acceptableoverheadsn many cases,given the de-
tailed statisticsMemSpyprovides. Nonethelesswe shouldexam-
ine why the speedupbtainedwas not closerto 10, thereciprocal
of the samplingratio. The third bar for eachapplication (“0”)
showsthe overheadvhenthe referencanstrumentations present,
butthe simulatoris nevercalled,a samplingratio of 0. The fourth
barfor eachapplication(“Proc”) showsthe overheadvhenno ref-
erencenstrumentations added;all overheachereis dueto Mem-
Spy’s logging of procedureentriesand exits, aswell as MemSpy
initialization time. The differencein height betweenthe “1/10”
barsandthe “0” barsrepresentshe costof referencesimulation.
The differencein height betweenthe “Proc” and “1/10” barsis
the costof both referencesimulationand additionalinstrumenta-
tion for sampling. For most applications,referencesimulationis
responsibldor roughly half of the overheadn a run. MemSpys
procedurdoggingis responsibldor muchof the restof the over-
head,with the additionalsamplinginstrumentatiorresponsibldor
up to about25% of the overhead.To reduceMemSpys overhead,

one could considerapproachesvhich try to reduce(i) procedure
loggingoverhead(ii) samplinginstrumentatioroverheadand (iii)
simulation overhead. The following paragraphgliscusseachof
thesethreeaxesfor optimization.

Procedurdogging overheadcould be reducedto somedegree
throughsimple optimizationsof the logging code; however pro-
cedureeventscannotbe sampledas with memory events,since
procedurecalls and returns must occur in matchedpairs to to
maintainthe stateof the stack.

The secondsourceof overhead,samplinginstrumentation,is
definedasthe additionalinstructionsneededo switch simulation
ON and OFF, as opposedto simulating all references. In the
implementatiorpresentechere, this overheads primarily the six
additionalinstructionsper memoryreferencewhich allow control
to brancharoundthe memorysimulatorwhen simulationis OFF
To try to avoidthis overheadwe haveimplementeda preliminary
versionof a moreaggressivapproach.In this newapproachgcon-
trol switchesbackandforth betweentwo differentversionsof the
application:oneversionfully instrumentedo simulateall memory
referencesandanotherversiononly instrumentedo log procedure
entriesandexits, notmemoryreferencesThe programexecutesn
the fully instrumentedrersionwhensimulationis turnedON, and
thenswitchesto the minimally instrumentedrersionwhensimula-
tion is turnedOFF. Thesemodeswitchesaredeterminedy virtual
timer interruptsusing the UNIX seti ti mer call. This version
is still subjectto the overheadof procedureeventlogging, and
in addition, has double the applicationcode size (becausethere
aretwo versionsof all applicationcode),which hasa detrimental
effect on instruction cachebehavior For thesereasonsits per-
formancebenefitsthus far have beenmoderateat best. It offers
no betterthana 20% speedugdor the benchmarkgpresentedere.
However furtherwork on efficiently handlingthe modeswitchin
this approachmay makethis an attractivealternativeto our initial
implementation.

The third overhead simulationoverheadjs comprisedof both
thetime spentto simulatethe memorysystem,aswell asthetime
spentsavingand restoringregistersin orderto “context switch”
to the memorysimulator For the simple memorysimulatorused
here registersavesandrestoresareresponsiblgor morethanhalf
of the “simulation” overhead.One way to reducethe time spent
performing register savesand restoreswould be to circumvent
theseregisteroperationgor all cachehits. We haveimplemented
this optimizationin thefollowing way. Oneachmemoryreference,
we savea small subsetof the applicationregisters,and then do
a preliminary checkto determineif the memoryreferenceis a
cachehit. If it is a hit, we brancharoundthe memorysimulation
and remainingregistersavesand restores.We needonly restore
the small subsetof registerswe savedbeforethe hit check. An
untunedimplementatiorof this optimizationoffersa further12 to
23% speedupo the benchmarkshownhere.

7 Discussion

The previoussectionhas shownthat, for the benchmarksonsid-
ered,referencdracesamplingis effectiveatimprovingMemSpys
performancewith only a smalldecreasén the accuracyof there-
ported statistics. This sectionwill addresseseveralside issues
not yet touchedupon.
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7.1 Applications Suitable for Trace Sampling

While we considerthe benchmarksisedhereto be representative
of applicationsusedwith MemSpy not all programsbeing tuned
will be amenableto sampling. In general,we can divide appli-
cationsroughly into the categoriesshownin Table 7. This table
divides programsaccordingto two characteristicsmiss rate and
total referenceslt showsthatthe applicationsmostsuitedto sam-
pling generallycoincidewith the applicationsthat needmemory
tuning. Applicationswith high miss ratesand many references
aremostamenabldgo sampling.A large numberof known misses
decreasethe effect of unknownreferencesa long referencdrace
allows enoughsampledo be taken,with eachsamplelong enough
to prime the cache.By contrast,applicationswith low missrates
and few referenceshave little needfor MemSpy tuning, so the
high error due to unknownreferencess not relevant. Applica-
tions with high miss rates,but few referencewill likely havean
executiontime shortenoughto be run without sampling.

Table7: Applicationsamenabldo samplingand MemSpy

Miss Numberof References

Rate Few | Moderate | Many

low No Use MemSpy | Use MemSpy
MemSpy without with long
needed sampling samples

med. || Use MemSpy | Use MemSpy | Use MemSpy
without possible with medium
sampling sampling samples

high || UseMemSpy | Use MemSpy | Use MemSpy
without with with short
sampling sampling samples

7.2 Avoiding Periodic Behavior

One of the pitfalls of trace samplingis the possibility that the

sampleswill repeatedlycoincidewith periodicapplicationphases,
resultingin a cachemiss estimatethat is not necessarilyrepre-
sentativeof the programas a whole, evenwhengatheringa large
number of samples. While we have not implementedit here,
a straightforwardsolution is to use sampleswhoselength varies
randomlyarounda chosenmean,with a specifiedvariance. This

would introducesomerandomnessnto the samplinginterval, to

makeit lesslikely to repeatedlycoincidewith a particularphase
of the application.

7.3 Set Sampling

Up to this point, this paperhasonly treatedissuesrelatedto time
sampling.In setsampling,one simulatesthe behaviorof selected
cachelinesor sets,ratherthansimulatingthe entirecache.Froma
performancestandpointan implementatiorof setsamplingoffers
speedupssimilar to thosein our currentimplementationof time
sampling. As with time sampling,onecould augmenthe applica-
tion assemblycodeto brancharoundthe MemSpyprocedurecall
for referencesvhich arenot to be simulated.As describedn [7],
one could usea bit maskto selectsomefraction of the addresses
to simulate. This implementationwould requirethe samenumber
of instructionsas our currenttime samplingimplementation.

Setsamplingis promisingfrom an accuracystandpoiniaswell.
Whereagime samplingsuffersfrom errorsdueto unknownrefer-
ences,in setsamplingthe cachestateis alwaysknown; thereare
no unknownreferenceso contendwith. However setsamplingis
still subjectto inaccuraciesvhenthe setschosenfor samplingare
not representativef the overall cachebehavior Sincethe cho-
sensetsare fixed over the durationof the trace, set samplingis
moresensitivethantime samplingto errorfrom non-representative
samples. A combinationof both approachesnay be the most
promisingalternative;thus, for a given performancegoal, neither
samplingmethodneedbe pushedinto the extremeregionswhere
it is lessaccurate.

7.4 Multiprocessor Behavior

MemSpyis designedto be usedwith both sequentialand shared
memoryparallelprograms.However we havethusfar only exam-
inedissuegelatedto tracesamplingin sequentiateferenceraces.
The paralleldomainhasits own uniquecharacteristicshat affect
the accuracyand performanceof a samplingMemSpyimplemen-
tation.

On sharedmemorymultiprocessorsitypical” cachemissrates
can be considerablyhigher than on a sequentialmachine. Data
sharing betweenprocessorscan result in frequentinvalidation
misseswhich arelikely to increaseheknownmissesanddecrease
the effect of unknownreferences.However the disadvantagés
thata parallelmachinecanhavea muchlargeramountof stateto
be primedat the startof eachsample.In additionto determining
whetherthe referenceis a cachehit or miss, the simulator may
also needto determinewhich other processordave copiesof a
cacheline, in orderto determinewhetherinvalidationsareneeded.

Furthermorepur currentparallelsimulatoris designedo inter-
leaveexecutionof multiple threadson a uniprocessorin orderto
simulatea realisticinterleavingof programthreads the simulator
doesfrequentcontext switchesbetweenthreads,always running
the one that is “farthest behind”. Maintaining this properinter-
leavingwill interferewith runningthe programat full-speedwhen
not instrumented becausethe simulatorwill still haveto check
for contextswitches. We intend to examineways of doing peri-
odic low overheadchecksto determinewhethercontextswitches
needto occur, ratherthanthe currentmethodof checkingfor po-
tential contextswitcheson eachmemoryreference.We will also
examinethe potentialof parallelsimulationon a true multiproces-
sor, to eliminatethe needfor thesecontextswitches,andimprove
performance.

8 Conclusions

We have presentedan analysisof the effectivenesof tracesam-
pling within the context of a performancedebuggingtool. In
generalwe found that samplingparametesettings(suchas sam-
ple length and numberof samples)requiredfor good accuracy
also allowed significant performanceimprovements. With sam-
ple lengthsof roughly 4M referencesall benchmarkscould be
sampledwith lessthan 0.5% absoluteerror in cachemiss rate,
evenin large 1IMB caches.With this setup,MemSpyperformance
improvementsf 4 to 6 fold were obtained.In generalthe sam-
ple lengthrequiredto achievegood accuracywill increaseasthe
applications miss rate decreases.This meansthat performance
debuggingis an excellentapplicationof memoryreferencetrace
sampling. Since we expectthe tarmget applicationsto have fairly
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high miss rates,we shouldbe ableto use shortersamplelengths
to achievea particularlevel of accuracy This in turn allows us
to usemore aggressivesamplingratios (with higherperformance)
whengeneratingMemSpy statistics.

We are also able to reproducethe more detailedstatisticspro-
ducedby MemSpywith good accuracy In the four applications
studied, the sampledversion of MemSpy producedan ordering
of programmemory bottleneckswhich exactly matchedthe true
programbottlenecksor all bottleneckgotalling up to 90% of the
memorystall time. The percentagesf memorystall timeincurred
by different programdata structureand proceduresalso retained
usefulaccuracywithin 20% of their true values.

Performancealebuggingis especiallysuitedto samplingimple-
mentations,becauseit is an iterative processwith different de-
greesof accuracywarrantedat differentstages.Samplingallows
the MemSpyuserto get a fast initial view of programbehavior
using samplingratios of 1/10 or less. Then, as the usersbegin
to fine tune performancethey can switch to higher samplingra-
tios which may providebetteraccuracyfor capturingmoresubtle
details of programbehavior Used with care, samplingcan al-
low accurateestimatef detailedmemorysystemstatisticsto be
producedwith executiontime overheadshatare competitivewith
othermuchlessdetailedperformancemonitors.
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