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Abstract

To cope with the increasingdifferencebetweenprocessor
and main memory speeds,moderncomputersystemsuse
deepmemory hierarchies.In the presenceof suchhierar-
chies,the performanceattainedby an applicationis largely
determinedy its memoryreferencebehavior— if mostref-
erenceshit in the cache,the performanceis significantly
higherthanif mostreferencedaveto go to main memory
Frequentlyit is possiblefor the programmetto restructure
the dataor codeto achievebettermemoryreferencebehav-
ior. Unfortunately most existing performancedebugging
toolsdo not assistthe programmein this componentf the
overall performanceuning task.

This paper describesMemSpy a prototypetool that
helpsprogrammersdentify and fix memorybottlenecksn
both sequentialand parallel programs. A key aspectof
MemSpyis that it introducesthe notion of dataoriented,
in addition to code oriented, performancetuning. Thus,
for both sourcelevel codeobjectsand dataobjects,Mem-
Spy providesinformationsuchas cachemissrates,causes
of cachemisses,and in multiprocessorsjnformation on
cacheinvalidationsandlocal versusemotememorymisses.
MemSpy also introducesa concisematrix presentatiorto
allow programmersto view both code and data oriented
statistcs at the sametime. This paperpresentgdesignand
implementationissuesfor MemSpy and gives a detailed
casestudyusingMemSpyto tunea parallel sparsematrix
application It showshow MemSpy helps pinpoint mem-
ory systembottlenecks,such as poor spatial locality and
interferenceamongdata structures and suggestgathsfor
improvement.

1 Introduction

While processorspeedshave increasedby more than two
ordersof magnitudeover the last decade,main memory
(DRAM) speedshave barelyincreasedoy a factor of two
[10. In responseo this everincreasingspeedof proces-
sors, moderncomputersystemsare designedwith sophis-
ticatedmemorysystemshat include small on-chipcaches,
large externalcaches,and interleavedmain memory The
memoryhierarchiesare evendeeperand more complexfor
multiprocessors.One consequencef thesedeepmemory
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hierarchiesis that cachemiss latencieshave becomeex-
tremely large when countedin processorclocks. As a re-
sult, if anapplicationis to attaingoodperformanceijt must
exhibitmemoryreferencebehaviorthatexploitscacheswell
— the referencepatternmustexhibit high spatial,temporal,
and processotocality [1].

The memoryreferencebehaviorof anapplication atthe
mostbasiclevel, depend®n theintrinsic natureof the ap-
plication; however the programmerstill has considerable
flexibility in manipulatingthe algorithm, data structures,
and programstructureto changethe memoryreferencepat-
ternsin orderto betterexploit the memory hierarchy We
find that a tool designedo helpin this task must(i) sepa-
rately reportprocessoland memorytime, so that program-
mers can discernwhen the memorybehavioris the bottle-
neck, (ii) link bottlenecksbackto data objects,aswell as
code,and(iii) give memorystatisticsatalevel of detailthat
allows the programmetto identify andfix the bottlenecks.
The latter, in our experiencefequiresdetailedinformation
onwhich codeanddataobjectsareresponsibldor the most
cachemisses,and reasondor why thosemissesoccurred.
Understandinghe causeof misseds important,sincesome
of those missesmay be essentialmisses(e.g., cold-start
misses),while othersmay be more easily optimizedaway
(e.g.,replacemenbr invalidation misses).

Most existing performancedebuggingtools[2, 3, 5, 7,
8, 9, 15], do not providethe detailedinformationmentioned
above.In this paper we describeMemSpy a prototypetool
that providessuchinformationand helpsprogrammersm-
provethe memoryreferencebehaviorof applications.The
paperoutlinestwo casestudiesshowingthe usefulnesof
MemSpys detailedinformationin tuningapplicationswith
poor memoryreferencingbehavior

While the detailedinformationprovidedby MemSpyis
beneficial,it comesat the price of higher overhead. For
applicationswhoseperformances limited by memoryref-
erencebehavior the power of the informationprovidedby
MemSpy warrantsthe extra overhead;however one may
first want to perform more generalcode optimizationsus-
ing simpler tools. Consequentlywe envisionMemSpy as
part of a hierarchy of performancedebuggingtools. At
higher levels we expecttools that havelow overheadand
that provide only basic applicationstatistics. Thesetools
will identify coarsebottlenecksn the program. Lower in
the hierarchywe expecttools like MemSpy that provide
detailedoutputswith somewhathigheroverheads.



The remainderof the paperis structuredas follows.
The next sectiondescribesrelatedwork. Following that,
in Section3, we presentan overview of MemSpy Next,
we presenta case study using MemSpyto tune the per-
formanceof a parallelsparsematrix application. Section5
givestheimplementatiordetailsandpresentglataon Mem-
Spy’sexecutiortime overhead.ln Section6, we discussour
experienceswith the system,and Section7 presentscon-
clusions.

2 Reated Work

In recentyears,therehasbeena sumge of interestin devel-
opingtools to supportapplicationperformancedebugging,
rather than simply correctnessdebugging. Many perfor-
mancedebuggersiow exist, occupyingpointsalonga spec-
trum from high-level,low-overheadoolsto more detailed,
higheroverheadtools. At one end of this spectrum tools
such as gprof are intendedto producesimple, high-level
statistcs with minimal overhead. At the other end, tools
like SHMAP and MemSpy are intendedto give more de-
tailed informationto the userwith commensuraténcrease
in overhead.This sectiondiscusses selectionof relevant
tools over the range of this spectrum,and motivatesour
choicefor MemSpys level of detalil.

Gprof [9] is a commonly used executionprofiler for
sequentialprograms. By giving a hierarchicallyarranged
profile of the executiontime of a programs proceduresit
offersa highlevel view of which procedurehavethe great-
est potental for optimization. Gprof, however doesnot
distinguish betweencomputationtime and memorysystem
time, andit thereforeprovidesno helpin locatingmemory
systembottlenecks.

Quartz[2] is anexecutionprofiler for parallelprograms;
in manyways, it is an extensionof gprof into the parallel
domain. Quartz reportsnormalized processor time as its
primary metric. This is definedasthetotal time all proces-
sorsspendin eachsectionof code,divided by the number
of otherprocessorgoncurrentlybusy whenthat sectionof
codewas beingexecuted.Quartz presentsormalizedpro-
cessortime statisticsfor a programs proceduresand also
reportsthe amountof normalizedprocessoitime spentin
critical sections.Normalizedprocessotime emphasizethe
pointthatoptimizinganapplications lessparallelcodecan
have more impact on overall performancethan improving
code executingwith high parallelism. Like gprof, Quartz
aggregatesomputationtime and memory systemtime to-
gether makingit difficult to determinewhen the memory
behavioris a bottleneck.However Quartzis quite goodat
focusingthe usetrs attentionon those procedureghat are
most critical to performance;we have incorporatedsome
of Quartzs functionaliy into MemSpy

MTOOL [7, 8] is a systemspecificallydesignedo de-
tectmemorybottlenecksn bothsequentiahndparallelpro-
grams. MTOOL's basic performancemetric is the differ-
encebetweena programs actualexecutiontime with non-
ideal memory systembehavior and the executiontime of
the samecodewith an ideal memory system. This differ-
enceis the amountof executiontime for which the pro-
cessorwas stalled due to memory systemdelays. This

information is presentedor loops and procedureswithin
the program. While MTOOL is a usefultool for focusing
attentionon the primary memorybottlenecksin the code,
it providesno statisticson the specificbehavior(cold-start
missesnterferencesharing.etc.) responsibléor the prob-
lems. FurthermoresinceMT OOL soutputis procedureand
loop oriented it oftenprovidedittle or noinsightinto which
dataobjectsareresponsibldor thepoormemorysystembe-
havior.

Anothertool for studyingmemoryreferencingpatterns
in programsis SHMAP [5]. This systemannotatesse-
guential FORTRAN programs,collects memory reference
traces,and producesan animatedpicture of referenceso
the programs main dataobjects. While SHMAP is useful
for detectingpatternsin referencedo array dataobjects,it
offersonly limited helpfor referenceso morecomplexdata
structuressuchaslists andtrees. SHMAP also offerslittle
summaryinformation aboutthe programs behavior; miss
ratesarecomputedonly on a perprocessarratherthanper
data-objecbr perprocedurebasis,andthe usermustglean
informationon cachereplacementdy carefully examining
the animation. For long running simulationsof program
execution,watchingthe animationsand discerningpatterns
may becomequite tedious.

In summary currentperformancenonitorsexistat many
points of the spectrumof possibletradeofs betweeneffi-
ciency and level of detail in their output. We introduce
MemSpyto providea usefullevel of detailin memorysys-
tem performancestatisticsthat has not yet beenexplored,;
further, we examinemethodsfor reducingMemSpys over-
headas muchaspossible.

3 MemSpy Overview

MemSpyis a performancedebuggingool designedo help
programmerdocateandfix memorybottlenecksn applica-
tions. MemSpyfirst helpsin locating bottleneckshy pro-
viding high-levelinformationthatfocuseghe programme’s
attentionon the problemareasin the application. Then, it
helpsthe programmeffix the bottlenecksby providingde-
tailed informationon the applications memorybehaviorat
thesebottlenecks.MemSpys key featurescan be summa-
rized asfollows:

e Both dataorientedand codeorientedoutput.

e An initial attention-feusingmechanismbasedon the
fraction of time spentstalledfor memory

e Detailed information on the causesof poor memory
performance.

e Applicability to both serialand parallelapplications.

Traditiorally, performancemonitorirg tools have pre-
sentedprimarily code orientedoutput; that is, the statis-
tics are presentedor differentproceduresloops,or source
linesin the code. However many performancebottlenecks
are more naturally viewedin termsof dataorientedstatis-
tics, where statisticsare presentedor differentapplication
dataobjects. In contrastto earlier approacheswe believe



thatboth dataand code orientedstatisticsare importantfor
performancedebugging;they provide orthogonalviews of
programperformanceandthe combinationof the two can
be quite powerful. For example,considerpt hor [17], a
parallellogic simulationapplicationin the SPLASHbench-
marksuite[16]. In pt hor , the El enent Ar r ay, anarray
of logic elementsjs responsibléor more of the programs
cachemissesthan any other dataobject. However these
missesare distributed acrossseveralprocedures Codeori-
entedoutputcannotemphasizeEl ement Ar r ay’s perfor-
manceproblemsaswell asdataorientedoutput,becauseno
single sectionof codeis the bottleneck. In this case,the
bottlenecklendsitself to dataorientedviewing.

The blockedmatrix multiplication code (Z = X x Y))
shownin Figure 1 gives anotherexampleof the power
of combining data oriented statisticswith code oriented
statistcs. Blockedalgorithmssuchas this operateon sub-
matricesor blocksof the originalmatrix, sothatdatafetched
into the cacheare reusedbeforereplacement.The bulk of
the computationis performedin line 13. In this line, the
appropriateelementsof X andY are multiplied, and the
resultis accumulatedn an elementof Z. Code oriented
statistcs are usefulfor focusingthe programme’s attention
on this sectionof the code. However with code oriented
statistts alone, it would be difficult to determinewhich of
thematricesin theloopis causinghe bottleneck.With data
orientedstatistics,onelearnsthatthe bottleneckon thisline
is almostentirely dueto missesgeneratedy the Y matrix.

1) BlkMultiply(X Y, Z N B)
2) Matrix *X, *Y, *Z

3) int N B;

a9 1 o

5) int kk,jj,i,j,k;

6) doubl e r;
7) for kk =1
8) for jj =
9) for i =
10) for k
11) r =
12) for
13) Z
14) }

o min(kk+B-1,N) do

: ’to_rrjn(jj+B-1,N_) do
d1 =201 + ek, gl

Figure 1: Blockedmatrix multiply code.

For both code and data orientedstatistics,it is impor-
tant to provide the userwith a focusing mechanism;that
is, a metric or display that initially helpsthe userlocate
bottlenecksin the code. In MemSpy the primary focusing
mechanisnis the percentage of total memory stall time as-
sociatedwvith eachmonitoredobject. Thatis, codeanddata
objectsare ranked accordingto the fraction of stall time
they are responsiblefor. We have found this more useful
than other metrics such as cache miss ratesfor identify-
ing problemsectionsin the program.This is becausecode
or datasegmentswith high miss rates, but low total stall
time (becausdhereare few referencesyo not impactper-
formanceas much as segmentswith lower miss ratesbut
moretotal stall time.

Figure 2 showsan exampleof the initial display pro-
ducedby MemSpyfor blockedmatrix multiply. In thisrun,
we multiply two 295 x 295 elementmatricestogether;we
usea block size of 64 so that a single block just fits into
the simulated32Kbyte cache. In the outputtable,dataob-
jectsarerankedacrosghe horizontalaxis,andcodeobjects
arerankedvertically. This outputmatrix presentsa concise
breakdownof how codeanddataobjectscontributedo the
programs total memory stall time. The legendat the top
givesthe namesof the dataand codeobjects. Here,we can
seethat85% of the programs memorystall time occursin
theY variablein Bl kMul ti pl y(), theroutineshownin
Figure 1. It is surprisingthatY is responsibldor so much
stall time (andso many cachemisses)sincethe Y blockis
sizedto fit in the cache.As we proceed MemSpys output
will provide more information aboutthe precisecauseof
this problem.

TOTAL APPLI CATI ON STATI STI CS

Execution Time: 649.0M cycl es

Total Mermory Stall Tine: 509.5M cycles
Overall Mss Rate: 37.8%

Total References: 26.93M

-Reads: 19.99M (74.2% -Wites: 6.94M (25.8%
Total M sses: 10.19M

-Reads: 9.92M (97.4% -Wites: .26M (2.6%
Percent age of Total Menory Stall Tine,

broken down by data and code

Dat a Bi ns: Code Segments:
0 : Mtrix.Y 0 : BlkMiltiply
1: Matrix.Zz 1: min
2 Mtrix. X 2 . dearProduct
Data Bins
Code | | 0 1 2
Segnments | Tot % | 86. 4 8.5 5.1
0 | 97.5 | 85.5 7.7 4.3
1 | 1.7 | 0.9 -- 0.8
2 | 0.8 | -- 0.8 --

Figure2: MemSpyinitial output: Blocked matrix multiply.

For eachdata-bin—code-segmeobmbination,userscan
requestetailedstatisticsaboutthe behaviorof referencesn
that“bin”. Thedisplaygivesinformationsuchas: missrate,
read and write statistics,statisticson local versusremote
missesandmemorylatencystatistics.Finally, a key feature
of this outputis the breakdowrof thetypesof cachemisses.
Cachemissesoccur in the following situations: (i) if the
line has never been referencedbefore by this processar
(i) if the line hasbeenreplacedout of the cachesinceits
last referenceor (iii) if theline hasbeeninvalidatedsince
its last reference.MemSpy providesstatisticswhich break
down the missesoccurringdueto eachof thesesituations.



Figure 3 is an exampleof a detaileddisplay from the
blocked matrix multiply example! In this case, we are
examiningthe detailed statisticsfor the Y matrix in the
Bl kMul ti ply routine. We can seethat this particular
data-codecombinationhasa missrate of 68%. This is sur-
prisindy high, becauseblockingis usedspecificallyto re-
ducecachemissesto Y. The outputshowsthatthe misses
to Y in this routine are all due to cachereplacements.
MemSpygives a breakdownof which dataobjectscaused
replacementsand we seethat roughly 90% of all replace-
mentswere causedby Y itself. To summarize,(i) Y has
a surprisindy high missrate, (i) the missesare primarily
dueto replacementsand (iii) the replacementsre mainly
causedby other referencesto the Y dataobject. These
three facts alert the programmerto the problem of self-
interference.® The programmercan now minimize this ef-
fect by choosinga block size with lessinterferenceor by
copyingthe block so that it occupiesa contiguousregion
of memory[11].

DETAI LED QUTPUT: Matrix.Y in BlkMultiply

El apsed Time in BlkMiltiply: 627.6M cycles

Mermory Stall Time in bin: 435.5M cycles
Percent age of Total Menory Stall Tinme: 85.5%
Percent age of Total M sses: 85.5%
M ss Rate: 67.6%
Percent age of Total Refs: 47.8%
REFERENCES: 12.88M - -

Reads: 12.88M (100.0% Wites: 0 (0.0%

M SSES: 8. 71M - -
Read mi sses: 8.71M (100. 0%
Wite msses: 0 (0.0%

1st Ref M ss:
I nval M ss:
Repl M ss:

0 (0.0%
0 (0.0%
8. 71M (100. 0%

Mermory Stall Time (Cycles):

Total = 435.5M Avg per reference= 33.8
Mermory Read Stall Time = 435.5M

Memory Wite Stall Time = 0

Avg Menory Read Stall Tine = 33.8

Causes of Repl acenments:
bin Matrix.Y: 90.0%
bin Matrix.Z: 6.9%
bin Matrix. X: 3.1%

Figure3: MemSpydetailedoutput: Y in Bl kMul ti pl y.

1In this figure, the Percentage of Total Memory Stall Time equalsthe
Percentage of Total Misses becausén this casewe usea simple memory
simulator with a constantatencyfor all cachemisses.

2There are no first referencemissesin this routine, becauseall the
matrix elementsarefirst referencedn a separatenitialization procedure.

3To discoverthe effect shownhere,Lam et al. [11] manuallyinstru-
mentedhe codeto gatherdatasimilar to MemSpys. MemSpyautomates
and generéizes this process,making thesestatisticsmore accessibleto
programners.

This examplehasillustratedthe usefulnes®f MemSpys
output. Section4 alsoshowsa moredetailedcasestudyus-
ing MemSpy However MemSpys detailedstatisticshave
a cost. Informationat MemSpys level of detailis available
in two ways: simulationor hardwaretracing. The prototype
versionof MemSpyusessimulationto gatherthe necessary
information. We are optimizing this simulatorbasedver-
sionandexaminingthe basicperformancdimitationsof this
approach.We alsointendto createa versionof MemSpy
that usesthe hardwaretracingfacilities of the DASH mul-
tiprocessof12] to gatherthis information. To further re-
ducethe costof gatheringMemSpys detailedinformation,
we view MemSpy as part of a hierarchyof performance
debuggingtools. High level tools provide coarse-levein-
formationto focusthe useron theseselectedperformance
bottlenecksthen, MemSpycan be usedto monitor partic-
ular dataobjectsor sectionsof code. In this way, one pays
for MemSpys detail only whenit is useful.

There are severalotherimportantissuesthat arise as a
result of MemSpys detailed, data oriented output. How
does MemSpy decide which data object a particular ref-
erencebelongsto? Shouldit keep separatestatisticsfor
eachindividually allocatedrangeof memory? Or for each
classof dataobjects? Furthermorehow can we automati-
cally assignthe bins namesthatbestcorrespondo variable
namesthe userrecognizes?or example,memorymay be
allocatedand assignedtemporarily to pointer namet np,
beforebeingassignedo a moreintuitively namedvariable.
We also needto optimize the speedof statisticsgathering
in general. Theseissueswill be examinedmore closelyin
Sectionb.

4 A Performance Tuning Case Study

In this section,we presenta stepby stepdescriptionof how
MemSpymay be usedto tunea parallelapplication.As we
proceedthroughthe casestudy it is importantto note how
simple statisticsbecomemuch more powerful when pre-
sentedfor individual datastructuresaswell asfor sections
of code. The applicationwe have chosenis tri . It is
a parallel programthat implementsthe triangular system
solve phaseof the incomplete Cholesky conjugategradi-
ent (ICCG) algorithm. (The ICCG algorithmis a widely
usediterative methodfor solving large sparsesystemsof
equationghatarisein engineeringapplications.)The work
shownhereis anillustration of work previouslydescribed
in [14). In theoriginalstudy theauthorshadgatheredhese
statisticsusinga versionof the ICCG codewith very low
level instrumentatioraddedby hand. MemSpy automates
and generalizeghis process.

The statisticsshown here were collected using Mem-
Spy with a simulatedbus-basednultiprocessorconsisting
of 4 processorseachwith 64Kbytesof cache. The cache
line sizeis assumedo be 64 bytesandthe misslatencyis
assumedo be 50 clock cycles. This roughly modelsthe
architectureof the Silicon Graphics4D/340multiprocessor
on which the originalt ri studywasdone.



for i =1 to N{
x[i] =b[i];
for j =1toi-1{
i([i] = x[il - Millil * x[jl;
}

Figure4: Serialpseudo-coddor tri .

4.1 Example Application: Tri

Thebasicproblemsolvedby tri is: Mz = b, whereM is

a sparsejower triangularmatrix with unit diagonal,and z

andb arevectors. M andb areknown;z is to be computed.
The pseudo-codén Figure4 givesa straightforward serial
solution to this problem. Since M is lower triangular j is

alwayslessthani in the summationand the suminvolves
only z[j] thathavealreadybeencomputed.

Theactualparallelsolutionwe studydiffersfrom Figure
4 in severalways. First, the sparsematrix M is storedin
the following compactformat. The non-zeroelementsof
M are storedcontiguouslyby row in the one dimensional
array M.nz. Anotherarray col, storesthe columnnumber
of eachnon-zeroin M.nz. A third array storespointersto
the beginning of eachrow in M.nz. To parallelizetri ,
the algorithm attemptsto computevaluesfor severalz|i]
concurrently Of course,notall iterationscanbe performed
at once,becausecomputingz[i] in row : may requirez[j]
from a previousrow j. To exploit parallelism,the depen-
denciesbetweenrows (various z[7]) can be determinedn
advanceandan acyclic dependencygraphbuilt. By doing
a topological sort on this graph, we can assigneachrow
(z[i]) to a discretelevel of computationso thatit depends
only onrowsin lower levels(i.e., thosez[:] thathavebeen
computedearlier). In the versionof tri we begin with
here, processorsare assignedhe rows from eachlevel in
a roundrobin fashion. Figure 5 showsthe pseudo-code
executedby eachprocessar

1) For each "row' assigned to ne {
2) /* initialize accumul ator vari abl e*/
3) accum = b[row] ;

4) For each non-zero entry,j,in this rowf
5) /* wait until x[j] is ready */

6) while (!Ready[col[j]]) ;

7) /* update accum using Mnz and x */
8) accum = accum - Mnz[j] * x[col[j]];

10) /[* set x[row] to its final value */
11) x[row] = accum
12) [* x[row] is now usable by others */

13) Ready[row] = 1;
}

Figure5: Parallelt ri implementation.

4.2 Performance of Original Tri Code

Whenwe run the original t ri codeusingthe benchmark
matrix BCSSTK15([6], we find that the speedupwith 4
processorss very low, only a factorof 1.4. To explorethe
cause we useMemsSpyto first look at the total numberof
misses. Thesenumbersare shownin a summarizedform
online 2 of Table1. This figure alsoshowsthe breakdown
of cachemissesamongprogramdataobjects.

The first thing that standsout is that the total number
of cachemissesrises sharply by a factor of 3.3, as we
go from the sequentiato the multiprocessowrersionof the
code. Thoughthe total time spentdoing real work hasre-
mainedroughlythe same thetime spentstalledfor memory
hasmorethantripled. Furthermorejn the parallelversion,
whenoneprocesss stalledwaitingfor memory othersmay
be forced to spin-wait until that processgets the needed
memoryitem andproducegheelementghe otherprocesses
wait for. Thus, memorybehavioris likely to be the prime
reasonfor the poor speedups.To seehow the missesmay
bereducedwe nowlook atthe compositiorof missesn the
two cases.We seethat the numberof misseshasincreased
for all dataobjects? howeversince M.nz causesghe most
missesin the multiprocessowersion,we focus first on its
behavior

We first notethatthe non-zeroelementf matrix M are
accesse only oncein both the sequentiabnd parallelver-
sion of the code; thus, ideally the total numberof misses
for the matrix M shouldnot increaseas we go from the
sequentialto the parallel code. Yet the datashowthat the
numberof missesncreasedy over50%. Whenwe request
more detailedinformationaboutthe bin M .nz from Mem-
Spy, it showsusthe datain Figure6. It indicatesthatmost
of the misses(over 90%) are first reference(cold) misses
andnot invalidationor replacementnisses.

Percent age of Total Mermory Stall Tine: 42.2%
Percent age of Total M sses: 42.2%

Percent age of Total Refs: 55.9%

M ss Rate: 9.4%

1st Ref M ss: 16482 (91.4%

Inval Mss: 0 (0.00%

Repl M ss: 1556 (8.6%

Causes of Repl acenents:
bin double*. M nz: 55.5%

bin x: 21. 7%
bin int*. Ready: 12. 3%
bin b 9. 9%

Figure 6: MemSpydetailedoutput: bin M.nz intri .

Once MemSpy points out that most of the missesare
first referencemisses,it is not so hard for the application
programmerto figure out that the real causefor increased
missesis poor spatiallocality for M.nz. In particular the
numberof non-zeroeper row of A is very smallin input

4Sincethe Ready datavectoris not neededor the uniprocessover-
sion, it obviouslycausesio misseshere.



Table1: Summaryof MemSpyoutputafter varioustuning steps.

CacheMisses(x 1000) ExecutionTime
Version Total | M.nz | Ready z | other (x 1000cycles) | Speedup
Sequential 12.9] 11.2(86.7%) — 1.2(9.3%) | 0.5(3.9%) 2,580 1.0
Original Parallel || 41.6| 17.8(42.2%) | 11.9(27.9%) | 10.5(24.6%) | 2.3 (5.4%) 1860 14
Tuning Step1 39.2| 11.3(28.8%) | 13.2(33.7%) | 14.2(36.2%) | 0.5 (1.3%) 1742 15
Tuning Step2 18.1| 11.2(61.9%) — | 6.4(35.4%) | 0.5(2.8%) 967 2.6
Tuning Step3 16.0 | 11.2(70.0%) — | 4.3(26.9%) | 0.5(3.1%) 890 2.9

matricesfor the tr: computatior? Since cachelines are
8 doubk words long (64 bytes), eachcacheline contains
multiple rows. In the parallel code, successiverows are
frequentlyassignedo differentprocessorsandasa result,
when a processoifetchesthe contentsof a row it needs,
it alsofetchesuselesdata (adjacentrows relevantonly to
otherprocessors).This doesnot occurin the uniprocessor
codewhereadjacenrowsareaccessedonsecutivelyby the
sameprocessar

We emphasizeéhatMemSpyhasfacilitatedthis observa-
tion aboutspatiallocality by allowing usto isolatethe miss
statistcsfor M.nz, andlettingus comparethe uniprocessor
and multiprocessorvalues. Without suchdetaileddataori-
entedstatisticsthelack of spatiallocality would be difficult
to infer.

4.3 Step 1: Restoring Spatial Locality

The goal of this tuning stepis to improve the spatiallo-
cality of referenceso M.nz int ri . Thisis accomplished
by symmetricallyreorderingthe rows and columnsof the
matrix M.nz, so thatthe row indicesof rows assignedo
a particularprocessoiare contiguousand appearin the or-
der in which the rows are processed. The details of the
reorderingmethodare discussedn [14].

When the programis rerun, using the new ordering
schemdor spatiallocality, MemSpyproduceghe newmiss
compositiordatasummarizednline 3 of Tablel. Thisout-
put indicatesthat now only 29% of the missesare dueto
the M .nz, with 34%of the missesn the Ready vector and
36% of the missesin the z vector Missesin M.nz have
beenreducedfrom 17.8K to 11.3K, and are now only 1%
greaterthanmissesin M.nz in the sequentiaversion. The
reorderingor spatiallocality hasbeeneffectivein reducing
the M .nz missego almostthe intrinsic numberrequiredby
the applicatian.

While the missesin M.nz have beenreducedsignifi-
cantly, this changeleadsonly to a very minimal improve-
mentin overall performance,about 6%. MemSpy again
tellsus(asseenin Tablel), thatthisis becausehe decrease
in missedor M.nz is partly offsetby anincreasdn misses
for the Ready and z vectors. Figure 7 showsthe detailed
outputfor the Ready vector after step1. Here, 81% of
Ready’smissesare dueto replacementsand87% of these
replacementsire causedby referencego the z vector The

5For example,f M comesfrom a partial differential equationcorre-
spondhg to a 5-pointstencil,eachrow hastwo off-diagonalnon-zeroes.

introductionof the new orderingschemewhich renumbers
the rows in the z and Ready vectors, has resultedin a
pathologicalmemory mapping;cross-interferencéetween
the z and Ready vectorsin the cachecauseghe missesin
thesedataobjectsto increasedramatically?

Percent age of Total Menmory Stall Tine: 33.7%
Percent age of Total M sses: 33.7%

Percent age of Total Refs: 26.2%

M ss Rate: 13.7%

1st Ref Mss: 988 (7.5%

M ss:
M ss:

I nval
Repl

1502 (11.4%
10749 (81.1%

Causes of Repl acenents:
bin x: 86.7%

bin double*. M nz: 13.3%

Figure 7: MemSpydetailedoutput: Ready in stepl.

We againnotethatwithoutatool like MemSpy it would
be difficult to understandhe effects of this tuning step.
In fact, one might have jumpedto the wrong conclusion
thatreorderinglM .nz wasnoteffectivein improvingspatial
locality; in reality, MemSpyshowsthatthe reorderingwas
effective, but that the potentialimprovementwas offset by
interferencein the # and Ready vectors. The following
two subsectionawill discussfurther stepstakento reduce
the Ready andz misses.

4.4 Step2: Reducing Ready Traffic

Following the reductionin M.nz traffic, two other data
objects,z and Ready havebecometheleadingcontributors
to thecachemisses.Althoughz generatesnoremisseghan
Ready, we first showthe effect of reducingthe missesdue
to Ready becauset is morereadily apparent.

The Ready vectorindicateswhena particularz element
hasbeencomputedandis readyfor useby later computa-
tions. After stepl, the MemSpyoutputshows(seeFigure
7) thatthe Ready missesconstituteroughlyonethird of all
misses. Of these,a majority are due to cross-interference
betweenz and Ready (indicatedby replacements)a small
fraction (7.5%) are partly intrinsic and partly due to lack

6This cross-interferencés data dependet, and does not occur as
severelyin othermatriceswe havestudied.



of spatiallocality (indicatedby first referencemisses)and
anothersmall fraction (11.5%)are dueto sharingor inval-
idatiors.

To reducemissesin Ready, one might first consider
ways of reducing cross-interferenceand sharing. How-
ever Rothbeg and Gupta,in fact, deviseda new form of
self-schedulinghatallows Ready to be eliminatedentirely.
This methodtakesadvantageof the NaN (Not a Number)
value providedfor by the IEEE 754 Standardfor Binary
Floating Point Arithmetic. The NaN value is storedinto
eachelementof the z vectorbeforethet ri phasebegins.
Then, insteadof usingthe Ready vectorto indicatean z
elementhas beencomputed,processewaiting for z ele-
ments can simply spin on the z value itself. When the
value changedrom NaN to a valid floating point value, it
is readyfor use.

This change substantiallyimproves program perfor-
mancedueto two effects on the memory systembehavior
of the program. As shownin Table 1, Ready missesare
eliminatedentirely; furthermore missesdueto the z vector
arealsosubstantiallyeduceddueto a decreasén thecross-
interferencedescribedabove. The next subsectiorfocuses
on improvingthe performanceof z.

4.5 Step 3: Reducing Traffic due to =

Cachemissesfor = primarily occur when an z element
producedy oneprocessois subsequentlyisedby another
processar Thus, the goal of this stepis to devisestrate-
giesfor assigningz elementsto processorsuchthat each
elementprimarily dependon otherz elementsassignedo
thesameprocessarThis reducegheneedfor interprocessor
communicationof thesevalues,and reducesthe z traffic.
Rothterg and Gupta investigateseveralheuristicsfor ac-
complishingthis, and MemSpyis helpfulin comparingthe
effectsof thesedifferentheuristics.

Forbrevity, we presentesultsfor only thefinal heuristic
proposedy Rothbeg andGupta. In it, eachz[i] is assigned
to the processothat currentlyownsthe mostpreviousele-
mentsrequiredto computethat z[i]. MemSpyshows(see
line 5 of Table1) thatmissesdueto the = vectordecrease
from 6.4K to 4.3K—around41% of thesemissesare first
referencamisses12%aredueto invalidationsand47%are
dueto replacementsMemSpyfurtherindicatesthat almost
all (99%) of the replacementsre dueto the M.nz matrix.
Sincet ri streamsthroughthe datain the very large M
matrix, thesereplacementsire essentiallyunavoidable.

4.6 Summary

This casestudyhashighlightedhow MemSpymay be used
to tunean applications memorybehavior In the first tun-
ing step, MemSpy was usedto calculatemiss countsfor
the M.nz data. Theseplayeda key role in pointing out
that poor spatiallocality was the causeof the increasein
misses.Basedon this information,we reorderedhe matrix
to improve spatiallocality. MemSpys informationon the
cause®f misseswasalsoinstrumentaln helpingus under-
standthe cross-interferencéhat resultedfrom reordering.
Without MemSpy it would have beendifficult to separate

the two effects. In Step2, we eliminated Ready misses.
MemSpys dataorientedoutputwas key in indicatingthat

Ready wasresponsibldor a largeamountof traffic. In the

final tuningstep,a heuristicfor improvingz accesgatterns
was examined. Here again, MemSpys miss countswere
usefulin showingthe improvementin x behavior Further-

more, MemSpys dataindicatingwhich dataobjectcaused
replacementsvasalsouseful. By knowingthatmostof z's

replacementsvere causedy M.nz, we wereableto reason
thatthey are largely unavoidable.

5 MemSpy Implementation

As we haveshown,MemSpypresentsletailedstatisticson
low-level memory systemevents. Gatheringdata at this
level requiressupportfrom eithera softwarememorysys-
tem simulatoror a hardwaretracing system. This section
discusseghe implementationdetailsof the prototype ver-
sion of MemSpy which usesthe former, software-based
approach. MemSpy is implementedas part of a memory
simulatorusingthe Tango[4] systemto instrumenthe code
for memorymonitorirg. In this section,we first give some
necessarpackgroundnformationon Tangomemorysimu-
lations. Followingthat, we discusdssuesn generatinglata
and procedureorientedstatistics labelingthe dataoriented
statisticswith intuitive namesfrom the userprogram,and
designingthe userinterface. Finally, we presentdataon
MemSpys performance.

5.1 Tango Memory System Simulation

Tangois a software simulation and tracing system, used
by MemSpyin monitoringthe memorysystembehaviorof

programs.lts tracingand memorysimulationfacilities are
usefulin boththe sequentiabnd paralleldomains’

Whenusing Tango,the applicationto be studiedis first
instrumentedby a specialpreprocessor At each memory
reference, the instrumentationadds procedurecalls to a
memory simulator The memory simulatorprocedurethen
callsMemSpyprocedures$o maintainstatisticson simulator
eventssuchas cachehits, cachemisses,etc. The simula-
tor maintainsthe stateof eachprocessdis cache,while the
additionalMemSpy code tracks the causesand frequency
of misses. The modular interface betweenMemSpy and
the memory simulatorallows MemSpyto be implemented
easily with a variety of memory simulators. Becausethis
methodusesnointermediatdracefiles, onecanrun detailed
simulationsof large benchmarksvithoutthe disk spacdim-
itationsimposedby trace-filebasedapproaches.

5.2 Grouping Statistics into Bins

MemSpy presentgddataand code orientedstatistics. To do
this, boththe code“axis” andthe data“axis” of the appli-
cationare subdividednto logical units; we call theseunits
code segments anddata bins. Statisticsarethenmaintained

7Tangosimulatesmultiprocessorby multiplexingthe executiorof sev-
eral applicationprocessesn a singlereal processaor



for eachpairing of code segmentand data bin; eachsuch
pairing is referredto as a statistical bin. The following
subsectionslescribethe methodsof determiningappropri-
ate codeanddatadivisions.

5.2.1 Separation of Statistics by Code Objects

Along the codeaxis, MemSpyseparatestatisticsby proce-
dures. It is straightforwardto determinewhich procedure
the processis currentlyin, becauseTango supportsevent
logging on procedureentry and exit. Theseentry and exit
eventsare passedo the memorysystemsimulator and us-
ing them, MemSpy maintainsa procedurestack for each
process.In thisway, thecurrentprocedurds alwaysknown,
and can be usedto selectthe appropriateprocedurebin in
which to placestatistics.

5.2.2 Separation of Statistics by Data Objects

Along the dataaxis, MemSpy separatestatisticsby data
bins. Somedatabins correspondo a single dataobjectin
the applicationsourcecode. In othercasesit is appropriate
to grouptogetherstatisticsfrom severaldataobjectsinto a
singledatabin. Thus,a databin may containstatisticsfrom
severalnon-contiguos rangesof memory The following
paragraphsgiscusgi) howthememoryspacds dividedinto
databinsand(ii) howthesedatabinsaregivennameswhich
are intuitive and usefulto the programmemusingMemSpy

Data Divison As a first approachto this data binning
problem, the programs entire memory spacecould be di-
videdinto memoryrangeswhereeachmemoryrangecor-
respondedo a singledataobjectin the program,andstatis-
tics arekept for eachindividual memoryrange. However
consideringeachindividual dataobjectto be a separatesta-
tistical unit would likely resultin caseswhere there are
manybinswith very similar behavior For example,in Lo-
cusRoutea CAD wire routing programfrom the SPLASH
benchmarksthe programallocatesstoragefor thousand®f
wires. Sinceall the wires have similar memory behavior
keepingseparatestatisticson eachwire is not as usefulas
aggregatingstatisticsfor all wires. To automaticallyaggre-
gatestatisticor all wires,we mightuseanapproachwhich
groupsinto a single databin all memory ranges allocated
at the same point in the source code. However the op-
positeextreme,combiningtoo many dataobjectstogether
in a single databin, mustalso be avoided. For example,
in a benchmarkprogramwhich performsLU decomposi-
tion, the programs main data structuresare two matrices
which are allocatedat exactly the samepoint in the source
code,within a Newivat ri x routine. Here, the program-
mer would like to view separatestatisticsfor eachmatrix,
sincetheir memorybehavioris quite different. Becauseof
casedike this, MemSpymaintainsseparatestatisticsfor all
memory ranges allocated at the same point in the source
code with identical call paths. That is, dataallocatedin
different calls to a procedurefrom differentcall pathswill
be monitoredin separatebins® We claim that dataobjects

8Theexactmethodusedfor trackingthe call pathis similar to thatused
by Zorn andHilfinger in their memoryallocationprofiler, mprof [18§].

allocatedat the samepoint in the sourcecodevia the same
call pathare usuallysimilar in memorybehavior andtheir
statistics,in general,shouldbe aggregated.

To implementthis proposedmethod of data division,
MemSpy needsto be able to map every possiblememory
addresdo its correspondinglatabin. To maintainmappings
betweenrangesof memoryandthe datato which they cor-
respond,one needsto know the size and startingpositions
of all memoryallocatedby the application.In general pro-
gramsusethreetypesof memoryallocation: (i) static, (ii)
stack, and (iii) dynamic. In this versionof MemSpy we
automaticallymaintainmappingsonly for dynamicallyal-
locateddata. Thisfits in well with theparallelprogramming
modelwe currentlyuse,in which all sharedmemorymust
be heapallocated® When userswant to monitor a vari-
able which is not heapallocated,they can manually add
a procedurecall into the applicationto define that map-
ping. For MemSpy to maintain mappingsfor static and
stackallocateddata,it would requiredatatype information,
in orderto know the sizesof the individual data objects.
A later versionof MemSpywill providethe compiletime
instrumentatiorsupportnecessaryo producemappingsfor
staticallyand stackallocatedvariables.

For mappingsof dynamically allocated data objects,
MemSpymaintainsa log of all heapallocatedmemory and
recordswhich memory rangesbelong to which program
variables. Logging memory allocationsfrom the heapis
fairly straightforwardwe simply instrumenthe codeto log
(i) the pointerreturnedby the malloc routine, (ii) the size
of the allocatedblock of memory (iii) the nameof the vari-
ableto which the malloc returnvalueis assigned (Naming
will bediscussedn moredetaillater) Thisinstrumentation
generategventswhich becomepartof theinputeventtrace
for the MemSpy memorysimulator MemSpythen builds
up a datastructureto storethesememoryranges.

We havefoundthis methodfor datadivisionto be quite
effective in practice. However therewill still be casesin
which the userwould like some manualcontrol over the
division of data. We areinterestedn extendingthe current
schemeto allow the userto give suggestion®r directives
on how the statisticalbins shouldbe composedaswell as
to provide automaticsupportfor static and stackallocated
memoryobjects.

Data Bin Naming In assigningnamesto databins, we
want to use symbolic variable names from the source
program since these have some intuitive meaningto the
programmer Furthermore,clearly, the namesshould be
unique. To satisfythe first requirementjntuitivenesscon-
sider eachstatic appearancef a malloc in the code: we
namethe associatedin with a stringthat concatenatethe
data type andvariable name of the pointerwhich receives
themallocreturnvalue. However asstatedabove,multiple
databins are createdfor the samemalloc if the malloc is
encounteredhroughdifferent procedurecall paths. Thus,
to guaranteeuniquenessthe namesare disambiguatedy
prependinga string summarizingthe stateof the call stack.

90ur parallel programmingmodel usesC languageprogramsaug-
mentedwith ArgonneNational Laboratoryparallel programmingmacros
[13]. In this model,all sharedmemoryis dynamicallyallocatedusingthe
G_.MALLOC macro.



Thefinal full nameis of the form:

"ProcNanme. return_pc. ProcNane.return_pc...
. Dat aType. Var Nanme"

This method has both strengthsand weaknesses.By
prependingthe bin namewith call stackinformation, we
guarantee uniquenamefor eachbin. However in our ex-
periencewith MemSpy we havefoundthata shortversion
of thename: Dat aType. Var Nane is usuallyuniqueand
sufficiently intuitive for the programmer It works espe-
cially well when importantprogramvariablesare directly
assignedhe pointer returnedby malloc, so that the vari-
able namein the shortform is a familiar programname.
However sometimeghe allocatedmemoryis assignedo a
temporaryvariableand thenlater assignedo a more “sig-
nificant” variablein the program. In thesecases the data
bin will receivethe nameof the temporaryvariable,rather
thanthe preferredname. Anotherweaknesf this method
appearsn caseswherethe long form is necessaryto dis-
tinguish betweendatabins; the nameit produceswith pro-
gram countervaluesinterspersedis often inconvenientor
difficult to read. Both of theseweaknesseare hiddenfrom
the userby allowing the userto renamevariablesto a new
uniguenameof their choosing.

5.3 Storing Information on Causesof Misses

Statistts on the causef applicationmissesare animpor-
tantpartof MemSpy;to providethisdata,MemSpyneedgo
storeinformationto explainthe causeof eachmiss. Cache
missesare causedby one of the following: (i) the line has
neverbeenreferencedeforeby this processar(ii) theline
hasbeenreplacedout of the cachesinceits last reference,
or (iii) theline hasbeeninvalidatedsinceits lastreference.
To distingush betweenthesethreecases 2 bits of statein-
formationarerequiredfor eachmemoryline in useby each
processar

To storethis stateinformation, MemSpy definesa one
dimensionalarray that is indexedby the lower bits of the
referencedaddress. The array containsthe statebits indi-
catingthe causeof the miss. It alsocontainsthe remaining
upperportion of the addressto act as an identifier The
array size can be varied dependingon the size of the ap-
plicationis dataset. If the array is definedto be smaller
thanthe datasetof the application thenseveralreferenced
addressesnight index into the samelocation of the array;
we definea hashtableto handletheseoverflow cases.The
overflow state information is hashedbasedon the refer-
encedaddressand storedin linked lists. Clearly, thereis a
tradeof here: A smallerprimary arraywill havelessspace
overheadput with poor performancefor applicationswith
large datasetsthatoverflowinto the hashtable. A largerar-
ray will handlea largerdataspacemoreefficiently, but with
higherspaceoverhead.Onecouldimprovethe performance
of this systemby taking advantageof temporallocality in
the referencepatterns.If an objectfrom the overflowtable
hasjust beenreferencedit is likely to be referencedagain
soon; performancemay be improved by moving its state
informatian out of the overflow table andinto the primary
array

5.4 User Interface

The user interface of a performancemonitor must guide
the user towards bottlenecksin the code, and then give

theinformationnecessaryo remedythem. This subsection
givesanoverviewof MemSpys userinterface. The current
userinterfacehasbeenintentiorally kept quite simple.

A MemSpysessiorbeginsby presentingnitial dataus-
ing the focusing mechanismPercentage of Total Memory
Sall Time asthe primary meansof sortingthe output. That
is, for eachcode objectand databin pair, MemSpy com-
putesthe ratio of the memory stall time incurredin this
statisticalbin, comparedto the total memory stall time in
the program. When MemSpyoutputis first displayed this
informationis presentedaisan orderedmatrix in which one
axis showsthe differentdatabins, andthe otheraxis shows
the differentproceduresEachrow and eachcolumnof the
matrix aresorted,sothatthe upperleft cornerof the matrix
containghe procedure-datpair with the highestpercentage
of total memorystalltime, andthe numbersdecreas@sone
movesdownandto theright. A sampleoutputwas shown
in Figure2. Theinitial displayalsosummarizesnformation
ontheprogramsexecutiontime, andaggregateachemem-
ory statistics. From this startingpoint, usershave several
optionsavailableto them. Theseoptionsinclude display-
ing more information abouta bin, renamingdatabins, or
combiningbins and displayingthe total information.

The mostbasicoperationa usercan performafter start-
ing upMemSpyis to request displayfor a particularstatis-
tical bin usingthe Di spl ayAl | command. This display
shownfor examplein Figure 3, givesdetailedinformation
aboutthe statisticalbin. This dataallowstheuserto reason
aboutthe typesof memory systemproblemsin the appli-
cation. For example,if a particulardataobjecthasa high
missrate,the missesare primarily dueto replacementsand
the replacementsre primarily causedby other references
to the samedataobject,oneconcludedhatself-interference
is a problem.

TheDi spl ayAl | commandmayalsobeusedon com-
binationsof multiple dataand/orcodedivisions. That is,
one may requestthe statisticsof a particulardataobjectin
severalprocedurespr severaldataobjectswithin a proce-
dure, and so on. By building the basicinformation given
by MemSpy into other useful combinations.the user can
adaptthe outputto the specific high-level structureof the
code.

Other commandsallow the user to manipulate the
namesof the databins to allow for easierdebugging. A
ful | nanme commandallows the userto seea databin’s
full name, including the stack trace. Note that, to save
space, the main display gives only the partial namesof
the databinsin the form dat a_t ype. var i abl e_name.
With f ul | name, theusercandistiguishbetweerndatabins
whosepartial namesare identical. The r ename command
allows the userto changethe label of a databin to a more
appropriatename. (The most effective methodfor assign-
ing intuitive namesto databins is still an open question.
Until we arrive at a more satisfactoryconclusion,we find
this intermediateapproach.giving the bin a uniqgue name
thatthe useris thenfree to change quite useful.)

In thefuture,we will extendthe userinterfaceto givethe



usergreatercontrol over monitoring. For example the user
can currentlyrequestthat only a subsetof code segments
be monired; we would like to extendthis to give the
usercontroloverwhich data objectsare monitoredaswell.
The user should also be allowed to direct the automatic
division of data into bins, in caseswhere a non-default
binning is needed. We will also provide the userwith a
databaseof statisticsfrom previousruns. This will allow
the userto easily compareresultsfrom a currentversion
of an applicationwith previousresults. Finally, we are
currentlyimplementinga graphicaluserinterface,to make
MemSpymore conveniento use.

5.5 Performance

This section presentspreliminary performanceresultsfor

the MemSpysystem. While the prototypesystemis largely
unoptimized, the current executiontime overheadsseem
reasonableWe also briefly outline methodsfor improving
MemSpys performancea major thrustof future research.

Table 2 comparesthe executiontimes on a DECsta-
tion 3100 for three benchmarkapplications. Execution
timesare presentedor threecases:(i) Actual uniprocessor
benchmarkruns, with neither simulation nor monitorirg.
(i) Tangosimulationsof the benchmarkswithout Mem-
Spy monitoring and (iii) Tangosimulationsof uniproces-
sorbenchmarkunswith MemSpymonitoringaswell. The
tableshowsthat MemSpy’s overheadwhencomparedo a
unipracessorrun with no monitoring rangesfrom a factor
of 22 to a factor of 58 for thesebenchmarks.

In orderto understandavhatcontributego this overhead,
let us examinethe sequencef operationmeededo log an
eventwith MemSpy For eachmemoryreferencethe orig-
inal assemblycodefor the applicationis instrumentedvith
a procedurecall to the Tango system. Within the proce-
dure,temporaryregisters(i.e., thosewhosevaluesare not
preservedcrosprocedurecalls)arefirst savedsothatreg-
istersusedby the memorysimulatorwill not overwritethe
valuesexpectedn themby theapplication.Next, the Tango
memorysimulatorprocedurds called. Within the memory
simulator differentMemSpyroutinesare called to update
the datarequiredfor MemSpys statistics,suchas whether
the references a hit or a miss,a reador write, and so on.
In Table2, simulationoverheadrefersto time spentin the
memory simulatorprocedure;MemSpy overheadrefersto
time spentin the specialMemSpyroutinesonly.

FromTable2, we seethatthe Tangosimulationoverhead
dominateghe additionalMemSpy overheadn monitoring
an application. For the simple simulatorusedhere, more
thanhalf of this overheads in savingandrestoringall tem-
poraryregistersbefore calling the memorysimulator One
canreducethis overheadby customizingthe registersave
routinesothatit only savesthetemporaryregistersactually
usedby the MemSpymemory simulator For example,10
double precisionsavesand restoresof floating point reg-
isterscould be eliminatedfrom the currentversion. This
would resultin a roughly 50% reductionin registersave-
restoretime for eachmemoryreference.Furthermorenote
thatmany of the integerregistersare usedonly whensim-
ulating a cachemiss, not when simulatinga cachehit; by
postpoting theseregistersavesuntil after a cachemissis

actually detectedwe can significantlyreducethe overhead
of invoking the memorysimulatoron cachehits, the more
commoncase.

Overheadin MemSpyitself rangesfrom 30 to 44% of
thetotal overheadn thesebenchmarksThis MemSpyover-
headis comprisedof (i) time spentdeterminingthe bin to
which a references statisticsbelong, and (ii) time spent
updatingstatistics,suchas countinghits, missesandinfor-
mationon the causesf misses.The first factor, searching
for theappropriatestatisticalbin, is the prime contributorto
MemSpys overheadijt accountdor roughly30% of a pro-
gram’s total executiontime. The searchfor a bin requires
the traversalof a tree data structurecontainingthe map-
pings from dynamically allocatedaddressrangesto bins.
At the root of the treeis an array of n pointers;the array
is indexedby the upperlog,(n) bits of the searchaddress,
and eachpointer correspondgo a different portion of the
addressspace.In turn, eachof thesepointersmay point to
anotherarray whose elementscorrespondo sub-portions
of that memory region, and so on. Where a portion of
memory containsonly a single addressrange, the bin in-
formationis stored,and no further arraysare required. In
pt hor , with roughly50,000differentheapallocatedmem-
ory ranges,bin searchegsequirean averageof 3.7 pointer
indirectionsthroughthe tree.

One could further reducethe MemSpyoverheadby al-
lowing the user the option of keeping statisticsonly for
cachemisses,not for cachehits. In the currentversionof
MemSpy all referencesrequire an address-to-birtransla-
tion. By not monitoringhits, we could do bin lookup only
for misses. This would lead to a significantperformance
improvementsincebin lookup comprisesoughly onethird
of the applicationoverhead. Without statisticsfor cache
hits, MemSpy could not producedataon cachemissrates
or total referencecounts. However one could still view
countsof misses,breakdownsf total misses,and dataon
causef misses,someof MemSpys primary features.

We feel that with theseoptimizations,MemSpycan be
made5 to 10timesfasterfor uniprocessosimulations.This
overheads likely to be quiteacceptabléo manyusersgiven
the detailedinformationMemSpyis providing the user

Running MemSpy to simulate multiprocessar rather
than uniprocessarexecutionshas two additional sources
of overhead.Thesearerelatedto the fact that Tangointer-
leavesthe executionof the multiple applicationprocesses
on a uniprocessor First, the Tango executiontime for a
multiprocessorun can be no smallerthanthe total execu-
tion times for eachthreadbeingrun. This is becausehe
threadsarerun sequentiallyalthoughinterleaved).Second,
additionaloverheads incurredwhen contextswitchingbe-
tween threads: all non-temporaryregistersmust be saved
on a contextswitch. Thesefactorsleadto higherexecution
time overheaddfor multiprocessoruns of MemSpy For
example,runningMemSpyon a 4 processmatrix multipli-
cation, with the sameinput data as the uniprocessorun
shownin Table 2, hasan overheadof 120.4 as compared
to the uniprocessoverheadof 21.7. One can reducethis
overheadsomewhaby optimizing contextswitchingin the
simulation. If we maketheassumptiorthatcontextswitches
are only necessaryon cachemisses,not on all references
as currently assumed,we can greatly reducethe number



Table2: MemSpyexecutiontime overhead.

Time (S) Time (S) Time (s) || Simulation| MemSpyand

No Simulation | Simulation,| Simulation,|| Overhead| Simulation

Application No MemSpy | No MemSpy | andMemSpy alone Overhead
Tri 45 72.0 101.0 16.0 224
MatMult 54.3 659.0 1179.3 12.1 21.7
Pthor 9.0 313.0 521.4 34.8 57.9

of contextswitchesattemptedby the application,with lit-
tle effect on the simulationresults. Finally, future versions
of MemSpymay usethe hardwaretracefacilities available
on the DASH multiprocessotto gathermemory reference
statistcswithoutthe overheadsnherentto Tangos sequen-
tial simulation-basedapproach.

6 Discussion

MemSpys statisticshave proven useful in understanding
the memorysystembehaviorof severalapplications.First,
our initial focusingmechanism Percentage of Total Mem-
ory Sall Time, is effectivein pointing the usertowardsprob-
lem areasin the code. Second,we havefound the break-
down of the causes of misses to be quite useful. Knowing
whetherthe memory system problemis one of interfer-
ence,sharing,or poor spatiallocality is a large steptoward
solving the problem,and MemSpys statisticson causesof
missesgive the user much of the information neededto
diagnosetheseproblems. However one level of reason-
ing thatis still left to the useris decidingwhethermisses
are intrinsic to the program,or whetherthey are “excess”
missesthat one can hopeto optimizeaway For example,
in thetri code, missesin M.nz accountedfor 70% of
total missesafter tuning. By examiningthe code,the user
can concludethat thesemissesare intrinsic, and cannotbe
significantlyreduced.In somecasesa comparisorof mul-
tiprocessomisseso uniprocessomissescanactasaguide
in determiningwhat fraction of the missesare intrinsic.

We anticipateseveralextensiondo MemSpys userin-
terface. TheseincludeintegratingMemsSpyinto a hierarchy
of tools,to providea completeperformanceuning system;
thus,a high-leveltool like Quartzwould provideinitial in-
formation on code bottlenecks,and subsequentuns with
MTOOL and MemSpy would give greaterdetail on spe-
cific memory performancebottlenecks. Within MemSpy
itself, we intendto implementa databaseo storeinforma-
tion aboutpreviousruns. Sucha databasevould allow the
userto easily comparestatisticsfrom the currentrun with
statistcs from previousrunsof the sameprogram.

The current MemSpy prototype is simulator based,
which givesit severaladvantagesnd disadvantagesSim-
ulationallowsan applicationto be tunedwith differentsets
of architecturalparametersand can be usefulin evaluat-
ing expectedperformanceof an applicationon machines
not yet available. However MemSpys relianceon simula-
tion degradests performanceand somewhatimits its use-
fulness. Clearly, improvementsn simulationperformance

would makeMemSpya moreviabletool for a wider range
of applications.We intendto optimize the performanceof

the simulation-basedersionof MemSpy Furthermorefor

many applications,one can run themin ways that reduce
executiontimes while still giving realistic memorybehav-
ior. For example,with many numericalapplications,one
can run them for a small number of iterationsand then
extrapolatetheir performanceo more realistic numbersof

iterations;thet ri codeis one suchexampleof this. An-

otherway to observerealisticbehaviorwith lesssimulation
time is to studycaseswhereboth problemsize and proces-
sor cachesizeshavebeenproportionate} scaleddown.

We arealsoinvestigatingpa MemSpyimplementatiorus-
ing the hardwareperformancemonitoron the DASH multi-
processar DASH’s hardwaremonitor collectstracesof bus
activity which canthenbe processedo generateMemSpy
statistics.This approactpromisesa significantperformance
improvementover the currentsimulatordriven prototype.
Furthermoreit allowsfor amorecompleteview of program
executionjncludingeffectslike virtual to physicalmemory
mapping,schedulingand multiprogammingwhich are of-
ten more difficult (thoughnotimpossible)to accountfor in
simulation-base@pproaches.

7 Conclusions

In summary we havefound MemSpys statisticsto be ef-
fective in explaining many of the unknownsof memory
systembehaviorfor both paralleland sequentiaprograms.
MemSpys dataorientedstatisticsoffer an orthogonalview
to codeorientedstatisticsandgive theusergreateldeverage
in tuningmemory performance.Statisticson the causesof
an applications cachemissesare also an importantaid in
performancedebuggingthat has not beenadequatelypro-
vided previously We envisionusing MemSpy as part of
a hierarchyof performancedebuggingtools: higherlevel
tools provide initial insight into programbehavior while
MemSpy providesdetailedinformationon memorysystem
behaviorto addressnemoryperformancebottlenecks.
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