
A Supervised Learning Approach for Routing
Optimizations in Wireless Sensor Networks

Yong Wang, Margaret Martonosi, and Li-Shiuan Peh
Princeton University

{yongwang, mrm, peh}@princeton.edu

ABSTRACT
Routing in sensor networks maintains information on neighbor states
and potentially many other factors in order to make informed deci-
sions. Challenges arise both in (a) performing accurate and adap-
tive information discovery and (b) processing/analyzing the gath-
ered data to extract useful features and correlations. In this paper,
we explore using supervised learning techniques to address such
challenges in wireless sensor networks. Machine learning has been
very effective in discovering relations between attributes and ex-
tracting knowledge and patterns using a large corpus of samples.

As a case study, we use link quality prediction to demonstrate the
effectiveness of our approach. For this purpose, we present Met-
ricMap, a link-quality aware collection protocol atop MintRoute
that derives link quality information using knowledge acquired from
a training phase. Our approach allows MetricMap to maintain effi-
cient routing in situations where traditional approaches fail. Eval-
uation on a 30-node sensor network testbed shows that MetricMap
can achieve up to 300% improvement on data delivery rate in a
high data-rate application, with no negative impact on other per-
formance metrics, such as data latency. Our approach is based on
real-world measurement and provides a new perspective to routing
optimizations in wireless sensor networks.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Routing protocols; I.2.6 [Artificial Intelligence]: Learning

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Sensor networks, link quality, supervised learning, classification

1. INTRODUCTION
Many critical applications in wireless sensor networks rely very

fundamentally on fast, efficient, and reliable data delivery. In order

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
REALMAN’06, May 26, 2006, Florence, Italy.
Copyright 2006 ACM 1-59593-360-3/06/0005 ...$5.00.

to overcome the inherent unreliability of sensor network commu-
nication links, communication protocols increasingly employ intri-
cate and situation-aware adaptations to identify good routes and to
determine resource-efficient methods for handling data.

The difficulties in situation-aware network adaptations are two-
fold. First, some adaptation techniques are hard-wired heuristics
based on observations of a few stylized types of network problems
and their solutions. The more problems one envisions, the more
complicated the protocol becomes in trying to adapt around them.
Second, environmental factors interact in such complex ways that it
can be difficult to identify correlations and crisply define the prob-
lem scenarios to protect against.

In this paper, we explore using machine learning techniques to
improve situation-awareness in order to optimize sensor network
communication. Machine learning is an effective and practical
technique for discovering relations and extracting knowledge in
cases where the mathematical model of the problem may be too
expensive to get, or not available at all. Supervised learning is a
particular case when the inputs and outputs are both given. For
example, inputs might include node-level and network-level met-
rics, such as buffer occupancies, channel load assessments, packet
received signal strength, etc. Output may be the expected number
of transmissions over the link where the packet is received. Essen-
tially, we aim to use machine learning to automatically discover
correlations between readily-available features and the quantity of
interest. Supervised learning is an effective learning technique in
solving this type of problem.

We manage the resource constraints of sensor networks by em-
ploying machine learning in two phases: an offline training phase
followed by an online classification. Offloading the training task
from the sensor node reduces the processing, communication, and
energy requirements of the node. The resulting classifiers to be
used online are both strikingly lightweight and strikingly effective.
For the case studies we have examined, our supervised learning
techniques result in prediction accuracies of 80% or more, with
false positive rates between 4.1% and 11.3%, and with essentially
no compute overhead during their online phase.

We evaluate the effectiveness of our approach using link quality
prediction as a case study. For this purpose, we present MetricMap,
a data collection protocol atop MintRoute that predicts link quality
using knowledge gathered at the training phase when the network
is highly congested. Evaluation of a prototype implementation in
TinyOS on a real-world sensor network shows that MetricMap can
improve over existing approaches by up to a factor of 3 for a high
data-rate application. The compactness of our classifier makes it
suitable for resource-constrained situations.

The primary contributions of this paper are summarized as fol-
lows. First, we develop a framework that uses supervised learning

to automatically extract useful information within sensor networks.
Because the method is automatic, our technique can be used for
other situations having different hardware and other run-time fac-
tors with minor modifications. This is advantageous over heuris-
tic methods whose effectiveness may depend on the context where
they are developed and evaluated.

Second, we cast the link quality estimation problem as a classi-
fication problem, which permits the use of standard, yet effective
algorithms. Decision tree learners and rule learners represent such
algorithms. We believe a large range of applications can benefit
from this approach.

Third, we show that tree-based routing topologies in data collec-
tion applications may suffer from information loss, such as neigh-
bor link quality, in an overloaded network. We use supervised
learning to establish data collection trees in such adverse condi-
tions. Our approach is capable of maintaining efficient routing by
locating high quality links.

The rest of this paper is organized as follows. Section 2 intro-
duces the background knowledge. Section 3 describes the details
of our learning framework. Section 4 and 5 present our case study
and results of a prototype implementation on a real-world sensor
network testbed. Related work is discussed in Section 6 and the
last section summarizes the main results and outlines future work.

2. BACKGROUND
2.1 Link Quality Estimation

Wireless sensor networks are very different from wired networks
in that the link quality fluctuates greatly as a consequence of inter-
ference and propagation dynamics. Therefore, developing efficient
routing in sensor networks requires the establishment of high qual-
ity paths, which in turn entails accurate knowledge of link quality.
In this section, we briefly review the mechanisms behind existing
link quality estimation methods, including both software-based and
hardware-based ones. We also explain how they fail to function
when the traffic rate becomes high. This motivates our work on
new approaches based on machine learning.

2.1.1 Software-based Estimation
A few software-based link metrics have been proposed in the

past. Route metrics are built atop these link metrics to capture
the end-to-end capability of forwardness. For example, ETX [9],
also proposed in MintRoute [26] is one such route metric. It is de-
fined as the expected number of transmissions (including retrans-
missions) for a successful end-to-end data forwarding and hop-by-
hop acknowledgment.

We focus here on the snooping-based method adopted by MintRoute.
It defines link quality as

etx(l) =
1

pf (l) × pr(l)

with pf (l) the forward probability of link l and pr(l) its reverse
probability. pf (l) is calculated using the ratio of the number of data
packets received to the total number of data packets transmitted
over l. pr(l) is calculated as pf (l) with l the reverse link of l. The
route metric of a n-hop path p is then calculated as ETX(p) =
Pn

i=1
etx(li), the total expected number of (re)transmissions along

the path.
However, in many high data-rate applications [20, 15], a snooping-

based method works poorly, as we will quantify shortly. For ex-
ample, consider the high data-rate structure monitoring application
discussed in [20]. Due to structural vibration damping effects, a
very high data sampling rate is required, which is estimated to be at

least 200Hz. Therefore, the data rate can be as high as 9.6Kbps per
node with each node sampling 16-bit in three spatial dimensions.
Even with in-network processing techniques, such as data aggre-
gation, compression and coding, the expected data rate is still very
challenging for current systems to cope with.

To demonstrate the impact of high traffic loads on ETX’s link
quality estimator, we evaluate the performance of MintRoute by
running the Surge application1 on MistLab [17], an indoor sensor
network testbed of 60 Mica2 nodes. Surge is a data collection ap-
plication in which each node generates data traffic at a constant rate
and sends to the sink via multi-hop routing. We use MintRoute to
build the multi-hop data collection tree that chooses a parent based
on additive link/path quality estimation. Figure 1 shows that packet
delivery rate degrades once the offered load is 2 packets/second
(pps) or higher.

Figure 1(a) shows the network-wide fraction of orphan nodes,
defined as nodes that have no parent information in the collection
tree, with traffic loads of 2pps and 4pps. We only consider orphans
caused by lack of information, instead of those caused by network
disconnections. The percentage of orphan nodes increases quickly
with increases of offered load. For 4pps offered load, 90% of the
nodes do not have a parent 50% of the time. This dramatic increase
in percentage of orphan nodes is a direct cause of data packet loss in
the network, shown in Figure 1(c). Given a percentage of packets p
received from a given node at the sink, the Cumulative Distribution
Function (CDF) plots the fraction of sensors that deliver at most p
percent of their data to the sink. For the 4pps case, about 60% of
all nodes have less than 10% data delivered. Figure 1(b) plots the
distribution of orphan nodes as a function of time. The x-axis is the
experiment timeline in units of seconds. The y-axis is the node ID.
Each square dot at (x, y) indicates that at time instant x, node y
has no parent. In a network with a partitioned collection tree, many
packets are transmitted from the edge toward the sink, only to be
dropped before reaching the sink.

An examination of the etxs of all nodes shows that a large pro-
portion of links have quality values indicating barely any trans-
missions can be carried through. This is directly related to how
snooping-based estimation methods behave in an overloaded net-
work. As a result, routing is interrupted due to a lack of link quality
information. However, since not all links are overloaded, routing
can be resumed once an accurate estimation of link quality is in
place. We wish to develop link quality estimators that are more
resilient in high-traffic settings. Machine learning offers us an effi-
ciency way to discover them.

2.1.2 Hardware-based Estimation
The link quality indication (LQI) metric is a characterization

of the strength and/or quality of a received packet, introduced in
802.15.4 standard [1] and provided by CC2420, the radio used in
many mote platforms, including MicaZ and Telos. LQI measures
the incoming modulation of each successfully received packets and
the result is an integer ranging from 0x00 to 0xff. The minimum
and maximum LQI values (0x00 and 0xff) are associated with the
lowest and highest quality signals detectable by the receiver (be-
tween −100dBm and 0dBm). Link quality values in between are
uniformly distributed between these two limits. A measurement
study [21] on the Telos platform shows that the average LQI closely
maps the average success rate of packet transmissions across sev-
eral links.

In this paper, we use LQI to label link quality in each training
sample. We do not use LQI directly for link quality estimation
1The reference implementation is in the TinyOS CVS repository:
tinyos-1.x/apps/Surge/.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 20 30 40 50 60 70 80 90 100

Cu
m

ul
at

iv
e

Fr
ac

tio
n

of
 A

ll
N

od
es

 (%
)

Fraction of orphan (%)

4pps
2pps

(a) CDF of percentage of orphan nodes.

 0

 10

 20

 30

 40

 50

 60

33:00 36:00 39:00 42:00 45:00 48:00 51:00 54:00 57:00 00:00

N
od

e
ID

Time

Orphan Node

(b) Spatial distribution of orphan nodes as a
function of time.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

Cu
m

ul
at

iv
e

Fr
ac

tio
n

of
 A

ll
N

od
es

 (%
)

Packet Delivery Rate (%)

4pps
2pps

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

Cu
m

ul
at

iv
e

Fr
ac

tio
n

of
 A

ll
N

od
es

 (%
)

Packet Delivery Rate (%)

4pps
2pps

(c) CDF of packet delivery rate (PDR).

Figure 1: Experiment results in a MistLab testbed deployment (60 motes). The percentage of orphan is defined as the ratio of orphan
period to the whole running time. We periodically probe the routing state of a node and estimate this fraction as the ratio of the
number of times that the node is an orphan to the total number of probes. The first two figures shows the spatial and temporal
distribution of orphan nodes for different offered load. The fraction of orphan nodes is very high when the offered load is above
2pps, which leads to a lack of routing information and a need for prediction.

during routing because LQI is only available with each successfully
received packet. In a congested network, the number of received
packets is small and LQI is not a reliable measure of link quality.
Our approach can avoid this problem by tracking features that are
available all the time. If some feature is missed, it will use other
features to infer the situation based on the knowledge obtained from
training.

2.2 Supervised Learning Overview
The goal of supervised learning is to predict the value of an out-

come measure based on a number of input measures [18]. The
outcome measure could be numerical or categorical. Learning is
performed on a set of training samples. Each sample <xi,yi> con-
sists of a feature vector xi and a corresponding class label or nu-
merical value yi. The feature vector contains measurable features
of the system under consideration. If the outcome is categorical,
the learning becomes a classification problem. Training a classifier
usually involves finding a mapping from feature vectors to output
labels so that the overall classification error is minimized on the
training samples. A good learner should accurately predict new
samples not in the training set. Therefore, given a classification
problem, we need to decide (a) what features to measure and (b)
what learning algorithm to use to maximize the learning accuracy.

In this paper, we evaluated two classifiers — decision tree learn-
ers and rule learners. There exist other, more sophisticated, meth-
ods of classification, including support vector machines, Bayesian
networks, and ensemble methods. Any such learner can be used
as the classifier for our technique. However, our results show that
decision tree learners and rule learners produce remarkably good
accuracy for our case study and many times they achieve the high-
est accuracy among all algorithms studied.

Decision tree learners. Decision tree learners are widely used in
solving classification problems with classifiers represented as trees.
They take a “divide-and-conquer” approach and recursively divide
attributes at each internal node in the tree based on information
they possess. Leaf nodes represent classification decisions. Prun-
ing methods are used to prevent overfitting of training data. Al-
though decision tree learners are not always the most competitive
learners in terms of accuracy, they are computationally efficient and
the results produced can be easily converted to human-readable for-
mats.

Rule learners. Rule learners are used for learning IF-THEN
rules. Like decision tree learners, rule learners work on training

samples with similar input/output pairs. However, since the rule-
sets learned are disjoint to each other, they usually produce far
fewer rules than decision tree learners on the same training set, with
a comparable accuracy. This makes it preferable in scenarios where
classifiers need to be used at runtime.

Learning overhead. Due to resource constraints in wireless sen-
sor networks, however, we need to also consider learning efficiency
and overhead, in addition to learning accuracy. These constraints
include node processing time, energy budget, and memory foot-
print, etc.

Since in our proposed framework, training is conducted offline,
usually on a resource-rich backend PC or server, we focus on the
overhead of online classification and feature collection. To utilize
the output of a decision tree learner, we need to translate it into
IF-THEN rules. As the number of produced rules is as many as
the number of leaf nodes in the tree, a large tree with hundreds of
leaves will result in hundreds of rules to be hand-coded into the
protocol. Therefore, we instead prefer to use the output from rule
learners in implementing the online classifier, if their accuracies are
acceptable. Also, we prefer learners that produce human-readable
output and both decision tree learners and rule learners are good for
this purpose.

Learning cost. Given a classifier and an instance, there are four
possible outcomes. If the instance is positive and it is classified as
positive, it is counted as a true positive (TP). On the other hand, if
the instance is negative and it is classified as positive, it is counted
as a false positive (FP). TP rate is defined as the ratio of positives
correctly classified to the total positives. FP rate is defined as the
ratio of negatives incorrectly classified to the total negatives.

It is crucial for a real-world application to consider FP rate since
the FP rate represents the cost of learning. Usually we want a high
TP rate (high benefits) and a low FP rate (low costs).

3. LEARNING STEP-BY-STEP
In this section, we introduce the steps of our learning framework.

Figure 2 presents a high level overview of the steps involved, with
the four key steps listed as follows:

1. First, we select the features to be used in training and classi-
fication;

2. Then, we instrument every node in the network to track these
features and their corresponding labels which are periodi-
cally collected;

Supervised
Learning

features Sample
Collection

labels

Label
Extraction

Classifier

classifier

Feature
Extraction

features

(1) Training Phase

(2) Classification Phase

labels

Feature
Extraction

samplesmetrics

metrics

Figure 2: Overview of learning steps.

3. Next, we used the labeled data to perform training at the
backend server;

4. Finally, we instrument MintRoute to use the classifier for dif-
ferentiating between high quality and low quality links at
runtime for real deployment. The algorithm is depicted in
Section 4.

In what follows, we describe the first three steps listed above
with specific reference to a collection routing application. Since
the last step is closely tied to the application, we put the discussion
of application instrumentation using classifiers to Section 4.

3.1 Step 1: Feature Extraction and Output
Labeling

The first step in supervised learning extracts input features and
labels output. This step requires domain knowledge to produce
high-quality, and well-prepared data [25].

In wireless sensor networks, we favor local features (within one-
hop) that can be collected without expensive communications. This
is because sensor networks are very resource constrained and it is
desirable and necessary to impose as little overhead as possible.
However, if a feature is already available with the existing appli-
cation, such as node depth from MintRoute, we also consider it.
There is no extra overhead imposed to gather this feature and it
carries extra useful information.

Feature selection. This is the process of choosing a subset of
the feature space that best represents the problem at hand while
introducing a minimal amount of noise.

As pointed out in previous studies, link delivery probability (or
link quality) is determined by many factors, including wireless chan-
nel conditions, such as internode separation, fast fading and slow
fading, the traffic pattern in the network and local traffic load of
each node, etc. However, the extent to which these factors impact
link quality is continuously varying, which makes it impossible for
any single metric to be always a good indicator of link quality.
For example, Aguayo et al. [2] find that SNR (Signal/Noise Ra-
tio), though affecting link delivery probability, cannot be expected
to be a predictive indicator of link quality. Thus, we choose a set
of metrics that are correlated to link delivery probability to be in-
cluded in the feature vector and use machine learning tools to train
and identify the most predictive indicator, which could be a com-
bination of them. Some of them are related to channel conditions,
some of them related to network congestion, and some of them to
both. Table 1 lists the features we collected for link quality learn-
ing. They are all numerical values.

RSSI is the received signal strength indication readily available
in many radios. In CC2420, it contains the average RSSI level
during receiving of a packet with its value appended to each frame.

RSSI received signal strength indication local
sendBuf send buffer size local
fwdBuf forward buffer size local
depth node depth from the base station non-local
CLA channel load assessment local
pSend forward probability local
pRecv backward probability local

Table 1: Feature vector illustration.

RSSI is continuously updated for new symbols received.
Channel load assessment is a metric used in CODA [23] to detect

local network congestion. It uses a sampling scheme to monitor lo-
cal channel conditions and minimize energy cost while performing
accurate estimates of congestion conditions.

Queue management is widely used in wired networks for con-
gestion detection. In wireless network, it is also closely related to
local channel conditions. We use both forward buffer size (used
for multi-hop forwarding) and send buffer size to track local con-
gestion conditions. However, as pointed out in [23], without link-
level acknowledgments, buffer occupancy or queue length cannot
be used as an indication of congestion. In our experiment, link-
level acknowledgment is enabled for the CC2420 radio.

Because network topology may strongly influence the traffic load,
it could also impact link quality. Network topology can be charac-
terized using metrics such as node depth or the number of children
a node has in a collection tree. We use node depth here since it is
strongly correlated to link quality due to data funneling effects.

Lastly, pSend and pRecv are metrics originally used to derive
the average forward and backward probability. They capture im-
portant link quality information. On one hand, if their values are
valid, they will contain history information of link delivery. On the
other hand, if their values are invalid, they indicate that something
unexpected has happened in the network, such as a congestion col-
lapse, which could also be used to infer link quality. Therefore,
we include them as input features. We will show later in this sec-
tion that these two metrics are crucial in improving classification
accuracy.

Output labeling. Output labeling is the process of classifying
sample outputs using domain knowledge. Supervised learning al-
gorithms need to use labels to determine what category the input
feature vector is assigned.

There are many ways to label link quality based on LQI. We
study two approaches in this paper. The first one uses a binary
model that predicts a link either “good” or “bad”. The second one
uses a multi-class model and can predict a set of classes of link
quality. These categories can be used to distinguish link quality in
a finer granularity than using the binary model. To one extreme, the
multi-class approach can predict the actual LQI numerically, which
becomes a regression problem.

3.2 Step 2: Sample Collection
To perform offline training, we collect samples from sensor nodes

to a backend server. To avoid interference of sample collection
traffic to regular application traffic, we send sample data to the
programming board attached to each sensor node, as configured
in MoteLab. If there is no programming board attached, or if the
sensor nodes are deployed in an environment where such a config-
uration is impossible, we can inject extra sensor nodes or virtual
sinks [24] that are used exclusively for siphoning off the sample
collecting traffic.

Since link quality is strongly correlated with data traffic, we col-
lect samples from a variety of offered load, ranging from 0.25 pps
to 4 pps, in order not to lose traffic-related information. However,

JRip J4.8
Class TP rate FP rate TP rate FP rate

a 0.837 0.131 0.841 0.133
b 0.722 0.115 0.712 0.103
c 0.869 0.041 0.885 0.046

Table 2: Detailed accuracy breakdown for all classes.

the number of samples collected from a non-congested network is
far more than those collected from a congested network, with the
same sample collection period. Hence, we use longer collection
periods under high traffic loads in order to collect enough samples
from a wide range of conditions.

3.3 Step 3: Offline Training
Our learning and validation experiment is performed on Weka [25],

a workbench containing implementations of a variety of standard
machine learning algorithms. We use the J4.8 algorithm provided
with Weka for decision tree learning and JRip algorithm for rule
learning. J4.8 implements an improved version of the C4.5 algo-
rithm [22] and JRip [8] implements Repeated Incremental Pruning
to Produce Error Reduction (RIPPER), a propositional rule learner.
C4.5 is one of the most widely studied and used decision tree algo-
rithms in the literature.

As with most data-intensive machine learning algorithms, it is
important to avoid having the classifier memorize, or overfit, the
training data. We use cross validation and tree pruning in Weka
to reduce such effects. Cross validation is a standard method to
estimate classification accuracy over unseen data. We use 10-fold
cross validation in our experiments. The available data is divided
into ten equal-sized blocks. Nine of the blocks are randomly chosen
and used for training a classifier, with the remaining block used
for validation. This process is repeated 10 times to give a reliable
measure of classification accuracy, which is 82% using J4.8 and
80% using JRip for our evaluation on MoteLab.

Table 2 shows the TP rate and FP rate of a three-class classi-
fier for both JRip and J4.8, using the same link quality estimation
dataset with 10-fold cross validation. For both algorithms, the FP
rate of class c is lower than 5%, which means that the probabil-
ity of classifying a bad link as either a good or median one is low.
In the context of link-quality aware routing, the cost of such mis-
classification is high and both JRip and J4.8 work well in this as-
pect.

3.4 Discussion
Selection of learning algorithms. As mentioned earlier, we

have tested a range of classifiers trying to get a feeling of the best
accuracy we can achieve for this specific problem. Based on empir-
ical results, decision tree learners have the highest accuracy in most
cases among all learners considered. The accuracy of rule learners
is very close to that of decision tree learners. Since the outputs of
rule learners are usually very compact, which is a crucial factor to
consider in performing classifications on motes, all the experiments
in Section 5 use rule learners.

Selection of features. The impact of feature selection to learning
accuracy, memory footprint and FP rate of class c (bad) is demon-
strated in Table 3. In particular, it compares the accuracy using all
7 features to the accuracy of using only one feature. Clearly, using
more features results in a higher accuracy than using just one. This
supports our motivation to study more features.

Hardware dependency. Although our supervised classification
process requires a manual method to label link quality, it is not
dependent on any particular metric, such as LQI available only on

rssi <= 212
| depth <= 5
| | rssi <= 211: bad (320.0/37.0)
| | rssi > 211: good (79.0/34.0)
| depth > 5: bad (425.0/31.0)
rssi > 212
| rssi <= 223
| | cla <= 116
| | | depth <= 3: good (352.0/82.0)
| | | depth > 3
| | | | depth <= 4
| | | | | rssi <= 220: bad (49.0/1.0)
| | | | | rssi > 220
| | | | | | cla <= 8: good (69.0/29.0)
| | | | | | cla > 8: bad (14.0/4.0)
| | | | depth > 4
| | | | | depth <= 6
| | | | | | rssi <= 216
| | | | | | | depth <= 5: good (198.0/71.0)
| | | | | | | depth > 5
| | | | | | | | rssi <= 214: bad (8.0/1.0)
| | | | | | | | rssi > 214
| | | | | | | | | sendbuf <= 0
| | | | | | | | | | cla <= 21: bad (29.0/13.0)
| | | | | | | | | | cla > 21: good (2.0)
| | | | | | | | | sendbuf > 0: good (2.0)
| | | | | | rssi > 216: good (178.0/34.0)
| | | | | depth > 6
| | | | | | rssi <= 219
| | | | | | | rssi <= 215: good (157.0/55.0)
| | | | | | | rssi > 215
| | | | | | | | depth <= 7
| | | | | | | | | rssi <= 217: bad (129.0/29.0)
| | | | | | | | | rssi > 217
| | | | | | | | | | cla <= 0: good (20.0/6.0)
| | | | | | | | | | cla > 0: bad (12.0/3.0)
| | | | | | | | depth > 7
| | | | | | | | | rssi <= 217: good (37.0/17.0)
| | | | | | | | | rssi > 217
| | | | | | | | | | cla <= 0: bad (21.0/3.0)
| | | | | | | | | | cla > 0: good (2.0)
| | | | | | rssi > 219
| | | | | | | depth <= 7
| | | | | | | | cla <= 3: good (102.0/35.0)
| | | | | | | | cla > 3: bad (30.0/12.0)
| | | | | | | depth > 7: good (85.0/17.0)
| | cla > 116: good (62.0/8.0)
| rssi > 223: good (275.0/38.0)

Figure 3: A sample decision tree output from Weka using a
binary model for labeling. Each line represents one conditional
branch in the tree. The pair of number (m/n) behind the label
on each line means that there are a total of m instances that
reach that leaf, of which n is classified incorrectly.

7-feature 1-feature 1-feature
(RSSI) (pSend)

accuracy 80.8% 70.5% 69.3%
overhead 16 rules 4 rules 20 rules

bad FP rate 4.0% 3.9% 4.1%

Table 3: Impact of feature selection.

802.15.4 radios. Any other available metric, if indicative of link
quality, can also be used for labeling.

4. CASE STUDY
In this section, we present a case study to illustrate how super-

vised learning techniques can be leveraged to improve the perfor-
mance of link-quality aware collection routing protocols in con-
gested wireless sensor networks.

MintRoute is a collection routing protocol that uses ETX to con-
struct routing topologies. As shown in Figure 1, MintRoute fails
to find parents in congested networks, using snooping-based link
quality estimation. However, if a parent can be identified based on
other available information regarding link delivery capability, rout-
ing can be resumed and orphan nodes will be salvaged. We pro-
pose MetricMap, an alternative to MintRoute that establishes link
quality estimations using offline trained classifiers to address this
problem.

MetricMap consists of two components. The first component
controls the update of all features which is triggered either by packet

// update feature vector on demand or periodically
void updateRSSI () {
foreach packet successfully received from neighbor i

keep the RSSI value history for i
}
void updateBuf (int type) {
during each update interval

update the buf size for type (fwdBuf or SendBuf)
}
void updateCLA () {
during each update interval

check the clear channel assessment and update CLA
}
void updateProbSend () {
// this feature is updated the same as in MintRoute

}
void updateProbRecv () {
// this feature is updated the same as in MintRoute

}
int classify (struct featureVec fv) {
// perform classification based on input features
// the output represents the class label

}
// update link quality based on classification results
// recvEst is the in-bound link quality estimation
// link quality is between 0 (low) and 255 (high)
void updateEst(fv) {
if (classify(fv.rssi, fv.sendBuf, fv.fwdBuf, fv.depth,

fv.CLA, fv.pSend, fv.pRecv) == "good") {
recvEst = 1 * 255

}
else {

recvEst = 0
}

}

Figure 4: Pseudo-code of MetricMap.

arrival or timer events. The second component controls link classi-
fication, with input from features collected by the other component
and output in numerical or categorical values indicating link qual-
ity. The output of the classifier is used whenever the ETX-based
method fails. The pseudo-code of MetricMap is listed in Figure 4,
with the function classify() implementing the second compo-
nent and the rest functions implementing the first component.

5. TESTBED EVALUATION
To evaluate the efficiency of our technique in real-world sensor

network application settings, this section presents our results of ex-
periments implementing the MetricMap prototype in TinyOS and
deployed over a real-world wireless sensor network testbed.

The testbed (MoteLab [19]) consists of 30 MicaZ motes across
multiple offices in the Harvard Computer Science Building. Motes
are connected to an Ethernet used for logging and re-programming.
Each MicaZ mote has an ATMEL 7.37 MHz ATMega128L, low-
power, 8-bit micro-controller with 128 KB of program memory,
512 KB measurement serial flash data memory, and 4 KB EEP-
ROM. It uses Chipcon CC2420, a single-chip IEEE 802.15.4 com-
pliant Radio Frequency transceiver operating at 2.4 GHz and capa-
ble of transmitting at 250 kbps. The packet size for the experiments
is 29 bytes.

5.1 Methodology
In our evaluation, we consider the following performance met-

rics:
Data delivery rate: The fraction of data packets that are suc-

cessfully delivered to the destination.
Data latency: The time it takes to send a packet out till the

packet is received at the sink.
Fairness index: This metric [12] is used to measure the vari-

ability of performance across all source nodes. For any given set
of delivery rates (p1, . . . , pn), the fairness index definition adapted
for our problem is given by:

f(p1, . . . , pn) =
(Σn

i=1pi)
2

nΣn
i=1

p2

i

with pi denoting the average packet delivery rate of the ith sensor
and n the total number of source nodes in the network. The fairness
index always lies between 0 and 1. If all nodes have the same
packet delivery rate, the fairness index is 1.

In each experiment, we also measure the overhead required to
achieve these performance metrics. In particular, we are interested
in measuring the memory footprint of each protocol.

Our experiment consists of two phases: the offline training phase,
which takes multiple hours for collecting training samples and pro-
cessing the learning task using Weka; and the online optimization
phase that uses the induction rules learned in the training phase to
estimate link quality when traditional approaches fail. The training
is conducted only once and the output (a classifier) is reused for all
experiments with MetricMap. Each test lasts 15 minutes.

Due to uncontrollable factors in the testbed, especially the tem-
poral variability of links, experimental results may be very different
across runs at different time. To reduce the impact from such un-
controllable factors, we run MintRoute immediately followed by
MetricMap or vice versa. We run such pairs of experiment 5 times
and every experiment is independent with respect to each other.
Such a design allows us to minimize influences from factors other
than the protocol itself. Also, our experiments are performed both
in daytime and nighttime when the human activity interference de-
creases. For each offered load, the minimum, median and maxi-
mum values are shown.

5.2 Results
Performance and Overhead. Figure 5 compares the data de-

livery rate between MetricMap and MintRoute. Our approach con-
sistently outperforms MintRoute. The higher the traffic load, the
better MetricMap performs compared to MintRoute. MintRoute
can rarely form a data collection tree under high traffic rates. In
contrast, our approach can form a tree because it does not rely on
data traffic for link quality assessment.

Figure 6 shows the packet latency comparison. Packets delivered
by MetricMap have a comparable average latency to those deliv-
ered by MintRoute. Data latency includes local processing time at
the source node and all intermediate nodes along a multihop route,
network transmission time over all links and reception processing
time at destination. Our classifier will be used regularly for updat-
ing the data collection tree. This may introduce some delay in the
local processing time and transmission time if the calculation is on
the critical path of data transmission. Our results show that the ex-
tra processing time in classification online does not impose a high
overhead and delay on packet transmission.

Figure 7 compares the fairness index of packet delivery. It demon-
strates that our approach is much more able to maintain fairness
across different offered loads. It does not treat certain nodes better
than others. This is reasonable since all nodes use similar rule-sets
learned offline and there is no bias toward any particular link. On
the other hand, since MintRoute relies on data traffic to infer link
quality, the link selected may be skewed depending on the traffic
pattern and their location relative to the sink. If any part of the
network en route to the sink is overloaded, the MintRoute data col-
lection process will be interrupted. MintRoute uses broadcast in
this case to try to resume normal communication, which actually
exacerbates the problem by injecting extra traffic into the network.

Our classifier can mitigate such problems by discerning meaningful
link information without imposing any additional traffic. Once the
routing structure is restored, data collection can be resumed imme-
diately. Therefore, MetricMap allows more nodes to deliver their
data to the sink, which results in a higher fairness index. In con-
trast, with MintRoute, a few nodes deliver most of their packets
while the rest have only a small fraction of their packets delivered.

In summary, MetricMap addresses the high data rate challenge
with a different perspective, compared to congestion control mech-
anisms [23, 24, 11]. Therefore, our approach is orthogonal to theirs
and combining them will potentially achieve further performance
improvement.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Pa
ck

et
 d

el
ive

ry
 ra

te
 (%

)

Offered load (pps)

MetricMap
MintRoute

Figure 5: Average success rate versus per-sensor load using a
periodic workload.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Av
er

ag
e

la
te

nc
y

(m
s)

Offered load (pps)

MetricMap
MintRoute

Figure 6: Average packet latency versus per-sensor load using
a periodic workload.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Fa
irn

es
s

Offered load (pps)

MetricMap
MintRoute

Figure 7: Fairness versus per-sensor load using a periodic
workload.

Since MetricMap needs to keep local metrics that are used as in-
put to the classifier, it requires some extra memory usage. We use
the memory footprint of MetricMap as a measure of overhead, as

Component ROM (Flash) RAM
Surge+MintRoute 16570 1971
Surge+MetricMap 18468 2110

Table 4: Code and memory usage comparisons of MintRoute
and MetricMap on MicaZ. RAM is memory usage in bytes and
ROM is program size in bytes.

 0

 0.5

 1

 1.5

 2

 2.5

PDR Latency Fairness

Im
pr

ov
em

en
t

RSSI
MetricMap

Performance metrics

Figure 8: Performance improvement comparison with
heuristics-based approach.

shown in Table 4. Table 4 shows the actual memory footprint of
MintRoute and MetricMap. The increase in program size is 11.5%,
which is used mostly for implementing the classifier. The increase
in static memory size is 7.1%, which is mostly data structures used
for collecting and converting low-level metrics to input of the clas-
sifier. This is a small increase from the original code and memory
footprint.

Our results so far have shown that MetricMap produces consis-
tently higher performance than MintRoute when traffic rate is high.
To understand if such benefits come from a better selection of good
quality links, we further compare MetricMap with another data col-
lection protocol — RSSI. RSSI uses the RSSI values of received
packets over a link as the only indication of its quality. If the re-
cent received packets have higher RSSI values compared to other
links, the protocol will assign a higher quality value to this link than
other ones. Other than that, RSSI is the same as MintRoute. Thus,
RSSI does not take into account of any factors other than packet
RSSI values and is one such protocol that makes its estimation us-
ing heuristics.

Figure 8 shows the average improvement of RSSI and MetricMap
over 5 independent testbed runs, using the performance of MintRoute
as the base line. For example, the improvement of protocol RSSI
in terms of packet delivery rate is calculated as pRSSI−pMintRoute

pMintRoute
.

The figure shows that MetricMap has a higher performance in terms
of packet delivery rate and fairness index, compared to RSSI. Since
MetricMap uses more features to make link quality estimation, it
potentially will find better links that have the capability to deliver
more traffic. There is a minor increase in data latency for both
protocols. This is because both RSSI and MetricMap deliver more
packets than MintRoute and these packets usually have longer num-
ber of hops to traverse.

6. RELATED WORK
Significant work has been done to achieve the ability to rapidly

observe, decide and react to the dynamics in wireless sensor net-
works, where a wide range of network conditions exist. Most pre-
vious work either uses “rule of thumb” focusing on a single metric
that may lose useful information or mislead the understanding of
situations, or uses sophisticated heuristics that takes a lot of ex-

pertise and domain knowledge to derive. This section surveys the
most relevant work in this aspect within sensor networks. We also
briefly reviews the application of machine learning to problems in
other domains.

Link quality estimation. Link quality awareness permeates many
aspects of sensor network design and operation, ranging from the
design of MAC protocols to the design of applications. As a re-
sult, link quality estimation has become an significant research fo-
cus [13, 5, 4]. Koksal et al. [13] develop new metrics that capture
both long-term link quality and short-term variability of the radio
channel. Cerpa et al. [5, 4] also study statistical temporal proper-
ties of links in low power wireless communications, including both
short-term and long-term temporal properties. Such information is
then used to develop their link cost model.

All the aforementioned approaches use models to select their
metrics. The performance of their metrics depends heavily on their
model accuracies, which need much trial-and-error tuning and ex-
pert knowledge. Our approach, on the other hand, passively col-
lects features that are readily available and uses standard learning
algorithms to discover the inner correlation. Furthermore, their ob-
servations on temporal and spatial variability of channel conditions
can be used in our work to improve learning efficiency.

Machine learning. There is much literature on applying ma-
chine learning to different areas of research, and most recently
system-related problems, such as compiler optimization [3], sys-
tem performance diagnosis [7], fault localization in Internet ser-
vices [6], and software bug isolation [16].

Machine learning has also been used in other areas of sensor net-
works. Guestrin et al. [10] propose to use kernel-based regression
to accurately model sensor data and reduce the dimensionality of
data representation. This approach significantly decreases the com-
munication requirements in the network. More recently, Krause
et al. [14] study sensor placements using probabilistic models that
take both data quality and communication costs into account. Our
approach, however, focuses on routing optimizations in the network
stack.

7. CONCLUSIONS AND FUTURE WORK
This paper presents a supervised learning framework that can

be used to produce useful information automatically and help to
make informed decisions in sensor networks. As a case study, we
investigate the link quality estimation problem, which is casted as
a classification problem using our framework. Results on a real-
world sensor network testbed show that our technique can achieve
significant performance improvement over existing approaches.

Other than performance improvement, the complexity ramifica-
tions of this work compared to existing approaches using heuris-
tics, are very encouraging. Furthermore, our proposed framework
is general enough to be applied to other problems that could ben-
efit from such information discovering. Overall, it provides a new
direction toward routing optimizations in planning and deploying
real-world sensor networks.

In the future, we plan to study the potential of using unsuper-
vised learning techniques to reduce the cost of labeling. Another
important area of future work is to investigate the feasibility of on-
line, incremental training in a distributed fashion. This approach
has the benefits of being able to quickly adapt to network dynamics
if the network varies significantly over time and space. However, it
will involve a different set of tradeoffs between resource usage and
performance.

8. REFERENCES
[1] IEEE Standard 802, part 15.4: Wireless Medium Access Control

(MAC) and Physical Layer (PHY) Specifications for Low Rate
Wireless Personal Area Networks (LR-WPANs). 2003.

[2] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level
measurements from an 802.11b mesh network. In Proc. ACM
SIGCOMM, 2004.

[3] B. Calder, D. Grunwald, D. Lindsay, M. Jones, J. Martin, M. Mozer,
and B. Zorn. Evidence-based static branch prediction using machine
learning. ACM Transactions on Programming Languages and
Systems, January 1997.

[4] A. Cerpa, J. Wong, M. Potkonjak, and D. Estrin. Temporal properties
of low-power wireless links: Modeling and implications on
multi-hop routing. In Proc. ACM MobiHoc, 2005.

[5] A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak, and D. Estrin.
Statistical model of lossy links in wireless sensor networks. In Proc.
IPSN, 2005.

[6] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer. Failure
diagnosis using decision trees. In Proc. IEEE ICAC, 2004.

[7] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase.
Correlating instrumentation data to system states: A building block
for automated diagnosis and control. In Proc. OSDI, 2004.

[8] W. W. Cohen. Fast effective rule induction. In Proc. the International
Conference on Machine Learning (ICML), 1995.

[9] D. De Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing. In Proc.
ACM MobiCom, 2003.

[10] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden.
Distributed regression: an efficient framework for modeling sensor
network data. In Proc. IPSN, 2004.

[11] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating congestion in
wireless sensor networks. In Proc. ACM SenSys, 2004.

[12] R. Jain. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation and
Modeling. John Wiley & Sons, Inc., 1991.

[13] C. E. Koksal and H. Balakrishnan. Quality-aware routing in
time-varying wireless networks. to appear in IEEE Journal on
Selected Areas of Communication Special Issue on Multi-hop
Wireless Mesh Networks, 2005.

[14] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal
sensor placements: maximizing information while minimizing
communication cost. In Proc. IPSN, 2006.

[15] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra,
M. Flanigan, N. Kushalnagar, L. Nachman, and M. Yarvis. Design
and deployment of industrial sensor networks: Experiences from the
north sea and a semiconductor plant. In Proc. ACM SenSys, 2005.

[16] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via
remote program sampling. In Proc. ACM PLDI, 2003.

[17] Mistlab. http://mistlab.csail.mit.edu/.
[18] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[19] Motelab. http://motelab.eecs.harvard.edu/.
[20] J. Paek, K. Chintalapudi, R. Govindan, J. Caffrey, and S. Masri. A

wireless sensor network for structural health monitoring:
Performance and experience. In Proc. IEEE EmNetS, 2005.

[21] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low
power wireless research. In Proc. IPSN/SPOTS, 2005.

[22] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[23] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell. CODA: congestion
detection and avoidance in sensor networks. In Proc. ACM SenSys,
2003.

[24] C.-Y. Wan, S. B. Eisenman, A. T. Campbell, and J. Crowcroft.
Siphon: Overload traffic management using multi-radio virtual sinks.
In Proc. ACM SenSys, 2005.

[25] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques, 2nd Edition. Morgan Kaufmann, 2005.

[26] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
reliable multihop routing in sensor networks. In Proc. ACM SenSys,
2003.

