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Abstract— Routing in sensor networks maintains information
on neighbor states and potentially many other factors in order
to make informed decisions. Challenges arise both in (a) per-
forming accurate and adaptive information discovery and (b)
processing/analyzing the gathered data to extract useful features
and correlations. To address such challenges, this paper explores
using supervised learning techniques to make informed decisions
in the context of wireless sensor networks.

In consideration of the unique characteristics of sensor net-
works, our approach consists of two phases: an offline learning
phase and an online classification phase. We use two case studies
to demonstrate the effectiveness of our approach. In the first, we
present MetricMap, a metric-based routing protocol that derives
link quality using our classifiers when the traditional ETX-based
approach fails. In the second, we present SHARP, an extension to
the PSFQ protocol, which uses knowledge gathered in the training
phase to control its caching policy for saving constrained storage
space. Evaluation is performed on a 30-node real-world testbed
and a multihop sensor network in our lab. Our results show that
MetricMap can achieve up to 300% improvement in data delivery
rate for a high data-rate application, without compromising other
performance metrics; SHARP can reduce the memory footprint
of PSFQ by 46.4% with a modest increase of 4.7% in fetch miss
rate.

I. INTRODUCTION

Many critical applications in wireless sensor networks rely
fundamentally on fast, efficient, and reliable data delivery. In
order to overcome the inherent unreliability of sensor network
communication links, communication protocols increasingly
employ intricate and situation-aware adaptations to identify
good routes and to determine resource-efficient methods for
handling data.

The difficulties in situation-aware adaptations are two-fold.
First, some adaptation techniques are hard-wired heuristics
based on observations of a few stylized types of network prob-
lems and their solutions. The more problems one envisions,
the more complicated the protocol becomes in trying to adapt
around them. Second, environmental factors interact in such
complex ways that it can be difficult to identify correlations
and crisply define the problem scenarios to protect against.

In this paper, we explore using machine learning techniques
to improve situation-awareness in order to optimize sensor
network routing. Machine learning is an effective and practical
technique for discovering relations and extracting knowledge
in cases where the mathematical model of the problem may
be too expensive to get, or not available at all. Supervised
learning is a particular case when the inputs and outputs
are both given in the training phase. For example, inputs

might include node-level and network-level metrics, such as
buffer occupancies, channel load assessments, packet received
signal strength, etc. Output may be the expected number
of transmissions over the link where the packet is received.
Essentially, we aim to use machine learning to automatically
discover correlations between readily-available features and
the quantity of interest. Supervised learning is an effective
learning technique in solving this type of problem.

We manage the resource constraints of sensor networks by
employing machine learning in a two-phase method: an offline
training phase followed by an online classification. Offloading
the training task from sensor nodes reduces the processing,
communication, and energy requirements of the node during
deployment. The resulting classifiers used online are both
strikingly lightweight and effective. For the case studies exam-
ined in this paper, our learning framework results in prediction
accuracies of 80% or more, with false positive rates between
4.1% and 11.3%, and with essentially no compute overhead
after deployment.

We present two case studies of supervised learning for
routing and reliability optimizations. In the first case study,
we present MetricMap, a metric-based data collection protocol
atop MintRoute that predicts link quality using our classifiers
in a highly congested network. In the second case study, we
present SHARP, a situation-aware reliable transport protocol
atop PSFQ that uses knowledge gathered from the training
phase to control its caching policy in order to save constrained
storage space, while ensuring reliability.

The primary contributions of this work are summarized as
follows:

1) We present a general framework that uses supervised
learning to extract information automatically within
sensor networks. Our method is automatic, which is
advantageous over heuristics-based methods whose ef-
fectiveness may depend on the context where they are
developed and evaluated.

2) We cast link quality estimation and packet caching
prediction as classification problems, which permits the
use of simple, yet effective existing learning algorithms.
Decision tree learners and rule learners represent such
algorithms. We believe a large range of applications can
benefit from this approach.

3) We present an evaluation of our approach using imple-
mentations in TinyOS on real-world sensor networks.



Our results show that MetricMap can improve over
existing approaches by up to a factor of 3 when traffic
rate is higher than 2pps (packet per second) and SHARP
can save 47% storage over PSFQ with a modest increase
in fetch miss rate.

The rest of this paper is organized as follows. In Section II,
we introduce the background knowledge related to the discus-
sion of the work. Next, we describe the details of our learning
framework in Section III. In Sections IV and V, we present
two cases studies and results of our prototype implementation
on real-world sensor networks. Related work is discussed in
Section VI and the last section summarizes the main results
and outlines future work.

II. BACKGROUND

A. Link Quality Estimation

Wireless sensor networks are very different from wired
networks in that the link quality fluctuates greatly as a conse-
quence of interference and propagation dynamics. Therefore,
developing efficient routing in sensor networks requires the
establishment of high quality paths, which in turn entails
accurate knowledge of link quality. In this section, we briefly
review the mechanisms behind existing link quality estimation
methods, including both software-based and hardware-based
ones. We also explain how they fail to function when the
traffic rate becomes high. This motivates our work on new
approaches based on machine learning.

Software-based estimation. ETX [1], also proposed in
MintRoute [2], is defined as the expected number of transmis-
sions (including retransmissions) for a successful end-to-end
data forwarding and hop-by-hop acknowledgment.

We focus here on the snooping-based method adopted by
MintRoute.1 It defines link quality as

etx(l) =
1

pf (l) × pr(l)

with pf (l) the forward probability of link l and pr(l) its
reverse probability. pf (l) is calculated using the ratio of the
number of data packets received to the total number of data
packets transmitted over l. pr(l) is calculated as pf (l) with l
the reverse link of l. The route metric of a n-hop path p is
then calculated as ETX(p) =

∑n
i=1 etx(li), the total expected

number of (re)transmissions along the path.
However, in many high data-rate applications [4], [5],

snooping-based link quality estimation works poorly. For ex-
ample, consider the structure monitoring application described
in [4]. Due to structural vibration damping effects, a very high
data sampling rate is required, which is estimated to be at least
200Hz. This leads to a data rate as high as 9.6kbps per node
with each node sampling 16-bit in three spatial dimensions.
Even with in-network processing techniques, such as data
aggregation, compression and coding, the expected traffic is
still very challenging for current systems to cope with. Several
real-world testbed evaluations of high data-rate applications

1The difference between the two approaches is studied in [3].

have been reported [6], which demonstrate the severeness of
the data funneling effect during high traffic load.

Hardware-based estimation. The link quality indication
(LQI) metric characterizes the strength and/or quality of a
received packet. It is introduced in the 802.15.4 standard [7]
and is provided by CC2420, the radio in MicaZ and Telos
motes. LQI measures the incoming modulation of each suc-
cessfully received packet. The resulting integer ranges from
0x00 to 0xff, indicating the lowest and highest quality signals
detectable by the receiver (between -100dBm and 0dBm). LQI
values are uniformly distributed between these two limits.
Prior work [8] on the Telos motes shows that average LQI
closely tracks average success rate of packet transmissions
across several links.

In this paper, we use LQI to label link quality in each
training sample. We do not use LQI directly for link quality
estimation during routing because LQI is only available with
each successfully received packet. In a congested network, the
number of received packets is small and LQI is not a reliable
measure of link quality. Our approach can avoid this problem
by tracking features that are available all the time. If some
feature is missed, it will use other features to infer the situation
based on the knowledge obtained from training.

B. Hop-by-hop Caching for Reliability

In this section, we briefly review reliable data transport, an
important area of research in sensor networks, which will be
used as our second case study.

PSFQ [9] (Pump Slowly, Fetch Quickly) is a reliable block
transport protocol designed to deliver an ordered block of
packets from one location (sink) to individual sensors or a set
of sensors, such as in the case of network reprogramming or
complex query injection. Clearly, losses in these applications
are not tolerable.

In PSFQ, the source pumps data in sequence to the
destination. Whenever an out-of-order arrival is detected, a
fetch operation is started to perform local recovery by asking
(NACK) for the lost packets from its immediate parent. PSFQ
uses hop-by-hop caching to localize loss recovery to only one
hop. This requires the intermediate nodes to passively cache all
data packets. However, passive caching is not always desirable.
In situations where network conditions are good, there is no
need to cache packets that will never be fetched. For example,
Paek et al. report in [4] that retransmission rate is as low as
3-7% in a similar scenario. Therefore, the caching necessity
depends on situations. If we can predict which packet needs
to be cached, better resource efficiency will be achieved. The
penalty of such a caching scheme is to retransmit packets
that are not cached locally. In that case, the node issuing
the fetch request has to go beyond one hop to recover its
lost packets. This is a tradeoff between caching accuracy and
(re)fetch overhead.

Once we cast the prediction problem of “fetch” or “no fetch”
into a classification problem, the prediction of possible fetches
can be solved using supervised learning.



C. Supervised Learning Overview

The goal of supervised learning is to predict the value of an
outcome measure based on a number of input measures [10].
The outcome measure could be numerical or categorical.
Learning is performed on a set of training samples. Each sam-
ple (xi,yi) consists of a feature vector xi and a corresponding
class label or numerical value yi. The feature vector contains
measurable features of the system under consideration. If the
outcome is categorical, the learning becomes a classification
problem. Training a classifier usually involves finding a map-
ping from feature vectors to output labels so that the overall
classification error is minimized on the training samples. A
good learner should accurately predict new samples not in the
training set. Therefore, given a classification problem, we need
to decide (a) what features to measure and (b) what learning
algorithm to use to maximize the learning accuracy.

In this paper, we evaluated two classifiers — decision tree
learners and rule learners. There exist other, more sophis-
ticated, methods of classification, including support vector
machines, Bayesian networks, and ensemble methods. Any
such learner can be used as the classifier for our technique.
However, our results show that decision tree learners and rule
learners produce remarkably good accuracy for our case stud-
ies and many times they achieve the highest accuracy among
all algorithms studied. Also, we prefer learners that produce
human-readable outputs and both decision tree learners and
rule learners are good for this purpose.

Decision tree learners. Decision tree learners are widely
used in solving classification problems with classifiers repre-
sented as trees. They take a “divide-and-conquer” approach
and recursively divide attributes at each internal node in the
tree based on information they possess. Leaf nodes represent
classification decisions. Pruning methods are used to prevent
overfitting of training data. Although decision tree learners are
not always the most competitive learners in terms of accuracy,
they are computationally efficient and the results produced can
be easily converted to human-readable formats.

Rule learners. Rule learners are used for learning IF-THEN
rules. Rule learners work on training samples with similar
input/output pairs as decision tree learners. However, since
the rule-sets learned are disjoint to each other, they usually
produce far fewer rules than decision tree learners on the
same training set, with a comparable accuracy. This makes
it preferable in scenarios where the size of classifiers matters.

Learning overhead. Since wireless sensor networks are
constrained in node processing time, energy usage, and mem-
ory footprint, we need to also consider such overhead, in
addition to learning accuracy. We focus on the overhead of
online classification and feature collection since training is
conducted offline in our learning framework, usually on a
resource-rich backend server.

To utilize the output of a decision tree learner, we need to
translate it into IF-THEN rules. As the number of produced
rules is as many as the number of leaf nodes in the tree, a
large tree with hundreds of leaves results in hundreds of rules
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Fig. 1. Overview of learning steps.

to be hand-coded into the online classifier. Instead, we use rule
learners to implement the online classifier due to their small
footprints and acceptable accuracies.

Learning cost. Given a classifier and an instance, there are
four possible outcomes. If the instance is positive and it is
classified as positive, it is counted as a true positive (TP). On
the other hand, if the instance is negative and it is classified
as positive, it is counted as a false positive (FP). TP rate is
defined as the ratio of positives correctly classified to the total
positives. FP rate is defined as the ratio of negatives incorrectly
classified to the total negatives.

It is crucial for a real-world application to consider FP rate
since it represents the cost of learning. Usually we want a high
TP rate (high benefits) and a low FP rate (low costs).

III. LEARNING STEP-BY-STEP

In this section, we review the steps of our proposed learning
framework using link quality classification as an example.
Figure 1 presents a high level overview of the steps involved,
with the four key steps listed as follows:

1) Select the features to be used in training and classifica-
tion;

2) Instrument every node in the network to collect these
features and their corresponding labels and periodically
send them back to the sink;

3) Use the labeled data to perform training at the sink node;
4) Instrument MintRoute to use the classifier for differen-

tiating between high quality and low quality links at
runtime. The algorithm is depicted in Section IV.

In what follows, we describe the first three steps with
specific reference to a collection routing application. Since
the last step is closely related to the application, we discuss
application instrumentation in Section IV.

A. Step 1: Feature Extraction and Output Labeling

The first step in supervised learning extracts input features
and labels output. This step requires domain knowledge to
produce high-quality, and well-prepared data [11].

In wireless sensor networks, we favor local features (within
one-hop) that can be collected without expensive communica-
tions. This is because sensor networks are severely resource-
constrained and it is desirable and necessary to impose as little
overhead as possible. However, if a feature is already available
with the existing application, such as node depth in MintRoute,
we also consider it. There is no extra overhead imposed to
gather this feature and it carries extra useful information.



Link quality learning
RSSI received signal strength indication local
sendBuf send buffer size local
fwdBuf forward buffer size local
depth node depth from the base station non-local
CLA channel load assessment local
pSend forward probability local
pRecv backward probability local

Hop-by-hop caching learning
RSSI received signal strength indication local
pSend forward probability local
pRecv backward probability local
LQI link quality indication local

TABLE I
FEATURE VECTOR ILLUSTRATION.

Feature selection. This is the process of choosing a subset
of the feature space that best represents the problem at hand
while introducing a minimal amount of noise.

As pointed out in previous studies, link delivery probability
(or link quality) is determined by many factors, including
wireless channel conditions, such as internode separation, fast
fading and slow fading, the traffic pattern in the network
and local traffic load at each node, etc. However, the extent
to which these factors impact link quality is continuously
varying, which makes it impossible for any single metric
to be always a good indicator of link quality. For example,
Aguayo et al. [12] find that SNR (Signal/Noise Ratio), though
affecting link delivery probability, cannot be expected to be
a predictive indicator of link quality. Thus, we choose a set
of metrics that are correlated to link delivery probability to
be included in the feature vector and use machine learning
tools to train and identify the most predictive indicator, which
could be a combination of them. Some of the features are
related to channel conditions, some of them related to network
congestion, and some of them to both. Table I lists the features
we used for link quality learning and hop-by-hop caching
learning, respectively. They are all numerical values.

RSSI is the received signal strength indication readily avail-
able in many radios. It contains the average RSSI level during
receiving of a packet in CC2420 with its value appended to
each frame. RSSI is averaged over 8 symbol periods (128µs)
and is continuously updated for new symbols received. Using
the RSSI value directly to calculate the LQI value has several
disadvantages [13]. In CC2420, LQI is not estimated based on
RSSI, but rather a correlation value that indicates “chip error
rate”.2 Therefore, RSSI may contain information that is not
available in LQI and we include it as input feature here.

Channel load assessment is a metric used in CODA [14] to
detect local network congestion. It uses a sampling scheme to
monitoring local channel at appropriate time to minimize the
energy cost while performing accurate estimates of congestion
conditions.

Queue management is widely used in wired networks for
congestion detection. In wireless networks, it is also closely
related to local channel conditions. We use both forward
buffer size and send buffer size as indications of congestion

2A combination of RSSI and correlation values may be used to generate
LQI, as suggested in [13].

here. However, as pointed out in [14], without link-level
acknowledgments, buffer occupancy or queue length cannot
be used as an indication of congestion. In our experiment,
link-level acknowledgment is enabled for the CC2420 radio.

Because network topology may strongly influence the traffic
load in a data collection application, it could also have an
impact on link delivery capability. Network topology can be
characterized as node depth in a network or the number of
children a node has in the data collection tree. We use node
depth, which is defined as the number of hops to the sink
in the collection tree. Due to funneling effects, node depth is
strongly correlated to link quality.

Lastly, pSend and pRecv are originally used to derive the
forward and backward delivery probability. Therefore, they
capture important link quality information. On one hand, if
their values are valid, they contain history information of
link delivery. On the other hand, if their values are invalid,
something unexpected has happened in the network, such as
a congestion collapse, which could also be used to infer link
quality. Therefore, we include them as input features. We will
show later in this section that these two metrics are crucial in
improving the classification accuracy.

Note that some features vary at a large time-scale while
others vary more frequently. Since features are only mean-
ingful when measured at an appropriate time-scale, we retain
the originally-proposed time scales, such as RSSI on a per-
packet time scale and CLA on a per-sampling scale. Such a
combination of input features may not convey a meaningful
metric in reality. However, we believe that they more aptly
capture link quality than any other single metric alone.

Output labeling. Output labeling is the process of labeling
sample outputs using domain knowledge. Supervised learning
algorithms need to use labels to determine what class the input
features are assigned.

There are many ways to label link quality based on LQI.
We study two approaches in this paper. The first one uses a
binary model that only predicts a link as “good” or “bad”.
The second one uses a multi-class model and can predict
multiple classes of link quality. These link quality categories
can distinguish link quality in a finer granularity than using
the binary model. To one extreme, the multi-class model can
predict the actual LQI value numerically, which then becomes
a regression problem.

B. Step 2: Sample Collection

To perform offline training, we collect samples from all
nodes to a backend server. To avoid interference of sample
collection traffic to regular application traffic, we send sample
data to the programming board attached to each sensor node,
as configured in MoteLab. If there is no programming board
attached, or if the sensor nodes are deployed in an environment
where such configuration is impossible, we can inject extra
sensor nodes, or virtual sinks [15] that are used exclusively
for siphoning the sample collecting traffic.

Since link quality is strongly correlated with data traffic
in the network, we collect samples from a variety of offered



Predicted class
a b c Total

a 1456 257 26 1739
b 403 1369 124 1896
c 86 154 1586 1826

Total 1945 1780 1736 5461

TABLE II
CONFUSION MATRIX OF A THREE-CLASS CLASSIFIER USING JRIP.

JRip J4.8
Class TP rate FP rate TP rate FP rate

a 0.837 0.131 0.841 0.133
b 0.722 0.115 0.712 0.103
c 0.869 0.041 0.885 0.046

TABLE III
DETAILED ACCURACY BREAKDOWN FOR ALL CLASSES.

load, ranging from 0.25 pps to 4 pps, in order not to lose
traffic-related information. However, the number of samples
collected from a non-congested network is far more than that
collected from a congested network, using the same sample
collection period. Hence, we choose to prolong the sample
collection periods for high-load traffic so that we can have
enough samples from a range of loads.

C. Step 3: Offline Training

Our learning and validation experiment is performed on
Weka [11], a workbench with implementations of a variety
of standard machine learning algorithms. We use the J4.8
algorithm provided with Weka for decision tree learning and
JRip algorithm for rule learning. J4.8 implements an improved
version of the widely-used C4.5 algorithm and JRip [16]
implements Repeated Incremental Pruning to Produce Error
Reduction (RIPPER), a propositional rule learner.

As with most data-intensive machine learning algorithms, it
is important to avoid having the classifier memorize, or overfit,
the training data. We use cross validation and tree pruning in
Weka to reduce such effects. Cross validation is a standard
method to estimate classification accuracy over unseen data.
We use 10-fold cross validation in our experiments. The
available data is divided into ten equal-sized blocks. Nine
of the blocks are randomly chosen and used for training a
classifier, with the remaining block used for validation. This
process is repeated 10 times to give a reliable measure of
classification accuracy, which is 82% using J4.8 and 80%
using JRip for our evaluation on MoteLab.

Table II shows the confusion matrix for a three-class pre-
diction, in which class a contains links with the best quality,
class c the worst and class b in between. A confusion matrix
is often used to display the cost and accuracy of a multi-class
prediction. Each element (x,y) in the matrix shows the number
of samples for which the actual class is x and the predicted
class is y. The numbers down the main diagonal are those that
are predicted correctly. The accuracy of our classifier is then
(1456 + 1369 + 1586)/5461 = 80.8%.

Table III shows the TP rate and FP rate of a three-class
classifier for both JRip and J4.8, using the same dataset with
10-fold cross validation. For both algorithms, the FP rate of

JRip J4.8
Binary Multiple (3) Binary Multiple (3)

Accuracy 82.6% 80.8% 85.2% 81.1%
Overhead 7 rules 16 rules 77 nodes 135 nodes
FP rate 5.9% 4.1% 11.3% 4.6%

TABLE IV
COMPARISON BETWEEN A BINARY AND A MULTI-CLASS CLASSIFIER.
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Fig. 2. Complementary CDF of LQI. The training set is collected from
MoteLab. It shows that there is no clear threshold differentiating “good” links
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class c is lower than 5%, which means that the probability of
classifying a bad link as either a good or median one is low.
In metric-based routing, the cost of such mis-classifications is
high and both JRip and J4.8 work well in this aspect.

D. Discussions

Binary or multi-class classifier. One key difference be-
tween a binary classifier and a multi-class classifier is the
flexibility in interpreting the labels. A link with median quality
will either be classified as “good” or “bad” with a binary
classifier. If the link is good but classified as bad, it will not
be utilized. If we skew the threshold to treat more samples
as good, the probability of not distinguishing between really
good and fairly good links will increase. Using a multi-class
classifier, however, produces additional information beyond a
binary classifier. The extreme is a numerical classifier that
predicts the exact LQI value. However, usually the accuracy
drops with increased number of categories. The tradeoff is
illustrated in Table IV, which compares the accuracy, memory
footprint and FP rate between a binary classifier and a three-
class classifier.

The accuracies of three-class classifiers using both JRip
and J4.8 are lower than the accuracies of their corresponding
binary classifiers by at most 3%. For J4.8, the size of the
decision tree learner is relatively large. For JRip, however, the
size increase is small since 16 rules take only a few hundred
bytes to represent.

Another advantage of using multi-class classifiers is the
small FP rate compared to a binary classifier. This can be
explained by looking at the distribution of LQIs. Figure 2
is the Complementary CDF (CCDF) of the LQIs used in our
dataset. It shows that there is no clear threshold that can divide
the links into “good” ones and “bad” ones. Simply drawing
a line to divide the links into two categories may result in
classifying some links with median quality as “bad” ones and
vice versa. The overall performance will suffer if such error
rates are high. We will show in Section V how multi-class



M1 M2
Rank Feature Rank Feature

0.70812 psend 0.3251 RSSI
0.58138 RSSI 0.1577 fwd buf
0.34003 precv 0.1384 psend
0.03586 depth 0.0771 precv
0.00406 fwd buf 0.0628 depth

0 CLA 0 send buf
0 send buf 0 CLA

TABLE V
RANKED ATTRIBUTES.

7-feature 5-feature 1-feature 1-feature
(RSSI) (pSend)

Accuracy 80.8% 80.8% 70.5% 69.3%
Overhead 16 rules 17 rules 4 rules 20 rules

Bad FP rate 4.0% 4.1% 3.9% 4.1%

TABLE VI
IMPACT OF FEATURE SELECTION. THE 5-FEATURE SET IS SELECTED

USING THE UNION OF FEATURES IN M1 AND M2.

classification can improve routing performance.
Feature selection. Because irrelevant features will degrade

the performance of decision tree learners and rule learn-
ers [11], it is beneficial to perform an attribute selection
to eliminate all but the most relevant features. We already
selected a set of features based on our understanding of the
problem domain and the physical meaning of each attribute.
Here, we use some well-established methods to further sieve
those features to further improve prediction accuracy and
reduce the overhead of feature collecting.

We use two attribute selectors provided by Weka: Info-
GainAttributeEval (M1) and GainRatioAttributeEval (M2). We use
the union of their output features as our final feature vector,
as shown in Table V.

M1 evaluates the worth of an attribute by measuring the
information gain with respect to the class, while M2 measures
the gain ratio. M2 takes into account the information each
attribute contains, which is neglected in M1. Equations 1 and 2
are their mathematical definitions:

InfoGain(C,Attr) = I(C) − I(C|Attr) (1)

GainRatio(C,Attr) =
I(C) − I(C|Attr)

I(Attr)
(2)

with I(C|Attr) the binary entropy of class C given attribute
Attr. Entropy is widely used in machine learning to represent
the amount of information an attribute contains with respect
to the class of interest.

The impact of feature selection to learning accuracy, mem-
ory footprint and FP rate of class c (bad) is demonstrated
in Table VI. In particular, we compare the accuracy using
all 7 features to the accuracy of using only one feature.
Clearly, using more features results in a higher accuracy
than using only one. This supports our motivation to look
at more features. The impact of feature selection to routing
performance is discussed in Section V.

Impact of training corpus size. Figure 3 shows how
training corpus size affects classification accuracy and FP rate.
Empirically, 5000 samples are sufficient.
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Fig. 3. Accuracy (left-axis) and FP rate (right-axis) as a function of training
corpus size.

Hardware dependency. Although our supervised classifica-
tion process requires a manual method to label link quality, it
does not depend on any particular metric, such as the LQI
value available only on 802.15.4 radios. Other metrics, if
indicative of link quality, can also be used for labeling.

IV. CASE STUDIES

In this section, we present case studies that illustrate how
supervised learning technique can be leveraged to enable
situation-aware routing in wireless sensor networks.

A. Usage I: Collection Routing in Congested Networks

MintRoute is a collection routing protocol that uses ETX to
construct a routing tree to the sink. It fails to find parents in
congested networks due to the malfunction of snooping-based
link quality estimation. We propose MetricMap, an alternative
to MintRoute that establishes link quality estimations using
offline trained classifiers to address this problem.

MetricMap consists of two components. The first compo-
nent controls the update of all features which is triggered either
by packet arrivals or timer events. The second component
controls link classification, with input from features collected
by the other component and output in numerical or categorical
values indicating link quality. The output of the classifier is
used whenever the ETX-based method fails.

B. Usage II: Situation-Aware Reliable Transport (SHARP)

Two major causes of packet drops in wireless sensor net-
works are lossy links and a constrained storage hierarchy. We
have discussed link transmission characteristics in the previous
case study. As to storage hierarchy, sensor nodes are severely
constrained in the amount of memory available to applications
and this problem is compounded by the lack of dynamic mem-
ory allocation in TinyOS. Advances in hardware design may
mitigate this problem [17]. However, the storage hierarchy
will still be constrained for many applications and passive
caching/retransmission mechanisms used in reliable transport
can lead to resource waste and contention. We present SHARP,
a situation-aware reliable transport atop PSFQ that considers
the factors correlated with packet retransmissions to improve
resource efficiency while maintaining desired reliability.

SHARP also works in two phases. In the training phase, all
nodes run PSFQ and a data logger is used to collect the feature
vector and the fetch event. The data logger is a PC connected
to the MicaZ nodes via a programming board. The mote is
either triggered by a timer or by a fetch event. We use a timer



// update feature vector on demand or periodically
void updateRSSI () {

foreach packet successfully received from neighbor i
keep the RSSI value history for i

}
void updateBuf (int type) {

during each update interval
update the buf size for type (fwdBuf or SendBuf)

}
void updateCLA () {

during each update interval
check the clear channel assessment and update CLA

}
void updateProbSend () {

// this feature is updated the same as in MintRoute
}
void updateProbRecv () {

// this feature is updated the same as in MintRoute
}
int classify (struct featureVec fv) {

// perform classification based on input features
// the output represents the class label

}
// update link quality based on classification results
// recvEst is the in-bound link quality estimation
// link quality is between 0 (low) and 255 (high)
void updateEst(fv) {

if (classify(fv.rssi, fv.sendBuf, fv.fwdBuf, fv.depth,
fv.CLA, fv.pSend, fv.pRecv) == "good") {

recvEst = 1 * 255
} else {

recvEst = 0
}

}

Fig. 4. Pseudo-code of MetricMap.

to trigger creations of training samples when no fetch event
occurs. This is to ensure that we have enough samples from
both categories: fetch or no fetch. After collecting training
samples, we conduct an offline learning that outputs a classifier
predicting fetch or no fetch given the features observed. In the
online phase, we embed this classifier into PSFQ. Only when
the classifier predicts a fetch shall we cache those packets this
node pumps out recently.

Since multiple packets could be fetched when a packet loss
is detected, we need to ensure that packets arrived recently are
cached locally to serve this fetch. We look at the cache size as
a sliding window and define it as history window. Intuitively,
the larger the history window, the lower the fetch miss rate
and the higher the memory footprint. In our current design,
we use a constant as the history window size.

C. Implementation

The pseudo-code is listed in Figure 4. All functions starting
with update are used for online feature collection. As we dis-
cussed in previous sections, we need to collect a set of features
with different features at different time scales. For example,
update{Buf,CLA,ProbSend,ProbRecv}() are all at
a per-sampling scale and updateRSSI() is at a per-packet
scale. Similar to MintRoute, MetricMap periodically updates
its estimations of link quality in updateEst(). It returns a
value between 0 and 255 that is used to calculate the ETX from
a node to the sink. In the core of updateEst()is a function
call to classify(), which implements the classification
component and returns an estimate of link quality in categories
using our offlined learned classifier. This is significantly dif-
ferent from MintRoute in that no packet snooping is required
to conduct link quality estimation.

Due to space limitation, we omit a description of the
SHARP implementation. However, the classifiers used in both

cases are very similar and the only difference is in the type
of features used.

V. TESTBED EVALUATION

To illustrate the application of supervised machine learning
in realistic sensor network application settings, we have imple-
mented a collection routing protocol and a reliable transport in
TinyOS and deployed them on testbeds of real sensor nodes.

In what follows, we present evaluation results of our Met-
ricMap prototype deployed over a real-world sensor network
testbed and our SHARP prototype deployed over a multihop
sensor network in our lab. They both use TinyOS and run on
MicaZ motes.

A. Evaluation Methodology

In our evaluation, we consider the following performance
metrics:

Data delivery rate: The fraction of data packets that are
successfully delivered to the destination.

Data latency: The time it takes to send a packet out till the
packet is received at the sink.

Fairness index: This metric [18] is used to measure the
variability of performance across all source nodes. This is an
important metric for applications that require same delivery
performance from all sources. For any given set of delivery
rates (p1, . . . , pn), the fairness index definition adapted for our
problem is given by:

f(p1, . . . , pn) =
(Σn

i=1pi)2

nΣn
i=1p

2
i

with pi denoting the average packet delivery rate of the ith
sensor and n the total number of source nodes in the network.
The fairness index always lies between 0 and 1. If all nodes
have the same packet delivery rate, the fairness index is 1.

In each experiment, we also measure the overhead required
to achieve these performance metrics. In particular, we are
interested in memory footprint. The testbed is comprised of
MicaZ motes which have ATMEL 7.37 MHz ATMega128L,
low-power, 8-bit micro-controller with 128 KB of program
memory, 512 KB measurement serial flash data memory, and
4 KB EEPROM. It uses a Chipcon CC2420,a single-chip
IEEE 802.15.4 compliant Radio Frequency (RF) transceiver
operating at 2.4 GHz and capable of transmitting at 250 kbps.
The packet size used in our experiments is 29 bytes, the default
value in TinyOS. These motes are connected to an Ethernet
for logging and mote-programming.

B. MetricMap Results

We evaluate the performance of MetricMap on the MoteLab
testbed, consisting of 30 motes across multiple offices in the
Harvard Computer Science Building.

Our experiment consists of two phases: the offline learning
phase, which takes multiple hours for collecting training
samples and processing the learning task using Weka; and the
online optimization phase that uses the inference rule learned
in the training phase to drive situation-aware routing. Each run
lasts 15 minutes.



When we evaluate the performance of MintRoute and
MetricMap on MoteLab, the results are different for runs at
different times. This is because of uncontrollable factors in the
testbed, especially the variability of link qualities. Therefore,
we take the following approach to reduce the impact of
uncontrollable factors in the environment. We run MintRoute
followed by MetricMap or vice versa for a continuous 15
minutes. We run such pairs of experiment 5 times and each
experiment is independent with respect to each other. Such a
design allows us to minimize influences from factors other than
the algorithm itself. Also, our experiments are performed both
in daytime and nighttime when the human activity interference
decreases. For each offered load, the minimum, median and
maximum values are shown.

Performance and Overhead. Figure 5(a) compares the
data delivery rate between MetricMap and MintRoute. Our
approach, MetricMap, consistently outperforms MintRoute.
The higher the traffic load, the better MetricMap performs
compared to MintRoute. MintRoute can rarely form a data
collection tree under high traffic rates. In contrast, our ap-
proach can form a tree because it does not rely on data traffic
for link quality assessment.

Figure 5(b) shows the packet latency comparison. Packets
delivered by MetricMap have a comparable average latency
to those delivered by MintRoute. Data latency includes local
processing time at the source node and all intermediate nodes
along a multihop route, network transmission time over all
links and reception processing time at destination. Our classi-
fier will be used regularly for updating the data collection tree.
This may introduce some delay in the local processing time
and transmission time if the calculation is on the critical path
of data transmission. Our results show that the extra processing
time in classification online does not impose a high overhead
and delay on packet transmission.

Figure 5(c) compares the fairness index of packet delivery. It
demonstrates that our approach is much better able to maintain
fairness across different offered loads. It does not treat certain
nodes better than others. This is reasonable since all nodes use
similar rule-sets learned offline and there is no bias towards
any particular link. On the other hand, since MintRoute relies
on data traffic to infer link quality, the link selected may be
skewed depending on the traffic pattern and their location
to the sink. If any part of the network en route to the sink
is overloaded, the MintRoute data collection process will be
interrupted. MintRoute uses broadcast in this case to try to
resume the communication, but this actually exacerbate the
problem by adding more useless traffic into the network. Our
classifier can mitigate the problems by discerning meaningful
link information without imposing any additional traffic. Once
the routing tree is re-formed, the data collection process can be
resumed very quickly. So, using MetricMap, more nodes can
deliver their data to the sink, which results in a higher fairness
index. In contrast, MintRoute has a few nodes that deliver a
lot of packets and the rest that have a very low success rate.

In summary, MetricMap addresses the high data rate chal-
lenge with a different perspective, compared to congestion

Component ROM (Flash) RAM
Surge+MintRoute 16570 1971
Surge+MetricMap 18468 2110

TABLE VII
CODE AND MEMORY USAGE COMPARISONS ON MICAZ. RAM IS MEMORY

USAGE IN BYTES AND ROM IS PROGRAM SIZE IN BYTES.
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Fig. 6. Performance improvement comparison with heuristics-based ap-
proach.

control mechanisms [14], [15], [19]. Our approach is orthog-
onal to theirs and combining them will potentially achieve
further performance improvement.

Since MetricMap needs to keep local metrics that are used
as input to the classifier, it requires some extra memory usage.
We use the memory footprint of MetricMap as a measure
of overhead, as shown in Table VII. Table VII shows the
actual memory footprint of MintRoute and MetricMap. The
increase in program size is 11.5%, which is used mostly for
implementing the classifier. The increase in static memory size
is 7.1%, which is mostly data structures used for collecting and
converting low-level metrics to input of the classifier. This is
a small increase from the original code and memory footprint.

Our results so far have shown that MetricMap produces
consistently higher performance than MintRoute when the
traffic rate is high. To understand if such benefits come from
a better selection of good quality links, we further compare
MetricMap with another data collection protocol RSSI, which
uses the RSSI values of received packets as the only indication
of a link’s quality. If the recently received packets have higher
RSSI values compared to other links, the protocol will assign
a higher quality value to this link than the others. Other than
that, RSSI is the same as MetricMap. Thus, RSSI does not
account for any factors other than packet RSSI values and
makes its estimation using heuristics.

Figure 6 shows the average improvement of RSSI and
MetricMap over 5 independent testbed runs, using the per-
formance of MintRoute as the base line. For example, the
improvement of protocol RSSI in terms of packet delivery
rate is calculated as (pRSSI − pMintRoute)/(pMintRoute). The
figure shows that MetricMap has a higher performance in
terms of packet delivery rate and fairness index, compared
to RSSI. Since MetricMap uses more features to make link
quality estimation, it potentially will find better links that have
the capability to deliver more traffic. There is a minor increase
in data latency for both protocols. This is because both RSSI
and MetricMap deliver more packets than MintRoute and these
packets usually have longer number of hops to traverse.
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Fig. 5. Performance versus per-sensor load using a periodic workload.

C. SHARP Results

We ported the initial PSFQ release to the MicaZ platform
and tested it using TinyOS 1.1.13. We also linked the parent-
selection component of MintRoute to PSFQ to get link quality
assessment. The transmission radii are configured to form
an unreliable 2-hop multihop network in an indoor office
environment. We send a 20KB file using the two-hop network.
Due to the long-term temporal variability of link quality [20],
transferring a short file may result in two outcomes: (1) the link
quality is constantly low and packet fetches are very frequent,
or (2) the link quality is constantly good and packet fetches
are very rare. In the first case, SHARP performs as well as
PSFQ as it caches almost every packet. In the second case,
SHARP performs as well as PSFQ in terms of reliability
but with a much lower memory usage. Therefore, to fairly
compare between PSFQ and SHARP, we need a situation
that demonstrates such variability. On average, SHARP should
outperform PSFQ since it saves memory for periods that have
good connectivity. Furthermore, resource efficiency becomes
more important when distributing large files. The data file
is divided into blocks of 16 bytes to be pumped in 29-byte
packets. Therefore, each cache line saved in flash memory is
16-byte long.

To understand the performance of SHARP, we use the
following performance metrics: (1) Miss rate of fetch, defined
as the ratio of the number of misses to the total number of
(re)fetches, and (2) Storage efficiency, defined as:

Storage efficiency =
MPSFQ − MSHARP

MPSFQ

with Mp the memory footprint of protocol p.
Performance results. We used a history window of 192

bytes, which corresponds to 12 cache lines. The miss rate
of fetch is only 4.7% for this experiment. Thus, only 95.3%
of the fetches can be repaired locally and only 4.7% of the
fetches need to be saved by nodes at least two hops away. In
applications that require large amount of space, our scheme
will produce significant savings in storage. The saved space
could either be used for storing data from other nodes to
increase reliability, or for optimization purposes, such as in-
network processing, compression, etc. In a high rate, many-
to-one structure monitoring application, we conjecture even

Component ROM (Flash) RAM
PSFQ [21] 22752 1163
SHARP 3 26842 2724 + 16N

TABLE VIII
CODE AND MEMORY USAGE COMPARISONS ON MICAZ. N IS THE

ADDITIONAL NUMBER OF FEATURES TO COLLECT.

higher benefits due to the data funneling effect.
Overhead. Table VIII shows the code size and memory

footprint of both PSFQ and SHARP. The code size of SHARP
is 18% larger than PSFQ. This mainly comes from the feature
collection part, which also includes the link quality assessment
component of MintRoute. Since the total program size in
MicaZ is 128K bytes, the amount of increase is negligible.
The memory footprint of SHARP is 1561 bytes more than
PSFQ, plus the memory required for any additional feature
to collect. Each feature can be represented using any data
structure. In SHARP, all features are 16-bit integers. The
major increase comes from the parent-selection component of
MintRoute. Since we only need the link quality assessment
function, the memory footprint can be further optimized to
drop the unnecessary components.

VI. RELATED WORK

Significant work has been done to achieve the ability to
rapidly observe, decide and react to the dynamics in wireless
sensor networks, where a wide range of network conditions
exist. Most previous work either uses “rule of thumb” focusing
on a single metric that may lose useful information or mislead
the understanding of situations, or uses sophisticated heuristics
that takes a lot of expertise and domain knowledge to derive.
This section surveys the most related work in this aspect within
sensor networks. We also briefly review the application of
machine learning to problems in other domains.

Link quality estimation. Link quality awareness perme-
ates many aspects of sensor network design and operation,
ranging from the design of MAC protocols to the design of
applications. As a result, link quality estimation has become a
significant research focus. Many of the proposed metrics [20],
[22]–[24] consider spatial or temporal variability of link
quality. Unfortunately, they share one similar limitation: the

3The version of SHARP evaluated is not optimized for program size and
memory footprint, but rather ease of feature collection and code readability.



performance of their metrics depends heavily on model accura-
cies, which need trial-and-error tuning and expert knowledge.
Our approach, on the other hand, passively collects features
and uses standard learning algorithms to discover the inner
correlation. Furthermore, their observations on temporal and
spatial variability of channel conditions can be used in our
work to improve learning efficiency.

Machine learning. There has been significant prior work
applying machine learning to different areas of research,
including system-related problems, such as compiler optimiza-
tions [25], and reliability optimizations [26]–[28]. Machine
learning has also been used for modeling data generated by
sensor networks. Guestrin et al. [29] used kernel-based regres-
sion to accurately model sensor data and reduce the dimen-
sionality of data representation. This approach significantly
decreases the communication requirements in the network.
More recently, Krause et al. [30] studied sensor placements
using probabilistic models that account for both data quality
and communication costs. Our approach, however, focuses on
optimizations within the networking protocol stack.

Routing optimization. In terms of efficient routing design
in the presence of unreliable radio links, [31] takes a joint-
optimization approach that considers both the recovery of lost
packets in the link layer as well as path selection in the
routing layer. The metric they proposed considers many of
the features we used in this work. However, our focus is on
learning information that is otherwise unavailable with tradi-
tional approaches. Therefore, our method can be combined
with theirs to further improve communication efficiency.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a supervised learning framework that
helps to make informed routing and reliability decisions in
sensor networks. We have applied this framework to both link
quality estimation and to packet caching with good results. In
addition to performance improvements, our approach also mit-
igates the complexity often needed to heuristically incorporate
situation awareness into network systems.

Beyond this initial prototype, we envision future work to
include the following. First, we wish to incorporate more
dynamic and online training techniques that can better adjust
to varying network conditions. Second, we wish to evaluate
how our approaches work in very heterogeneous networking
conditions, where distributed learning may be desirable. Third,
we wish to apply our learning techniques to other network
optimization problems.

Overall, this work offers an important first look at machine
learning techniques for the particular network problems we
have evaluated. In demonstrating machine learning’s consid-
erable performance advantages, this paper has made a first step
towards clean implementations of highly-effective, situation-
aware learners for a variety of challenged networks.
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