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Abstract

To copewith the increasingdifferencebetweenprocessor
and main memory speeds,moderncomputersystemsuse
deepmemoryhierarchies.In the presenceof suchhierar-
chies,the performanceattainedby an applicationis largely
determinedby its memoryreferencebehavior— if mostref-
erenceshit in the cache, the performanceis significantly
higherthanif mostreferenceshaveto go to main memory.
Frequently, it is possiblefor the programmerto restructure
thedataor codeto achievebettermemoryreferencebehav-
ior. Unfortunately, most existing performancedebugging
toolsdo notassisttheprogrammerin thiscomponentof the
overallperformancetuning task.

This paper describesMemSpy, a prototype tool that
helpsprogrammersidentify andfix memorybottlenecksin
both sequentialand parallel programs. A key aspectof
MemSpyis that it introducesthe notion of dataoriented,
in addition to code oriented,performancetuning. Thus,
for both sourcelevel codeobjectsanddataobjects,Mem-
Spy providesinformationsuchascachemiss rates,causes
of cachemisses,and in multiprocessors,information on
cacheinvalidationsandlocalversusremotememorymisses.
MemSpyalso introducesa concisematrix presentationto
allow programmersto view both code and data oriented
statistics at the sametime. This paperpresentsdesignand
implementationissuesfor MemSpy, and gives a detailed
casestudyusingMemSpyto tunea parallel sparsematrix
application. It showshow MemSpy helpspinpoint mem-
ory systembottlenecks,such as poor spatial locality and
interferenceamongdatastructures,and suggestspathsfor
improvement.

1 Introduction

While processorspeedshave increasedby more than two
ordersof magnitudeover the last decade,main memory
(DRAM) speedshavebarely increasedby a factor of two
[10]. In responseto this ever increasingspeedof proces-
sors,moderncomputersystemsare designedwith sophis-
ticatedmemorysystemsthat includesmall on-chipcaches,
large externalcaches,and interleavedmain memory. The
memoryhierarchiesareevendeeperandmorecomplexfor
multiprocessors.One consequenceof thesedeepmemory
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hierarchiesis that cachemiss latencieshave becomeex-
tremely large when countedin processorclocks. As a re-
sult, if anapplicationis to attaingoodperformance,it must
exhibitmemoryreferencebehaviorthatexploitscacheswell
— thereferencepatternmustexhibithighspatial,temporal,
andprocessorlocality [1].

Thememoryreferencebehaviorof anapplication,at the
mostbasiclevel, dependson the intrinsic natureof the ap-
plication; however, the programmerstill has considerable
flexibility in manipulatingthe algorithm, data structures,
andprogramstructureto changethememoryreferencepat-
terns in order to betterexploit the memoryhierarchy. We
find that a tool designedto help in this taskmust (i) sepa-
rately reportprocessorandmemorytime, so that program-
merscandiscernwhen the memorybehavioris the bottle-
neck, (ii) link bottlenecksback to data objects,as well as
code,and(iii) givememorystatisticsat a levelof detailthat
allows the programmerto identify andfix the bottlenecks.
The latter, in our experience,requiresdetailedinformation
on which codeanddataobjectsareresponsiblefor themost
cachemisses,and reasonsfor why thosemissesoccurred.
Understandingthecauseof missesis important,sincesome
of those missesmay be essentialmisses(e.g., cold-start
misses),while othersmay be more easily optimizedaway
(e.g., replacementor invalidation misses).

Most existingperformancedebuggingtools [2, 3, 5, 7,
8, 9, 15], do notprovidethedetailedinformationmentioned
above.In thispaper, we describeMemSpy, a prototypetool
that providessuchinformationandhelpsprogrammersim-
provethe memoryreferencebehaviorof applications.The
paperoutlinestwo casestudiesshowingthe usefulnessof
MemSpy’s detailedinformationin tuningapplicationswith
poor memoryreferencingbehavior.

While the detailedinformationprovidedby MemSpyis
beneficial, it comesat the price of higher overhead. For
applicationswhoseperformanceis limited by memoryref-
erencebehavior, the powerof the informationprovidedby
MemSpy warrantsthe extra overhead;however, one may
first want to performmore generalcodeoptimizationsus-
ing simpler tools. Consequently, we envisionMemSpyas
part of a hierarchy of performancedebuggingtools. At
higher levels we expecttools that havelow overheadand
that provide only basic applicationstatistics. Thesetools
will identify coarsebottlenecksin the program. Lower in
the hierarchywe expect tools like MemSpy that provide
detailedoutputswith somewhathigheroverheads.
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The remainderof the paper is structuredas follows.
The next sectiondescribesrelatedwork. Following that,
in Section3, we presentan overview of MemSpy. Next,
we presenta casestudy using MemSpy to tune the per-
formanceof a parallelsparsematrix application.Section5
givestheimplementationdetailsandpresentsdataonMem-
Spy’sexecutiontimeoverhead.In Section6, wediscussour
experienceswith the system,and Section7 presentscon-
clusions.

2 Related Work

In recentyears,therehasbeena surge of interestin devel-
oping tools to supportapplicationperformancedebugging,
rather than simply correctnessdebugging. Many perfor-
mancedebuggersnowexist,occupyingpointsalonga spec-
trum from high-level,low-overheadtools to moredetailed,
higheroverheadtools. At one end of this spectrum,tools
such as gprof are intendedto producesimple, high-level
statistics with minimal overhead. At the other end, tools
like SHMAP and MemSpyare intendedto give more de-
tailed informationto the userwith commensurateincrease
in overhead.This sectiondiscussesa selectionof relevant
tools over the rangeof this spectrum,and motivatesour
choicefor MemSpy’s level of detail.

Gprof [9] is a commonly used executionprofiler for
sequentialprograms. By giving a hierarchicallyarranged
profile of the executiontime of a program’s procedures,it
offersa highlevel view of whichprocedureshavethegreat-
est potential for optimization. Gprof, however, doesnot
distinguishbetweencomputationtime andmemorysystem
time, andit thereforeprovidesno help in locatingmemory
systembottlenecks.

Quartz[2] is anexecutionprofiler for parallelprograms;
in manyways, it is an extensionof gprof into the parallel
domain. Quartz reportsnormalized processor time as its
primarymetric. This is definedasthe total time all proces-
sorsspendin eachsectionof code,divided by the number
of otherprocessorsconcurrentlybusywhenthat sectionof
codewasbeingexecuted.Quartzpresentsnormalizedpro-
cessortime statisticsfor a program’s procedures,and also
reportsthe amountof normalizedprocessortime spentin
critical sections.Normalizedprocessortime emphasizesthe
point thatoptimizinganapplication’s lessparallelcodecan
havemore impact on overall performancethan improving
codeexecutingwith high parallelism. Like gprof, Quartz
aggregatescomputationtime and memorysystemtime to-
gether, making it difficult to determinewhen the memory
behavioris a bottleneck.However, Quartzis quite goodat
focusingthe user’s attentionon thoseproceduresthat are
most critical to performance;we have incorporatedsome
of Quartz’s functionality into MemSpy.

MTOOL [7, 8] is a systemspecificallydesignedto de-
tectmemorybottlenecksin bothsequentialandparallelpro-
grams. MTOOL’s basic performancemetric is the differ-
encebetweena program’s actualexecutiontime with non-
ideal memorysystembehavior, and the executiontime of
the samecodewith an ideal memorysystem. This differ-
enceis the amountof executiontime for which the pro-
cessorwas stalled due to memory systemdelays. This

information is presentedfor loops and procedureswithin
the program. While MTOOL is a useful tool for focusing
attentionon the primary memorybottlenecksin the code,
it providesno statisticson the specificbehavior(cold-start
misses,interference,sharing,etc.) responsiblefor theprob-
lems. Furthermore,sinceMTOOL’soutputis procedureand
looporiented,it oftenprovideslittle or no insightinto which
dataobjectsareresponsiblefor thepoormemorysystembe-
havior.

Another tool for studyingmemoryreferencingpatterns
in programsis SHMAP [5]. This system annotatesse-
quentialFORTRAN programs,collects memory reference
traces,and producesan animatedpicture of referencesto
the program’s main dataobjects. While SHMAP is useful
for detectingpatternsin referencesto arraydataobjects,it
offersonly limited helpfor referencesto morecomplexdata
structures,suchaslists andtrees.SHMAP alsooffers little
summaryinformation about the program’s behavior;miss
ratesarecomputedonly on a per-processor, ratherthanper-
data-objector per-procedurebasis,andthe usermustglean
informationon cachereplacementsby carefully examining
the animation. For long running simulationsof program
execution,watchingthe animationsanddiscerningpatterns
may becomequite tedious.

In summary, currentperformancemonitorsexistatmany
points of the spectrumof possibletradeoffs betweeneffi-
ciency and level of detail in their output. We introduce
MemSpyto providea usefullevel of detail in memorysys-
tem performancestatisticsthat hasnot yet beenexplored;
further, we examinemethodsfor reducingMemSpy’s over-
headasmuchaspossible.

3 MemSpy Overview

MemSpyis a performancedebuggingtool designedto help
programmerslocateandfix memorybottlenecksin applica-
tions. MemSpyfirst helps in locatingbottlenecksby pro-
vidinghigh-levelinformationthatfocusestheprogrammer’s
attentionon the problemareasin the application. Then, it
helpsthe programmerfix the bottlenecksby providingde-
tailed informationon the application’s memorybehaviorat
thesebottlenecks.MemSpy’s key featurescan be summa-
rized as follows:

� Both dataorientedandcodeorientedoutput.

� An initial attention-focusingmechanismbasedon the
fraction of time spentstalledfor memory.

� Detailed information on the causesof poor memory
performance.

� Applicability to bothserialandparallelapplications.

Traditionally, performancemonitoring tools have pre-
sentedprimarily code orientedoutput; that is, the statis-
tics arepresentedfor differentprocedures,loops,or source
lines in the code. However, manyperformancebottlenecks
are morenaturallyviewedin termsof dataorientedstatis-
tics, wherestatisticsare presentedfor differentapplication
dataobjects. In contrastto earlier approaches,we believe



thatbothdataandcodeorientedstatisticsare importantfor
performancedebugging;they provideorthogonalviews of
programperformance,andthe combinationof the two can
be quite powerful. For example,considerpthor [17], a
parallellogic simulationapplicationin theSPLASHbench-
marksuite[16]. In pthor, theElementArray, anarray
of logic elements,is responsiblefor moreof the program’s
cachemissesthan any other dataobject. However, these
missesaredistributedacrossseveralprocedures.Codeori-
entedoutputcannotemphasizeElementArray’s perfor-
manceproblemsaswell asdataorientedoutput,becauseno
singlesectionof code is the bottleneck. In this case,the
bottlenecklendsitself to dataorientedviewing.

The blockedmatrix multiplication code(
���������

)
shown in Figure 1 gives anotherexampleof the power
of combining data oriented statisticswith code oriented
statistics. Blockedalgorithmssuchas this operateon sub-
matricesor blocksof theoriginalmatrix,sothatdatafetched
into the cacheare reusedbeforereplacement.The bulk of
the computationis performedin line 13. In this line, the
appropriateelementsof X and Y are multiplied, and the
result is accumulatedin an elementof Z. Code oriented
statisticsareusefulfor focusingtheprogrammer’sattention
on this sectionof the code. However, with codeoriented
statistics alone,it would be difficult to determinewhich of
thematricesin theloopis causingthebottleneck.With data
orientedstatistics,onelearnsthatthebottleneckon this line
is almostentirelydueto missesgeneratedby the Y matrix.

1) BlkMultiply(X, Y, Z, N, B)
2) Matrix *X, *Y, *Z;
3) int N,B;
4) {
5) int kk,jj,i,j,k;
6) double r;
7) for kk = 1 to N by B do
8) for jj = 1 to N by B do
9) for i = 1 to N do

10) for k = kk to min(kk+B-1,N) do
11) r = X[i,k];
12) for j = jj to min(jj+B-1,N) do
13) Z[i,j] = Z[i,j] + r*Y[k,j];
14) }

Figure1: Blockedmatrix multiply code.

For both codeand dataorientedstatistics,it is impor-
tant to provide the user with a focusingmechanism;that
is, a metric or display that initially helps the user locate
bottlenecksin the code. In MemSpy, the primary focusing
mechanismis thepercentage of total memory stall time as-
sociatedwith eachmonitoredobject. That is, codeanddata
objectsare rankedaccordingto the fraction of stall time
they are responsiblefor. We have found this more useful
than other metrics such as cachemiss rates for identify-
ing problemsectionsin the program.This is becausecode
or datasegmentswith high miss rates,but low total stall
time (becausethereare few references)do not impactper-
formanceas much as segmentswith lower miss ratesbut
moretotal stall time.

Figure 2 showsan exampleof the initial display pro-
ducedby MemSpyfor blockedmatrix multiply. In this run,
we multiply two 295 x 295 elementmatricestogether;we
usea block size of 64 so that a singleblock just fits into
the simulated32Kbytecache. In the outputtable,dataob-
jectsarerankedacrossthehorizontalaxis,andcodeobjects
arerankedvertically. This outputmatrix presentsa concise
breakdownof how codeanddataobjectscontributedto the
program’s total memorystall time. The legendat the top
givesthenamesof thedataandcodeobjects.Here,we can
seethat85% of the program’s memorystall time occursin
the
�

variablein BlkMultiply(), the routineshownin
Figure1. It is surprisingthat

�
is responsiblefor so much

stall time (andsomanycachemisses),sincethe
�

block is
sizedto fit in the cache.As we proceed,MemSpy’s output
will provide more informationabout the precisecauseof
this problem.

TOTAL APPLICATION STATISTICS

Execution Time: 649.0M cycles
Total Memory Stall Time: 509.5M cycles

Overall Miss Rate: 37.8%

Total References: 26.93M
-Reads: 19.99M (74.2%) -Writes: 6.94M (25.8%)
Total Misses: 10.19M
-Reads: 9.92M (97.4%) -Writes: .26M (2.6%)
------------------------------------------
Percentage of Total Memory Stall Time,
broken down by data and code

Data Bins: Code Segments:
0 : Matrix.Y 0 : BlkMultiply
1 : Matrix.Z 1 : main
2 : Matrix.X 2 : ClearProduct

Data Bins
Code | | 0 1 2
Segments | Tot% | 86.4 8.5 5.1
------------------------------------------

0 | 97.5 | 85.5 7.7 4.3
1 | 1.7 | 0.9 -- 0.8
2 | 0.8 | -- 0.8 --

Figure2: MemSpyinitial output: Blockedmatrix multiply.

For eachdata-bin–code-segmentcombination,userscan
requestdetailedstatisticsaboutthebehaviorof referencesin
that“bin”. Thedisplaygivesinformationsuchas: missrate,
read and write statistics,statisticson local versusremote
misses,andmemorylatencystatistics.Finally, a key feature
of thisoutputis thebreakdownof thetypesof cachemisses.
Cachemissesoccur in the following situations: (i) if the
line has never been referencedbefore by this processor,
(ii) if the line hasbeenreplacedout of the cachesinceits
last reference,or (iii) if the line hasbeeninvalidatedsince
its last reference.MemSpyprovidesstatisticswhich break
down the missesoccurringdueto eachof thesesituations.



Figure3 is an exampleof a detaileddisplay from the
blocked matrix multiply example.1 In this case, we are
examiningthe detailedstatisticsfor the

�
matrix in the

BlkMultiply routine. We can see that this particular
data-codecombinationhasa missrateof 68%. This is sur-
prisingly high, becauseblocking is usedspecificallyto re-
ducecachemissesto

�
. The outputshowsthat the misses

to
�

in this routine are all due to cachereplacements.2

MemSpygivesa breakdownof which dataobjectscaused
replacements,andwe seethat roughly 90% of all replace-
mentswere causedby

�
itself. To summarize,(i)

�
has

a surprisingly high miss rate, (ii) the missesare primarily
dueto replacements,and (iii) the replacementsare mainly
causedby other referencesto the

�
data object. These

three facts alert the programmerto the problem of self-
interference.3 The programmercan now minimize this ef-
fect by choosinga block sizewith lessinterference,or by
copyingthe block so that it occupiesa contiguousregion
of memory[11].

DETAILED OUTPUT: Matrix.Y in BlkMultiply

Elapsed Time in BlkMultiply: 627.6M cycles
Memory Stall Time in bin: 435.5M cycles

Percentage of Total Memory Stall Time: 85.5%
Percentage of Total Misses: 85.5%
Miss Rate: 67.6%
Percentage of Total Refs: 47.8%

REFERENCES: 12.88M --
Reads: 12.88M (100.0%) Writes: 0 (0.0%)

MISSES: 8.71M --
Read misses: 8.71M (100.0%)
Write misses: 0 (0.0%)

1st Ref Miss: 0 (0.0%)
Inval Miss: 0 (0.0%)
Repl Miss: 8.71M (100.0%)

Memory Stall Time (Cycles):
Total = 435.5M, Avg per reference= 33.8
Memory Read Stall Time = 435.5M,
Memory Write Stall Time = 0
Avg Memory Read Stall Time = 33.8

Causes of Replacements:
bin Matrix.Y: 90.0%
bin Matrix.Z: 6.9%
bin Matrix.X: 3.1%

Figure3: MemSpydetailedoutput:
�

in BlkMultiply.

1In this figure, the Percentage of Total Memory Stall Time equalsthe
Percentage of Total Misses becausein this casewe usea simplememory
simulator, with a constantlatencyfor all cachemisses.

2There are no first referencemissesin this routine, becauseall the
matrix elementsarefirst referencedin a separateinitialization procedure.

3To discoverthe effect shownhere,Lam et al. [11] manuallyinstru-
mentedthecodeto gatherdatasimilar to MemSpy’s. MemSpyautomates
and generalizes this process,making thesestatisticsmore accessibleto
programmers.

Thisexamplehasillustratedtheusefulnessof MemSpy’s
output. Section4 alsoshowsa moredetailedcasestudyus-
ing MemSpy. However, MemSpy’s detailedstatisticshave
a cost. Informationat MemSpy’s level of detail is available
in two ways: simulationor hardwaretracing. Theprototype
versionof MemSpyusessimulationto gatherthenecessary
information. We are optimizing this simulator-basedver-
sionandexaminingthebasicperformancelimitationsof this
approach.We also intend to createa versionof MemSpy
that usesthe hardwaretracingfacilities of the DASH mul-
tiprocessor[12] to gatherthis information. To further re-
ducethe costof gatheringMemSpy’s detailedinformation,
we view MemSpy as part of a hierarchyof performance
debuggingtools. High level tools providecoarse-levelin-
formation to focus the useron theseselectedperformance
bottlenecks;then,MemSpycan be usedto monitor partic-
ular dataobjectsor sectionsof code. In this way, onepays
for MemSpy’s detail only whenit is useful.

Thereare severalother importantissuesthat ariseas a
result of MemSpy’s detailed,data orientedoutput. How
does MemSpy decide which data object a particular ref-
erencebelongsto? Should it keep separatestatisticsfor
eachindividually allocatedrangeof memory? Or for each
classof dataobjects?Furthermore,how can we automati-
cally assignthebinsnamesthatbestcorrespondto variable
namesthe userrecognizes?For example,memorymay be
allocatedand assignedtemporarily to pointer nametmp,
beforebeingassignedto a moreintuitively namedvariable.
We also needto optimize the speedof statisticsgathering
in general.Theseissueswill be examinedmoreclosely in
Section5.

4 A Performance Tuning Case Study

In this section,we presenta stepby stepdescriptionof how
MemSpymaybeusedto tunea parallelapplication.As we
proceedthroughthecasestudy, it is importantto notehow
simple statisticsbecomemuch more powerful when pre-
sentedfor individualdatastructuresaswell as for sections
of code. The applicationwe have chosenis tri. It is
a parallel programthat implementsthe triangular system
solve phaseof the incompleteCholeskyconjugategradi-
ent (ICCG) algorithm. (The ICCG algorithm is a widely
usediterative methodfor solving large sparsesystemsof
equationsthatarisein engineeringapplications.)The work
shownhereis an illustration of work previouslydescribed
in [14]. In theoriginalstudy, theauthorshadgatheredthese
statisticsusinga versionof the ICCG codewith very low
level instrumentationaddedby hand. MemSpyautomates
andgeneralizesthis process.

The statisticsshown here were collectedusing Mem-
Spy with a simulatedbus-basedmultiprocessorconsisting
of 4 processors,eachwith 64Kbytesof cache. The cache
line size is assumedto be 64 bytesandthe miss latencyis
assumedto be 50 clock cycles. This roughly modelsthe
architectureof the Silicon Graphics4D/340multiprocessor
on which the originaltri studywasdone.



for i = 1 to N {
x[i] = b[i];
for j = 1 to i-1 {
x[i] = x[i] - M[i][j] * x[j];
}

}

Figure4: Serialpseudo-codefor tri.

4.1 Example Application: Tri

Thebasicproblemsolvedby tri is:
��� ���

, where
�

is
a sparse,lower triangularmatrix with unit diagonal,and

�
and

�
arevectors.

�
and

�
areknown;

�
is to becomputed.

Thepseudo-codein Figure4 givesa straightforward,serial
solution to this problem. Since

�
is lower triangular, � is

alwayslessthan � in the summationand the sum involves
only

��� �
	 that havealreadybeencomputed.
Theactualparallelsolutionwe studydiffersfrom Figure

4 in severalways. First, the sparsematrix
�

is storedin
the following compactformat. The non-zeroelementsof
M are storedcontiguouslyby row in the one dimensional
array

��� ��
. Anotherarray, ����� , storesthe columnnumber

of eachnon-zeroin
��� ��

. A third arraystorespointersto
the beginning of eachrow in

��� ��
. To parallelizetri,

the algorithm attemptsto computevaluesfor several
��� ��	

concurrently. Of course,not all iterationscanbe performed
at once,becausecomputing

��� ��	 in row � may require
��� �
	

from a previousrow � . To exploit parallelism,the depen-
denciesbetweenrows (various

��� ��	 ) can be determinedin
advance,andan acyclic dependencygraphbuilt. By doing
a topological sort on this graph,we can assigneachrow
(
��� ��	 ) to a discretelevel of computationso that it depends

only on rows in lower levels(i.e., those
��� ��	 thathavebeen

computedearlier). In the versionof tri we begin with
here,processorsare assignedthe rows from eachlevel in
a round-robin fashion. Figure 5 shows the pseudo-code
executedby eachprocessor.

1) For each "row" assigned to me {
2) /* initialize accumulator variable*/
3) accum = b[row];
4) For each non-zero entry,j,in this row{
5) /* wait until x[j] is ready */
6) while (!Ready[col[j]]) ;
7) /* update accum using M.nz and x */
8) accum = accum - M.nz[j] * x[col[j]];
9) }

10) /* set x[row] to its final value */
11) x[row] = accum;
12) /* x[row] is now usable by others */
13) Ready[row] = 1;
14) }

Figure5: Paralleltri implementation.

4.2 Performance of Original Tri Code

When we run the original tri codeusingthe benchmark
matrix BCSSTK15[6], we find that the speedupwith 4
processorsis very low, only a factor of 1.4. To explorethe
cause,we useMemSpyto first look at the total numberof
misses. Thesenumbersare shown in a summarizedform
on line 2 of Table1. This figurealsoshowsthe breakdown
of cachemissesamongprogramdataobjects.

The first thing that standsout is that the total number
of cachemissesrises sharply, by a factor of 3.3, as we
go from the sequentialto the multiprocessorversionof the
code. Thoughthe total time spentdoing real work hasre-
mainedroughlythesame,thetime spentstalledfor memory
hasmorethantripled. Furthermore,in the parallelversion,
whenoneprocessis stalledwaitingfor memory, othersmay
be forced to spin-wait until that processgets the needed
memoryitem andproducestheelementstheotherprocesses
wait for. Thus,memorybehavioris likely to be the prime
reasonfor the poor speedups.To seehow the missesmay
bereduced,we nowlook at thecompositionof missesin the
two cases.We seethat the numberof misseshasincreased
for all dataobjects;4 howeversince

��� ��
causesthe most

missesin the multiprocessorversion,we focus first on its
behavior.

We first notethatthenon-zeroelementsof matrix M are
accessed only oncein both the sequentialandparallelver-
sion of the code; thus, ideally the total numberof misses
for the matrix

�
shouldnot increaseas we go from the

sequentialto the parallel code. Yet the datashow that the
numberof missesincreasesby over50%. Whenwe request
moredetailedinformationaboutthe bin

��� ��
from Mem-

Spy, it showsus thedatain Figure6. It indicatesthatmost
of the misses(over 90%) are first reference(cold) misses
andnot invalidationor replacementmisses.

Percentage of Total Memory Stall Time: 42.2%
Percentage of Total Misses: 42.2%
Percentage of Total Refs: 55.9%
Miss Rate: 9.4%

1st Ref Miss: 16482 (91.4%)
Inval Miss: 0 (0.00%)
Repl Miss: 1556 (8.6%)

Causes of Replacements:
bin double*.M.nz: 55.5%
bin x: 21.7%
bin int*.Ready: 12.3%
bin b 9.9%

Figure6: MemSpydetailedoutput: bin
��� ��

in tri.

Once MemSpy points out that most of the missesare
first referencemisses,it is not so hard for the application
programmerto figure out that the real causefor increased
missesis poor spatiallocality for

��� ��
. In particular, the

numberof non-zeroesper row of
�

is very small in input

4Sincethe �������! datavector is not neededfor the uniprocessorver-
sion, it obviouslycausesno missesthere.



Table1: Summaryof MemSpyoutputafter varioustuningsteps.

CacheMisses(x 1000) ExecutionTime
Version Total

��� �� ��������� � �
	�� �� (x 1000cycles) Speedup
Sequential 12.9 11.2 (86.7%) — 1.2 (9.3%) 0.5 (3.9%) 2,580 1.0
Original Parallel 41.6 17.8(42.2%) 11.9 (27.9%) 10.5(24.6%) 2.3 (5.4%) 1860 1.4
Tuning Step1 39.2 11.3 (28.8%) 13.2(33.7%) 14.2(36.2%) 0.5 (1.3%) 1742 1.5
Tuning Step2 18.1 11.2 (61.9%) — 6.4 (35.4%) 0.5 (2.8%) 967 2.6
Tuning Step3 16.0 11.2 (70.0%) — 4.3 (26.9%) 0.5 (3.1%) 890 2.9

matricesfor the 	  � computation.5 Since cachelines are
8 double words long (64 bytes),eachcacheline contains
multiple rows. In the parallel code, successiverows are
frequentlyassignedto differentprocessors,andasa result,
when a processorfetchesthe contentsof a row it needs,
it alsofetchesuselessdata(adjacentrows relevantonly to
otherprocessors).This doesnot occur in the uniprocessor
codewhereadjacentrowsareaccessedconsecutivelyby the
sameprocessor.

WeemphasizethatMemSpyhasfacilitatedthisobserva-
tion aboutspatiallocality by allowingus to isolatethemiss
statisticsfor

��� ��
, andlettinguscomparetheuniprocessor

andmultiprocessorvalues. Without suchdetaileddataori-
entedstatistics,thelack of spatiallocality wouldbedifficult
to infer.

4.3 Step 1: Restoring Spatial Locality

The goal of this tuning step is to improve the spatial lo-
cality of referencesto

��� ��
in tri. This is accomplished

by symmetricallyreorderingthe rows and columnsof the
matrix

��� ��
, so that the row indicesof rows assignedto

a particularprocessorarecontiguousandappearin the or-
der in which the rows are processed.The details of the
reorderingmethodarediscussedin [14].

When the program is rerun, using the new ordering
schemefor spatiallocality, MemSpyproducesthenewmiss
compositiondatasummarizedonline 3 of Table1. Thisout-
put indicatesthat now only 29% of the missesare due to
the

��� ��
, with 34%of themissesin the

���������
vector, and

36% of the missesin the
�

vector. Missesin
��� ��

have
beenreducedfrom 17.8K to 11.3K, andare now only 1%
greaterthanmissesin

��� ��
in the sequentialversion.The

reorderingfor spatiallocality hasbeeneffectivein reducing
the

��� ��
missesto almostthe intrinsic numberrequiredby

the application.
While the missesin

��� ��
have beenreducedsignifi-

cantly, this changeleadsonly to a very minimal improve-
ment in overall performance,about 6%. MemSpy again
tellsus(asseenin Table1), thatthis is becausethedecrease
in missesfor

��� ��
is partlyoffsetby an increasein misses

for the
���������

and
�

vectors. Figure7 showsthe detailed
output for the

���������
vector after step 1. Here, 81% of���������

’s missesaredueto replacements,and87% of these
replacementsarecausedby referencesto the

�
vector. The

5For example,if � comesfrom a partial differentialequationcorre-
sponding to a 5-point stencil,eachrow hastwo off-diagonalnon-zeroes.

introductionof the new orderingscheme,which renumbers
the rows in the

�
and

���������
vectors, has resultedin a

pathologicalmemorymapping;cross-interferencebetween
the

�
and

���������
vectorsin the cachecausesthe missesin

thesedataobjectsto increasedramatically.6

Percentage of Total Memory Stall Time: 33.7%
Percentage of Total Misses: 33.7%
Percentage of Total Refs: 26.2%
Miss Rate: 13.7%

1st Ref Miss: 988 (7.5%)
Inval Miss: 1502 (11.4%)
Repl Miss: 10749 (81.1%)

Causes of Replacements:
bin x: 86.7%
bin double*.M.nz: 13.3%

Figure7: MemSpydetailedoutput:
���������

in step1.

Weagainnotethatwithouta tool like MemSpy, it would
be difficult to understandthe effects of this tuning step.
In fact, one might have jumped to the wrong conclusion
thatreordering

��� ��
wasnoteffectivein improvingspatial

locality; in reality, MemSpyshowsthat the reorderingwas
effective, but that the potentialimprovementwasoffsetby
interferencein the

�
and

���������
vectors. The following

two subsectionswill discussfurther stepstakento reduce
the

���������
and

�
misses.

4.4 Step 2: Reducing ��������� Traffic

Following the reduction in
��� ��

traffic, two other data
objects,

�
and

���������
havebecometheleadingcontributors

to thecachemisses.Although
�

generatesmoremissesthan���������
, we first showthe effect of reducingthe missesdue

to
���������

becauseit is morereadily apparent.
The

���������
vectorindicateswhena particular

�
element

hasbeencomputedand is readyfor useby later computa-
tions. After step1, the MemSpyoutputshows(seeFigure
7) thatthe

���������
missesconstituteroughlyonethird of all

misses. Of these,a majority are due to cross-interference
between

�
and

���������
(indicatedby replacements),a small

fraction (7.5%) are partly intrinsic and partly due to lack

6This cross-interferenceis data dependent, and does not occur as
severelyin othermatriceswe havestudied.



of spatiallocality (indicatedby first referencemisses),and
anothersmall fraction (11.5%)aredueto sharingor inval-
idations.

To reducemissesin
���������

, one might first consider
ways of reducing cross-interferenceand sharing. How-
ever, Rothberg and Gupta,in fact, deviseda new form of
self-schedulingthatallows

���������
to beeliminatedentirely.

This methodtakesadvantageof the NaN (Not a Number)
value providedfor by the IEEE 754 Standardfor Binary
FloatingPoint Arithmetic. The NaN value is storedinto
eachelementof the

�
vectorbeforethetri phasebegins.

Then, insteadof using the
���������

vector to indicatean
�

elementhas beencomputed,processeswaiting for
�

ele-
mentscan simply spin on the

�
value itself. When the

valuechangesfrom NaN to a valid floating point value, it
is readyfor use.

This change substantially improves program perfor-
mancedue to two effectson the memorysystembehavior
of the program. As shownin Table 1,

���������
missesare

eliminatedentirely; furthermore,missesdueto the
�

vector
arealsosubstantiallyreduceddueto a decreasein thecross-
interferencedescribedabove. The next subsectionfocuses
on improvingthe performanceof

�
.

4.5 Step 3: Reducing Traffic due to �

Cachemissesfor
�

primarily occur when an
�

element
producedby oneprocessoris subsequentlyusedby another
processor. Thus, the goal of this step is to devisestrate-
gies for assigning

�
elementsto processorssuchthat each

elementprimarily dependson other
�

elementsassignedto
thesameprocessor. This reducestheneedfor interprocessor
communicationof thesevalues,and reducesthe

�
traffic.

Rothberg and Gupta investigateseveralheuristicsfor ac-
complishingthis, andMemSpyis helpful in comparingthe
effectsof thesedifferentheuristics.

Forbrevity, we presentresultsfor only thefinal heuristic
proposedby RothbergandGupta. In it, each

��� ��	 is assigned
to theprocessorthat currentlyownsthe mostpreviousele-
mentsrequiredto computethat

��� ��	 . MemSpyshows(see
line 5 of Table1) that missesdueto the

�
vectordecrease

from 6.4K to 4.3K—around41% of thesemissesare first
referencemisses,12%aredueto invalidations,and47%are
dueto replacements.MemSpyfurther indicatesthatalmost
all (99%)of the replacementsaredueto the

��� ��
matrix.

Sincetri streamsthrough the data in the very large M
matrix, thesereplacementsareessentiallyunavoidable.

4.6 Summary

This casestudyhashighlightedhow MemSpymay beused
to tunean application’s memorybehavior. In the first tun-
ing step, MemSpy was usedto calculatemiss countsfor
the

��� ��
data. Theseplayed a key role in pointing out

that poor spatial locality was the causeof the increasein
misses.Basedon this information,we reorderedthematrix
to improvespatiallocality. MemSpy’s informationon the
causesof misseswasalsoinstrumentalin helpingusunder-
standthe cross-interferencethat resultedfrom reordering.
Without MemSpy, it would havebeendifficult to separate

the two effects. In Step2, we eliminated
���������

misses.
MemSpy’s dataorientedoutputwas key in indicatingthat���������

wasresponsiblefor a largeamountof traffic. In the
final tuningstep,a heuristicfor improving

�
accesspatterns

was examined. Here again, MemSpy’s miss countswere
useful in showingthe improvementin x behavior. Further-
more,MemSpy’s dataindicatingwhich dataobjectcaused
replacementswasalsouseful. By knowingthatmostof

�
’s

replacementswerecausedby
��� ��

, we wereableto reason
that they are largely unavoidable.

5 MemSpy Implementation

As we haveshown,MemSpypresentsdetailedstatisticson
low-level memory systemevents. Gatheringdata at this
level requiressupportfrom eithera softwarememorysys-
tem simulatoror a hardwaretracing system. This section
discussesthe implementationdetailsof the prototype ver-
sion of MemSpy, which usesthe former, software-based
approach. MemSpy is implementedas part of a memory
simulatorusingtheTango[4] systemto instrumentthecode
for memorymonitoring. In this section,we first give some
necessarybackgroundinformationon Tangomemorysimu-
lations. Followingthat,we discussissuesin generatingdata
andprocedureorientedstatistics,labelingthe dataoriented
statisticswith intuitive namesfrom the userprogram,and
designingthe user interface. Finally, we presentdata on
MemSpy’s performance.

5.1 Tango Memory SystemSimulation

Tango is a softwaresimulation and tracing system,used
by MemSpyin monitoringthe memorysystembehaviorof
programs.Its tracingandmemorysimulationfacilities are
useful in both the sequentialandparalleldomains.7

WhenusingTango,the applicationto be studiedis first
instrumentedby a specialpreprocessor. At eachmemory
reference,the instrumentationadds procedurecalls to a
memorysimulator. The memorysimulatorprocedurethen
callsMemSpyproceduresto maintainstatisticsonsimulator
eventssuchas cachehits, cachemisses,etc. The simula-
tor maintainsthe stateof eachprocessor’s cache,while the
additionalMemSpycode tracks the causesand frequency
of misses. The modular interfacebetweenMemSpy and
the memorysimulatorallows MemSpyto be implemented
easily with a variety of memorysimulators. Becausethis
methodusesnointermediatetracefiles, onecanrundetailed
simulationsof largebenchmarkswithoutthediskspacelim-
itationsimposedby trace-filebasedapproaches.

5.2 Grouping Statistics into Bins

MemSpypresentsdataandcodeorientedstatistics.To do
this, both the code“axis” and the data“axis” of the appli-
cationaresubdividedinto logical units;we call theseunits
code segments anddata bins. Statisticsarethenmaintained

7Tangosimulatesmultiprocessorsby multiplexingtheexecutionof sev-
eral applicationprocesseson a singlereal processor.



for eachpairing of codesegmentand databin; eachsuch
pairing is referred to as a statistical bin. The following
subsectionsdescribethe methodsof determiningappropri-
atecodeanddatadivisions.

5.2.1 Separation of Statistics by Code Objects

Along thecodeaxis,MemSpyseparatesstatisticsby proce-
dures. It is straightforwardto determinewhich procedure
the processis currently in, becauseTangosupportsevent
logging on procedureentry andexit. Theseentry andexit
eventsarepassedto the memorysystemsimulator, andus-
ing them, MemSpy maintainsa procedurestack for each
process.In thisway, thecurrentprocedureis alwaysknown,
andcan be usedto selectthe appropriateprocedurebin in
which to placestatistics.

5.2.2 Separation of Statistics by Data Objects

Along the dataaxis, MemSpyseparatesstatisticsby data
bins. Somedatabins correspondto a singledataobject in
theapplicationsourcecode. In othercases,it is appropriate
to grouptogetherstatisticsfrom severaldataobjectsinto a
singledatabin. Thus,a databin maycontainstatisticsfrom
severalnon-contiguous rangesof memory. The following
paragraphsdiscuss(i) howthememoryspaceis dividedinto
databinsand(ii) howthesedatabinsaregivennameswhich
are intuitive andusefulto the programmerusingMemSpy.

Data Division As a first approachto this data binning
problem,the program’s entire memoryspacecould be di-
vided into memoryranges,whereeachmemoryrangecor-
respondedto a singledataobjectin theprogram,andstatis-
tics arekept for eachindividual memoryrange. However,
consideringeachindividualdataobjectto bea separatesta-
tistical unit would likely result in caseswhere there are
manybinswith very similar behavior. For example,in Lo-
cusRoute,a CAD wire routingprogramfrom the SPLASH
benchmarks,theprogramallocatesstoragefor thousandsof
wires. Sinceall the wires havesimilar memorybehavior,
keepingseparatestatisticson eachwire is not as usefulas
aggregatingstatisticsfor all wires. To automaticallyaggre-
gatestatisticsfor all wires,we mightuseanapproachwhich
groupsinto a singledatabin all memory ranges allocated
at the same point in the source code. However, the op-
positeextreme,combiningtoo many dataobjectstogether
in a single databin, must also be avoided. For example,
in a benchmarkprogramwhich performsLU decomposi-
tion, the program’s main data structuresare two matrices
which areallocatedat exactly the samepoint in the source
code,within a NewMatrix routine. Here, the program-
mer would like to view separatestatisticsfor eachmatrix,
sincetheir memorybehavioris quite different. Becauseof
caseslike this,MemSpymaintainsseparatestatisticsfor all
memory ranges allocated at the same point in the source
code with identical call paths. That is, data allocatedin
different calls to a procedurefrom differentcall pathswill
be monitoredin separatebins.8 We claim that dataobjects

8Theexactmethodusedfor trackingthecall pathis similar to thatused
by Zorn andHilfinger in their memoryallocationprofiler, mprof [18].

allocatedat the samepoint in the sourcecodevia the same
call pathareusuallysimilar in memorybehavior, andtheir
statistics,in general,shouldbe aggregated.

To implement this proposedmethodof data division,
MemSpyneedsto be able to map every possiblememory
addressto its correspondingdatabin. To maintainmappings
betweenrangesof memoryandthedatato which theycor-
respond,oneneedsto know the sizeandstartingpositions
of all memoryallocatedby theapplication.In general,pro-
gramsusethreetypesof memoryallocation: (i) static, (ii)
stack, and (iii) dynamic. In this versionof MemSpy, we
automaticallymaintainmappingsonly for dynamicallyal-
locateddata.Thisfits in well with theparallelprogramming
modelwe currentlyuse,in which all sharedmemorymust
be heapallocated.9 When userswant to monitor a vari-
able which is not heapallocated,they can manually add
a procedurecall into the applicationto define that map-
ping. For MemSpy to maintain mappingsfor static and
stackallocateddata,it would requiredatatype information,
in order to know the sizesof the individual data objects.
A later versionof MemSpywill providethe compile time
instrumentationsupportnecessaryto producemappingsfor
staticallyandstackallocatedvariables.

For mappingsof dynamically allocated data objects,
MemSpymaintainsa log of all heapallocatedmemory, and
recordswhich memory rangesbelong to which program
variables. Logging memory allocationsfrom the heap is
fairly straightforward;we simply instrumentthecodeto log
(i) the pointer returnedby the malloc routine, (ii) the size
of theallocatedblockof memory, (iii) thenameof thevari-
ableto which themalloc returnvalueis assigned.(Naming
will bediscussedin moredetail later.) This instrumentation
generateseventswhich becomepartof theinputeventtrace
for the MemSpymemorysimulator. MemSpythenbuilds
up a datastructureto storethesememoryranges.

We havefoundthis methodfor datadivision to be quite
effective in practice. However, therewill still be casesin
which the user would like somemanualcontrol over the
division of data.We areinterestedin extendingthecurrent
schemeto allow the userto give suggestionsor directives
on how the statisticalbins shouldbe composed,aswell as
to provideautomaticsupportfor staticand stackallocated
memoryobjects.

Data Bin Naming In assigningnamesto databins, we
want to use symbolic variable names from the source
program since thesehave some intuitive meaningto the
programmer. Furthermore,clearly, the namesshould be
unique. To satisfy the first requirement,intuitiveness,con-
sider eachstatic appearanceof a malloc in the code: we
namethe associatedbin with a string that concatenatesthe
data type andvariable name of the pointerwhich receives
themalloc returnvalue. However, asstatedabove,multiple
databins are createdfor the samemalloc if the malloc is
encounteredthroughdifferentprocedurecall paths. Thus,
to guaranteeuniqueness,the namesare disambiguatedby
prependinga stringsummarizingthestateof thecall stack.

9Our parallel programmingmodel usesC languageprogramsaug-
mentedwith ArgonneNational Laboratoryparallel programmingmacros
[13]. In this model,all sharedmemoryis dynamicallyallocatedusingthe
G MALLOC macro.



The final full nameis of the form:

"ProcName.return_pc.ProcName.return_pc...
.DataType.VarName"

This method has both strengthsand weaknesses.By
prependingthe bin namewith call stack information, we
guaranteea uniquenamefor eachbin. However, in our ex-
periencewith MemSpy, we havefoundthata shortversion
of thename:DataType.VarName is usuallyuniqueand
sufficiently intuitive for the programmer. It works espe-
cially well when importantprogramvariablesare directly
assignedthe pointer returnedby malloc, so that the vari-
able namein the short form is a familiar programname.
However, sometimestheallocatedmemoryis assignedto a
temporaryvariableand thenlater assignedto a more “sig-
nificant” variablein the program. In thesecases,the data
bin will receivethe nameof the temporaryvariable,rather
thanthe preferredname.Anotherweaknessof this method
appearsin caseswhere the long form is necessaryto dis-
tinguishbetweendatabins; thenameit produces,with pro-
gramcountervaluesinterspersed,is often inconvenientor
difficult to read. Both of theseweaknessesarehiddenfrom
the userby allowing the userto renamevariablesto a new
uniquenameof their choosing.

5.3 Storing Information on Causesof Misses

Statisticson thecausesof applicationmissesarean impor-
tantpartof MemSpy;to providethisdata,MemSpyneedsto
storeinformationto explainthe causeof eachmiss. Cache
missesarecausedby oneof the following: (i) the line has
neverbeenreferencedbeforeby this processor, (ii) the line
hasbeenreplacedout of the cachesinceits last reference,
or (iii) the line hasbeeninvalidatedsinceits last reference.
To distinguish betweenthesethreecases,2 bits of statein-
formationarerequiredfor eachmemoryline in useby each
processor.

To storethis stateinformation,MemSpydefinesa one
dimensionalarray that is indexedby the lower bits of the
referencedaddress.The array containsthe statebits indi-
catingthe causeof themiss. It alsocontainsthe remaining
upperportion of the address,to act as an identifier. The
array size can be varied dependingon the size of the ap-
plication’s data set. If the array is definedto be smaller
thanthe datasetof the application,thenseveralreferenced
addressesmight index into the samelocationof the array;
we definea hashtableto handletheseoverflow cases.The
overflow state information is hashedbasedon the refer-
encedaddressandstoredin linked lists. Clearly, thereis a
tradeoff here: A smallerprimaryarraywill havelessspace
overhead,but with poor performancefor applicationswith
largedatasetsthatoverflowinto thehashtable. A largerar-
ray will handlea largerdataspacemoreefficiently, butwith
higherspaceoverhead.Onecouldimprovetheperformance
of this systemby taking advantageof temporallocality in
the referencepatterns.If an objectfrom the overflow table
hasjust beenreferenced,it is likely to be referencedagain
soon; performancemay be improvedby moving its state
information out of the overflow tableand into the primary
array.

5.4 User Interface

The user interfaceof a performancemonitor must guide
the user towards bottlenecksin the code, and then give
the informationnecessaryto remedythem. This subsection
givesanoverviewof MemSpy’s userinterface.Thecurrent
userinterfacehasbeenintentionally kept quite simple.

A MemSpysessionbeginsby presentinginitial dataus-
ing the focusingmechanismPercentage of Total Memory
Stall Time astheprimarymeansof sortingtheoutput. That
is, for eachcodeobjectand databin pair, MemSpycom-
putes the ratio of the memory stall time incurred in this
statisticalbin, comparedto the total memorystall time in
the program.WhenMemSpyoutputis first displayed,this
informationis presentedasan orderedmatrix in which one
axisshowsthedifferentdatabins,andtheotheraxisshows
the differentprocedures.Eachrow andeachcolumnof the
matrix aresorted,so thattheupperleft cornerof thematrix
containstheprocedure-datapairwith thehighestpercentage
of totalmemorystall time, andthenumbersdecreaseasone
movesdownandto the right. A sampleoutputwasshown
in Figure2. Theinitial displayalsosummarizesinformation
on theprogram’sexecutiontime,andaggregatecachemem-
ory statistics. From this startingpoint, usershaveseveral
optionsavailableto them. Theseoptionsincludedisplay-
ing more informationabouta bin, renamingdatabins, or
combiningbins anddisplayingthe total information.

The mostbasicoperationa usercanperformafter start-
ing upMemSpyis to requesta displayfor a particularstatis-
tical bin usingthe DisplayAll command.This display,
shownfor examplein Figure3, givesdetailedinformation
aboutthestatisticalbin. This dataallowstheuserto reason
about the typesof memorysystemproblemsin the appli-
cation. For example,if a particulardataobjecthasa high
missrate,themissesareprimarily dueto replacements,and
the replacementsare primarily causedby other references
to thesamedataobject,oneconcludesthatself-interference
is a problem.

TheDisplayAll commandmayalsobeusedon com-
binationsof multiple dataand/orcodedivisions. That is,
onemay requestthe statisticsof a particulardataobject in
severalprocedures,or severaldataobjectswithin a proce-
dure, and so on. By building the basic informationgiven
by MemSpy into other useful combinations,the user can
adaptthe output to the specifichigh-levelstructureof the
code.

Other commandsallow the user to manipulate the
namesof the databins to allow for easierdebugging. A
fullname commandallows the user to seea databin’s
full name, including the stack trace. Note that, to save
space,the main display gives only the partial namesof
the databins in the form data type.variable name.
With fullname, theusercandistiguishbetweendatabins
whosepartial namesare identical. The rename command
allows the userto changethe label of a databin to a more
appropriatename. (The most effective methodfor assign-
ing intuitive namesto databins is still an openquestion.
Until we arrive at a more satisfactoryconclusion,we find
this intermediateapproach,giving the bin a uniquename
that the useris thenfree to change,quite useful.)

In thefuture,wewill extendtheuserinterfaceto givethe



usergreatercontrolovermonitoring.For example,theuser
can currently requestthat only a subsetof codesegments
be monitored; we would like to extend this to give the
usercontroloverwhich data objectsaremonitoredaswell.
The user should also be allowed to direct the automatic
division of data into bins, in caseswhere a non-default
binning is needed. We will also provide the user with a
databaseof statisticsfrom previousruns. This will allow
the user to easily compareresultsfrom a currentversion
of an applicationwith previousresults. Finally, we are
currentlyimplementinga graphicaluserinterface,to make
MemSpymoreconvenientto use.

5.5 Performance

This sectionpresentspreliminary performanceresultsfor
theMemSpysystem.While theprototypesystemis largely
unoptimized, the current executiontime overheadsseem
reasonable.We alsobriefly outline methodsfor improving
MemSpy’s performance,a major thrustof future research.

Table 2 comparesthe executiontimes on a DECsta-
tion 3100 for three benchmarkapplications. Execution
timesarepresentedfor threecases:(i) Actual uniprocessor
benchmarkruns, with neither simulation nor monitoring.
(ii) Tango simulationsof the benchmarkswithout Mem-
Spy monitoring, and (iii) Tangosimulationsof uniproces-
sorbenchmarkrunswith MemSpymonitoringaswell. The
tableshowsthat MemSpy’s overhead,whencomparedto a
uniprocessorrun with no monitoring, rangesfrom a factor
of 22 to a factor of 58 for thesebenchmarks.

In orderto understandwhatcontributesto thisoverhead,
let usexaminethesequenceof operationsneededto log an
eventwith MemSpy. For eachmemoryreference,the orig-
inal assemblycodefor the applicationis instrumentedwith
a procedurecall to the Tangosystem. Within the proce-
dure, temporaryregisters(i.e., thosewhosevaluesare not
preservedacrossprocedurecalls)arefirst saved,sothatreg-
istersusedby the memorysimulatorwill not overwritethe
valuesexpectedin themby theapplication.Next, theTango
memorysimulatorprocedureis called. Within the memory
simulator, differentMemSpyroutinesare called to update
the datarequiredfor MemSpy’s statistics,suchaswhether
the referenceis a hit or a miss,a reador write, andso on.
In Table2, simulationoverheadrefersto time spentin the
memorysimulatorprocedure;MemSpyoverheadrefersto
time spentin the specialMemSpyroutinesonly.

FromTable2, weseethattheTangosimulationoverhead
dominatesthe additionalMemSpyoverheadin monitoring
an application. For the simple simulatorusedhere,more
thanhalf of thisoverheadis in savingandrestoringall tem-
poraryregistersbeforecalling the memorysimulator. One
can reducethis overheadby customizingthe registersave
routineso thatit only savesthetemporaryregistersactually
usedby the MemSpymemorysimulator. For example,10
doubleprecisionsavesand restoresof floating point reg-
isterscould be eliminatedfrom the currentversion. This
would result in a roughly 50% reductionin registersave-
restoretime for eachmemoryreference.Furthermore,note
thatmanyof the integerregistersareusedonly whensim-
ulating a cachemiss, not when simulatinga cachehit; by
postponing theseregistersavesuntil after a cachemiss is

actuallydetected,we cansignificantlyreducethe overhead
of invoking the memorysimulatoron cachehits, the more
commoncase.

Overheadin MemSpyitself rangesfrom 30 to 44% of
thetotaloverheadin thesebenchmarks.ThisMemSpyover-
headis comprisedof (i) time spentdeterminingthe bin to
which a reference’s statisticsbelong, and (ii) time spent
updatingstatistics,suchascountinghits, missesandinfor-
mationon the causesof misses.The first factor, searching
for theappropriatestatisticalbin, is theprimecontributorto
MemSpy’s overhead;it accountsfor roughly30%of a pro-
gram’s total executiontime. The searchfor a bin requires
the traversalof a tree data structurecontainingthe map-
pings from dynamically allocatedaddressrangesto bins.
At the root of the tree is an array of


pointers;the array

is indexedby the upperlog2

� ��
bits of the searchaddress,

and eachpointer correspondsto a differentportion of the
addressspace.In turn, eachof thesepointersmay point to
anotherarray whoseelementscorrespondto sub-portions
of that memory region, and so on. Where a portion of
memory containsonly a single addressrange,the bin in-
formation is stored,andno further arraysare required. In
pthor, with roughly50,000differentheapallocatedmem-
ory ranges,bin searchesrequirean averageof 3.7 pointer
indirectionsthroughthe tree.

Onecould further reducethe MemSpyoverheadby al-
lowing the user the option of keepingstatisticsonly for
cachemisses,not for cachehits. In the currentversionof
MemSpy, all referencesrequire an address-to-bintransla-
tion. By not monitoringhits, we could do bin lookuponly
for misses. This would lead to a significantperformance
improvementsincebin lookupcomprisesroughlyonethird
of the applicationoverhead. Without statisticsfor cache
hits, MemSpycould not producedataon cachemiss rates
or total referencecounts. However, one could still view
countsof misses,breakdownsof total misses,anddataon
causesof misses,someof MemSpy’s primary features.

We feel that with theseoptimizations,MemSpycan be
made5 to 10timesfasterfor uniprocessorsimulations.This
overheadis likely to bequiteacceptabletomanyusersgiven
the detailedinformationMemSpyis providing the user.

Running MemSpy to simulate multiprocessor, rather
than uniprocessor, executionshas two additional sources
of overhead.Thesearerelatedto the fact thatTangointer-
leavesthe executionof the multiple applicationprocesses
on a uniprocessor. First, the Tangoexecutiontime for a
multiprocessorrun canbe no smallerthanthe total execu-
tion times for eachthreadbeing run. This is becausethe
threadsarerun sequentially(althoughinterleaved).Second,
additionaloverheadis incurredwhencontextswitchingbe-
tween threads:all non-temporaryregistersmust be saved
on a contextswitch. Thesefactorsleadto higherexecution
time overheadsfor multiprocessorruns of MemSpy. For
example,runningMemSpyon a 4 processmatrix multipli-
cation, with the sameinput data as the uniprocessorrun
shownin Table 2, hasan overheadof 120.4as compared
to the uniprocessoverheadof 21.7. One can reducethis
overheadsomewhatby optimizingcontextswitchingin the
simulation.If wemaketheassumptionthatcontextswitches
are only necessaryon cachemisses,not on all references
as currently assumed,we can greatly reducethe number



Table2: MemSpyexecutiontime overhead.

Time (s) Time (s) Time (s) Simulation MemSpyand
No Simulation Simulation, Simulation, Overhead Simulation

Application No MemSpy No MemSpy andMemSpy alone Overhead
Tri 4.5 72.0 101.0 16.0 22.4
MatMult 54.3 659.0 1179.3 12.1 21.7
Pthor 9.0 313.0 521.4 34.8 57.9

of contextswitchesattemptedby the application,with lit-
tle effect on the simulationresults.Finally, future versions
of MemSpymay usethe hardwaretracefacilities available
on the DASH multiprocessorto gathermemory reference
statisticswithout theoverheadsinherentto Tango’ssequen-
tial simulation-basedapproach.

6 Discussion

MemSpy’s statisticshave proven useful in understanding
the memorysystembehaviorof severalapplications.First,
our initial focusingmechanism,Percentage of Total Mem-
ory Stall Time, is effectivein pointingtheusertowardsprob-
lem areasin the code. Second,we havefound the break-
down of the causes of misses to be quite useful. Knowing
whether the memory systemproblem is one of interfer-
ence,sharing,or poorspatiallocality is a largesteptoward
solving the problem,andMemSpy’s statisticson causesof
missesgive the user much of the information neededto
diagnosetheseproblems. However, one level of reason-
ing that is still left to the user is decidingwhethermisses
are intrinsic to the program,or whetherthey are “excess”
missesthat onecan hopeto optimizeaway. For example,
in the tri code, missesin

��� ��
accountedfor 70% of

total missesafter tuning. By examiningthe code,the user
canconcludethat thesemissesare intrinsic, andcannotbe
significantlyreduced.In somecases,a comparisonof mul-
tiprocessormissesto uniprocessormissescanactasa guide
in determiningwhat fraction of the missesare intrinsic.

We anticipateseveralextensionsto MemSpy’s userin-
terface.TheseincludeintegratingMemSpyinto a hierarchy
of tools,to providea completeperformancetuningsystem;
thus,a high-leveltool like Quartzwould provideinitial in-
formation on code bottlenecks,and subsequentruns with
MTOOL and MemSpy would give greaterdetail on spe-
cific memory performancebottlenecks. Within MemSpy
itself, we intendto implementa databaseto storeinforma-
tion aboutpreviousruns. Sucha databasewould allow the
userto easily comparestatisticsfrom the currentrun with
statistics from previousrunsof the sameprogram.

The current MemSpy prototype is simulator based,
which gives it severaladvantagesanddisadvantages.Sim-
ulationallowsan applicationto be tunedwith differentsets
of architecturalparameters,and can be useful in evaluat-
ing expectedperformanceof an applicationon machines
not yet available.However, MemSpy’s relianceon simula-
tion degradesits performanceandsomewhatlimits its use-
fulness. Clearly, improvementsin simulationperformance

would makeMemSpya moreviable tool for a wider range
of applications.We intendto optimizethe performanceof
the simulation-basedversionof MemSpy. Furthermore,for
many applications,one can run them in ways that reduce
executiontimes while still giving realisticmemorybehav-
ior. For example,with many numericalapplications,one
can run them for a small number of iterationsand then
extrapolatetheir performanceto more realisticnumbersof
iterations;the tri codeis onesuchexampleof this. An-
otherway to observerealisticbehaviorwith lesssimulation
time is to studycaseswherebothproblemsizeandproces-
sor cachesizeshavebeenproportionately scaleddown.

Wearealsoinvestigatinga MemSpyimplementationus-
ing thehardwareperformancemonitoron theDASH multi-
processor. DASH’shardwaremonitorcollectstracesof bus
activity which can thenbe processedto generateMemSpy
statistics.This approachpromisesa significantperformance
improvementover the currentsimulatordriven prototype.
Furthermore,it allowsfor amorecompleteview of program
execution,includingeffectslike virtual to physicalmemory
mapping,scheduling,andmultiprogrammingwhich areof-
ten moredifficult (thoughnot impossible)to accountfor in
simulation-basedapproaches.

7 Conclusions

In summary, we havefound MemSpy’s statisticsto be ef-
fective in explaining many of the unknownsof memory
systembehaviorfor both parallelandsequentialprograms.
MemSpy’s dataorientedstatisticsoffer an orthogonalview
to codeorientedstatistics,andgivetheusergreaterleverage
in tuningmemoryperformance.Statisticson the causesof
an application’s cachemissesare also an importantaid in
performancedebuggingthat hasnot beenadequatelypro-
vided previously. We envisionusing MemSpy as part of
a hierarchyof performancedebuggingtools: higher level
tools provide initial insight into programbehavior, while
MemSpyprovidesdetailedinformationon memorysystem
behaviorto addressmemoryperformancebottlenecks.
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