
Middleware for Long-term Deployment of Delay-tolerant
Sensor Networks

Pei Zhang, Christopher M. Sadler and Margaret Martonosi
Department of Electrical Engineering

Princeton University
{peizhang, csadler, mrm}@princeton.edu

ABSTRACT
Wireless sensor networks have a wide range of applications
and are deployed in increasingly varied situations. Many
deployments have focused on long term monitoring, which
uses nodes that are delay-tolerant and depend on low-power
sleep to minimize the energy consumption and extend op-
erational lifetime. These nodes often have many software
modules contending for system resources, making both soft-
ware development and power management difficult. These
challenges call for middleware layers that are different from
those for real-time, dense networks. This middleware must
be flexible to accommodate and control the vast variety of
available hardware peripherals and software applications, as
well as to provide simple methods to manage a node’s en-
ergy consumption. It must also provide an easy-to-use in-
terface for software modification and at the same time take
advantage of the long idle periods typically experienced by
delay-tolerant sensor nodes.

The middleware we propose in this paper is designed for
long-term use in delay-tolerant networks. Our middleware
keeps a unique system time for more than one year, offer-
ing very long-term event scheduling. This middleware takes
advantage of the low node utilization of long-term networks
and executes software modules in sequence. This avoids
complexities in context switching of multiple threads on a
single threaded processor, and improves the simplicity of
software implementation. Our middleware has a small code
footprint of less than 3.5KB, as well as very low scheduling
overheads of less than 40 µs to run scheduled applications.
This structure also allows the system energy to be centrally
managed by the middleware, which minimizes node power
consumption and simplifies real world software development.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: GeneralHard-
ware/software interfaces; C.3 [Computer Systems Or-
ganization]: Special-purpose and Application-based Sys-
tems—Microprocessor/microcomputer applications; D.4.7 [

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MidSens’06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-424-3/06/11 ...$5.00.

Operating Systems]: Organization and Design—Distri-
buted systems[Real-time systems and embedded systems]

General Terms
Design, Measurement, Performance

Keywords
Sensor Networks, Delay-tolerant Networks, Middleware Sys-
tem, Application Scheduling

1. INTRODUCTION
As sensor networks research becomes more focused on

long-term deployments with months or years of autonomous
operation, many new issues arise. In long term testing and
deployments, energy consumption and software updates are
major concerns, due to the limited accessibility of nodes. On
the other hand, high software concurrency may be a lower
priority in these systems since they are delay-tolerant. In
particular, while bursts of events sometimes occur, modest
queuing delays may be acceptable.

Middleware for current sensor networks, such as TinyOS,
is often designed with a dense mesh in mind, where nodes
are in close proximity to one another. In these systems,
event-processing delay is often a major bottleneck. The mid-
dleware must handle multiple events concurrently to reduce
this bottleneck and possible data loss.

Long-term sensor networks must have low daily energy
consumption. Thus, these systems tend to have low data
rates, and are delay-tolerant. Due to the long sleep times
and relatively low processing power of the processors used,
computation can instead be spaced out over time. These
characteristics call for a different approach to middleware
systems and how applications are handled.

To address the issues raised by delay-tolerant sensor net-
works, we have developed a middleware system with the
following novel characteristics:

• Single threaded execution allows for more predictable re-
source usage and less inter-software module interference.

• Time-keeping with unique time for more than one year,
allows for very long-term scheduling of applications.

• Application modularity allows for easy code-update.

• Central energy control ensures low energy usage during
system idle.

Our scheduling system schedules applications in a non-
overlapped manner. Each application can consist of one or

Figure 1: Timer Scheduling Overview

more modules, which are executed in order. This provides
an easy interface, and limits the contention problems among
multiple software modules, developed by multiple people.
The system is controlled by a single application at any one
time and thus allows for a more predictable resource usage,
and lowers the likelihood of system failure due to unantici-
pated interference from multiple applications.

This dynamic scheduling system, with unique system time,
allows the system to schedule and run applications up to a
year in advance. This scheduling also gives the system ad-
vance knowledge of system usage, which allows the system to
enter and exit low-power idle mode during low activity peri-
ods in order to control power consumption. All this is done
with an extremely small code memory footprint of 3.5KB
and overhead of less than 40µs to execute applications.

Our timer-based middleware provides a platform for easy
dynamic scheduling and power management aimed at coarse-
grained, long-running sensor network systems. It provides
the programmer an easy and intuitive interface to add, re-
move, and change applications during development or re-
motely via code updates, which is important since sensor
nodes are often deployed in hard to access situations. The
system also automatically minimizes energy consumption
and self monitors to recover from application failures.

This paper is organized as follow: Section 2 provides the
details of our middleware. Section 3 introduce ZebraNet
test node, the implementation platform. Section 4 provides
example applications. Section 5 shows preliminary measure-
ments for the system. Section 6 compares related work.
Section 7 discusses future work, and finally conclusions are
given in Section 8.

2. MIDDLEWARE OVERVIEW
Our middleware system provides middleware functions

that schedule and execute applications, monitoring func-
tions that perform sanity checks, and low-level interrupt
handlers for data buffering. While the limitations of sen-
sor network hardware present challenges for a traditional
middleware system, they also provide opportunities for op-
timization.

Our overall goal is to allow for an abstracted hardware
layer, while maintaining some of the advantages of a applica-
tion-specific program. The middleware’s main components
are: time-keeping functions, for keeping accurate and unique
time; a queue system for executing applications based on the
schedule; an application scheduler, for creating the schedule;
and data interrupt handlers to provide seamless data recep-
tion. These components are discussed in more detail below.

2.1 Timekeeping
Accurate timekeeping is an important aspect of the schedul-

ing system. Its accuracy and simplicity allow a system to
spend more time in the idle low-energy state. To keep the
system time from overflowing often, and to provide a unique
time for advance scheduling, the system time is kept in a 32-
bit number. This allows the system to have a unique system
time for 388 days, which is long enough that overflow does
not occur often in the deployment lifetime. In our imple-
mentation, a limit is set at 365 days. If a longer application
sleep period is desired, an intermediate function must be
scheduled for within 365 days; this function will then sched-
ule the desired function.

The microcontroller used in our implementation offers two
clocks modes: a fast 4MHz clock and a slow 4KHz clock [11].
Every 1/128 seconds the system wakes up to an intermediate
state running on a low speed 4kHz clock, giving 32 cycles for
each interrupt. However the timer interrupts only consists
of updating the system clock and checking for scheduled
applications. This uses 22 cycles, sufficient to avoid skipping
interrupts. If an application is scheduled during this time
slot, the system wakes up and runs on the 4MHz clock to
execute the application. During the low-energy idle state,
the timer continues to run, providing an accurate time. The
process is depicted in Figure 1. This multi-stage wake up
allows the system more time in idle low-power states.

To avoid problems with time drift, time synchronization
is currently done in two ways. One method to synchro-
nize time in our system is through a GPS peripheral. The
GPS protocol specifies an extremely accurate clock, which
the GPS receiver uses to calculate its position. When the
GPS receives a valid position lock, the accurate time from
the GPS can be used to update system time. For nodes
with a GPS sensor, this method provides a precise system
clock. Another method is synchronizing at startup, where
a powerful node sends a radio packet to synchronize all the
nodes. This method is used mostly for testing purposes.
Other time synchronization methods can also be integrated
into the system.

2.2 Queue System
The system is run mainly via two components, a timer

kernel and a function queue. The timer kernel is used to
schedule and invoke applications; the function queue is used
to maintain order and run the applications. The queues
allow the system to avoid conflicts and use only pointers to
applications, allowing easy upgrades and schedule changes.

2.2.1 Timer Kernel
The timer kernel is used mainly for scheduling applica-

tions. To run an application at a given system time, the
scheduler simply passes the application pointer and the de-
sired invocation time to the kernel, which enqueues the func-
tion in a timer queue. A valid variable is also included which
allows the system to cancel the run of the scheduled appli-
cation without changing the contents of the queue. Each
time a new item is enqueued, the timer kernel sorts the
queue by invocation time. Since sorting delay is incurred at
scheduling time, not execution time, short applications can
be scheduled in adjacent time slots, within 1/128 second.

The timer queue is checked by the timer kernel every time
slot. When the event time is reached, the scheduler transfers
the function from the timer queue to the function queue and

wakes the rest of the system. If the desired execution time
has passed for this function, due to another active applica-
tion, the timer will still transfer the function to the function
queue to avoid skipping applications. This is rare, because
applications are usually well-spaced.

To ensure stability and to make the system self-recoverable,
the timer kernel monitors the system’s timer queue. If the
timer queue is empty during system sleep, or the scheduled
events do not include certain crucial applications, the timer
kernel would detect a system failure and either restart the
system or take other appropriate measures defined by the
programmer.

2.2.2 Function Queue
The function queue is a simple queue that contains point-

ers to functions that are ready to be executed in order.
When the system is taken out of the idle state, the func-
tion queue is non-empty with at least one entry having been
inserted by the timer kernel. The function queue is self-
blocking in that functions are executed in order. This limits
the ability of the applications to be executed concurrently
unless the application is specifically programmed to exit and
requeue itself during long delays. This feature reduces the
hardware contention of applications and simplifies both ap-
plication and system software.

2.3 Application Scheduler
The application scheduler determines when an application

is run. The scheduler is required by the middleware, and
is called at the end of the application or in the initializa-
tion routine. The scheduler can be very simple, for example
scheduling repeated events at fixed intervals; or very com-
plex, adapting to and accounting for many aspects of the
physical state and environment of the node. The use of a
scheduler by the system allows for an extremely flexible way
of scheduling events that can be easily modified by small
remote code updates.

2.4 Hardware Interrupt Handling
While the applications are executed mostly in a single

threaded manner, the hardware interrupt events can inter-
rupt the system and receive data without the need to wait
for an application to exit. This is done to prevent possi-
ble data loss, given the one-byte hardware buffer available
on the processor. The interrupts only move data from the
hardware buffers to a software buffer in RAM. This adds
very little processing time, and since all data interrupts are
processed this way, there is minimal chance of hardware con-
flicts.

2.5 MAC Layer
We provide a simple random back-off MAC layer. When

the communication starts, each node sends out a peer packet
for mutual discovery. Different nodes contest for the channel
and employ a random back off in case of collisions. When
the node has no data to send and it is no longer receiving
data, it will reach timeout and exit the communication slot
to go into idle low-energy state. This method of adaptive
MAC layer is similar to T-MAC [12].

The MAC layer is implemented in two locations. Most of
the collision avoidance and detection are processed on the
radio module. The peer discovery and session information is
done by the network application. The network application
is described in Section 4.3.

Figure 2: Middleware Queuing API.

3. HARDWARE PLATFORM:
THE ZEBRANET NODE

Our middleware is implemented on the ZebraNet v5.1 test
nodes. This latest version of the ZebraNet node is designed
especially for experimentation and debugging. It is elec-
tronically the same as nodes that were embedded into an-
imal collars for the second ZebraNet deployment in Kenya
in June 2005.

The test node consists of several independent units: a
microcontroller, flash, GPS, radio, battery charger, battery
gauge, and a USB unit for debugging. In particular the Ra-
dio and GPS are high-power peripherals, which if controlled
improperly would leads to short system life. The power con-
sumption of selected peripherals is shown in Table 1.

Table 1: ZebraNet Test Node Component Power
measured at 4.1V battery voltage. The (*) indicates
a datasheet value is used to calculate the result.

Component State Current

Radio
1W Transmit 1.15A
Receive 100mA
Power off <1µA

GPS
Tracking 21mA
Power off <1µA

Microcontroller
Fast Clock 1.8mA
Slow Clock 50µA*
Full Sleep 2.0µA*

Battery Gauge
Active Mode 52µA*
Sleep Mode 1.0µA*

Total Sleep Mode 3.0µA*

A unique feature of the ZebraNet board is the battery
unit. The battery unit includes a 2A-hour Li-ion Battery
with a BQ27200 battery gauge [10]. This gauge allows the
system to select energy conservation techniques based on the
level of charge.

Similar to other peripherals in the system, the battery
gauge also offers sleep modes. For a non-charged system, the
device can be shut down when the system enters sleep mode,
drawing only 1µA of current. In charged systems, the gauge
can enter sleep mode when no charge is applied. While this
feature has not been implemented, our middleware system
allows this to be easily implemented at the application level.

4. APPLICATION EXAMPLES
The middleware can support flexible and simple applica-

tion implementations through its queue functions, some of
which are shown in Figure 2. In this section we describe
three example applications that are used in ZebraNet.

GPS Application

1

2

3

4

5

Timer Queue Function Queue

GPS Event

When Timer Triggers…

GPS Event

Timeout

GPS Event

GPS Event

Wait for Good Lock

Cleanup Event

Cleanup Event

Middleware

Run Processes
off Queue

Inject GPS Event

Turn On GPS and
Inject Timeout Event

Inject function to end
GPS Event

Stop GPS, Cancel Timeout
Event, Process Data, and

possibly schedule
compression

Compression Event

Run Processes
off Queue

Run Processes
off Queue

Run Processes
off Queue

Timeout

Timeout

Figure 3: Example of how the GPS application in-
teracts with our middleware. In this example, the
GPS is able to acquire a lock before the event times
out.

4.1 GPS Application
Our experiments use the Xemics GPS module [13], which

is very power-efficient compared to other GPS units. How-
ever, its power consumption is still orders of magnitude more
than the microcontroller. Furthermore, for a range of me-
chanical and environmental reasons, it is impossible to pre-
dict if the GPS will be able to acquire a lock and, if so, how
long it will take. So, it is important to ensure that the GPS
application operates as efficiently as possible.

We use this application to illustrate how applications in-
teract with our middleware. Figure 3 shows how the GPS
application activates the GPS and acquires a lock in the
ZebraNet system. The process starts when the application
places a GPS event in the timer queue by passing the func-
tion to the timer enqueue function (1). Our middleware con-
tinues normal operation until the system reaches the event
time, at which point the event is moved into the function
queue by the middleware (2).

The middleware executes functions in order from the func-
tion queue. Once the GPS event reaches the top of the
queue, the middleware calls the designated GPS application
function (3). This function has two primary tasks: turn on
the GPS and schedule a timeout event. The timeout event
is designed to shut the GPS off after two minutes so that
we do not waste energy if there is little chance of getting a
lock.

At this point, the information from the GPS is processed
in interrupts and once our application determines that we
have an accurate lock, it cancels the timeout event and
places a cleanup event on the function queue (4). The
cleanup event turns off the GPS, processes the data through
the GPS application’s custom compression algorithm, and if
enough data has been acquired to run it through our middle-
ware’s generic, lossless compression algorithm (Section 4.3),
it schedules a compression event (5). Finally, we go back to
step 1 and schedule the next GPS event.

4.2 Network Application
Network services in our system are treated as an appli-

cation. This application is implemented as a simple finite
state machine, which handles peer discovery and data trans-
fers between nodes. We use this application to illustrate how

the application can function in different modes by utilizing
the queue functions provided by the middleware.

The Network application uses the XTendT M OEM RF
Module [8] for its communications. This radio offers a long
range and many advanced features including a powerful co-
processor to handle its software needs, but its power con-
sumption for transmission at 1W RF power is more than
4.7W, which makes energy management of this module es-
pecially important. This peripheral is kept off most of the
time by turning off its power supply.

The data to be transmitted is placed into a transmit buffer
that is maintained by the application. The received data is
collected by the interrupts routines and the buffer is avail-
able to the application only when a complete packet is re-
ceived. The network service is scheduled at frequencies de-
pendent on several variables we have selected to maintain a
balance of data flow through the network.

This application acts both in blocking and pulling mode.
It is a blocking application when it process radio packets
preventing other application from delaying processing of the
current packet. However between packets the network ap-
plication exits and enqueue it self in the function queue by
calling the enqueue function provided by the middleware.
This allows other applications in the function queue to ex-
ecute, which might further process, compress, or store the
data.

4.3 Compression Application
To reduce the energy consumption of power-hungry trans-

missions and to improve throughput in an inherently unreli-
able network, we employ a novel variant of LZW data com-
pression specifically tailored to sensor nodes [9]. Compres-
sion conserves a considerable amount of energy, and these
energy savings are magnified as data is relayed from collar
to collar through the network and as poor link quality re-
quires the collars to retransmit packets frequently. We use
this application to illustrate how a simple application can
be implemented with the middleware.

Our system buffers GPS data and debugging information
in non-volatile memory until it has accumulated two flash
pages (512B) worth of data, and then it schedules the com-
pression application by passing it to the function queue. The
compression application will be executed in order according
to the function queue.

5. MEASUREMENTS AND RESULTS
The core of the middleware includes the queues and the

timer kernel. The application side includes applications that
manage the communications, system monitoring, and pe-
ripheral applications. We have made preliminary measure-
ments to evaluate the system’s overhead and the memory
requirements of these components.

5.1 Memory Footprint
With only 48KB of code space and 10KB of RAM, the

MSP430F1611 has a relatively large amount of memory com-
pared to other processors in the same class. However, it
is still limited considering the multitude and diversity of
the applications, and the frequent need for buffers in delay-
tolerant networks. Middleware designed for delay-tolerant
networks must have a small memory profile.

The left side of Figure 4 shows the code memory foot-
print of the system. The middleware code includes the func-

Figure 4: Memory footprint of major components
of the middleware.

tion queue, the timer kernel, the scheduler, and the radio
firmware. The entire system code consumes less than 2KB
and the network application takes 1.5KB of code, leaving
more than 44.5KB for other applications.

The graph on the right side of Figure 4 shows the data
memory footprint of the system. The middleware and the
network application combined use less than 700 bytes of
RAM, of which the network application uses almost one
third. This leaves more than 9300 bytes for other appli-
cations. The large memory needed for the radio firmware
and the network layer are due to their packet buffers. This
could later be changed to use a form of dynamic memory
allocation to maximize memory usage.

5.2 System Overhead

Table 2: Overhead for queuing functions with fixed
overheads.

Queue Functions Overhead
Function Queue Enqueue 18 µs
Function Queue Dequeue 13.5 µs
Timer Queue Dequeue 21.5 µs

Our nodes have a 4MHz clock when the system is fully
awake, and only a 4KHz clock when the system is in low-
power idle mode. If the system overhead is large, problems
could arise due to skipped interrupts, or delay in application
executions. To avoid these problems, our middleware must
have minimal delay to be non-intrusive to applications.

These measurements were made with an oscilloscope mon-
itoring a user programmable hardware pin that is raised
upon entry to the enqueue routine and lowered upon exit.

Table 2 shows that the function queue has a very low
overhead for both enqueues and dequeues. As a comparison,
the malloc function takes 49µs to allocate 56 bytes, and
reading 56 bytes from the FLASH takes 3370 µs [7].

The overhead for the timer kernel to enqueue a function
is variable due to sorting of the queue. The dynamic over-
head for enqueuing is shown in Figure 5. Two scenarios are
shown, one for appending a timed application to the end of
the queue. In this scenario, the newly enqueued function
is to be executed later than all the current scheduled func-
tions. The overhead increases by 12us with each additional
function already scheduled before.

In the same figure, the insert scenario shows delay for
scheduling an application that should be executed before
all the previous scheduled applications. Here, other func-
tions needed to be shifted down before the new function can
be scheduled. With each additional function in the queue
that has to be shifted, enqueuing takes an additional 28µs.
While this could be slow if too many functions are already

Figure 5: Timer kernel enqueue overhead for both
inserting at the beginning of the timer queue and
appending at the end of the queue.

scheduled, the function can finish within one time slot with
more than 280 enqueued functions. This overhead is also less
of an issue since functions are more likely executed by the
scheduler after the application has already finished running.

5.3 Power Consumption

Table 3: Processor runtime power consumption.
Measurements were taken by placing a current me-
ter in series on the positive battery terminal.

Middleware State Power
Application Running (Active Mode) 5600 µW
System Time Update (Idle Mode) 25 µW
Sleep (Idle Mode) 8 µW

In our implementation, the system spends most of its
time in low-power idle mode. Our microcontroller has 4 low
power modes and 2 possible crystal clocks. The middleware
uses two of the low power modes and both clock modes for
its operating modes.

The processor runtime power consumption is shown in Ta-
ble 3. These measurements were taken by placing a current
meter in series with the ZebraNet board’s battery terminal.
The battery was fully charged at 4.1V. In low-power idle
mode, the system alternates between system time update
and sleep. During this mode, the power consumption of the
processor is scaled back to less than 0.5% of the power of the
system in the active mode. Since the timer kernel is mon-
itoring the application scheduling in low-power idle mode,
the system maintains a low energy profile during the entire
idle period.

6. RELATED WORK
As sensor networks have seen significant interest in recent

years, much focus has been placed on middleware for them
[1, 2, 3, 4, 5, 6]. However, much of the research has focused
on close proximity, high-density networks. In contrast, our
middleware system is aimed at long-running, low-duty-cycle,
delay-tolerant sensor networks, where concurrent execution
is less important. Below we compare and contrast some
popular operating systems with the system presented in this
paper.

TinyOS [4] is a popular and flexible operating system that
has been ported to many platforms. It is similar to our sys-
tem in that it provides the application with a simplified in-
terface to the lower layers of the system. While a direct com-
parison of systems implemented in both systems is outside
of the scope of this paper, the main differences stem from

intended applications. TinyOS is aimed at dense networks
where many messages could pass through the system at the
same time, resulting in its emphasis on event-driven pro-
cessing. In many delay-tolerant networks, however, events
are infrequent and rarely overlap. Thus, our system is more
single-thread-based than TinyOS. One drawback of TinyOS
is the possibility of missed events. A delay in TinyOS’s
event processing could lead to missed events, while our timer
kernel processes delayed applications. Another difference is
that TinyOS, while allowing reuse of the components during
development, becomes a statically-linked application that is
inflexible. Our system loads applications dynamically, al-
lowing for dynamic scheduling and remote updates.

MantisOS [1] is similar to TinyOS but has greater em-
phasis on concurrency with dynamic user thread swapping.
Our system executes a single application at a time, allowing
only high priority services, i.e., system time updates, and
hardware data receive, to interrupt. Our middleware has a
very simple structure that schedules modular applications,
using only 3500 bytes of code, less than one fourth the size
of MantisOS.

Contiki [2] is another OS that is based on event driven
cooperative multitasking. Our system differs in that it is fo-
cused more on long term scheduling than Contiki. Instead of
middleware controls, our middleware employs the property
of relatively long delay time in our target nodes to avoid
hardware contention.

The Impala system [6] was used in the first two deploy-
ments of ZebraNet [14]. Our experiences with Impala led us
to reduce the allowed concurrency in our current system to
maintain simplicity. This simplicity pays off in both mem-
ory size and ease of development. In Impala, we took advan-
tage of some of the hardware properties of a fixed number
of data sources and sinks, by statically scheduling events.
However, this was less flexible to changes. The current mid-
dleware presented in this paper goes further by taking full
advantage of long-term, delay-tolerant systems and running
a single-threaded system. This method offers more flexibil-
ity.

7. FUTURE WORK
The results from using our middleware system are encour-

aging, but there are many ways that we could improve on
the current system.

One area of future work is priority queues. Currently
there is no method to skip ahead in the queue to execute
a function of higher priority besides canceling already en-
queued entries. Another interesting area is a lean dynamic
memory controller for the OS with possible extension into
virtual memory. This would further simplify the applica-
tions’ interface with different kinds of memory available to
a node. For example, depending on the application’s need,
the memory could be allocated into the off-board data flash
or on-board RAM. A third future work area is remote code
updates, and our current system is designed with this in
mind. Function pointers invoke all applications, so users
simply need to update the pointer to invoke a new appli-
cation. An application update consists of new applications
being written to code space and scheduled by the scheduler
when the update is complete.

8. CONCLUSION
This paper introduces a flexible middleware system for

long-term, delay-tolerant networks. Our middleware sim-

plifies software development for delay-tolerant networks, by
only allowing one application to control the system at any
time. This minimizes hardware conflicts between multiple
applications. The unique system time allows an application
to be scheduled well in advance, improving flexibility and re-
liability. The middleware’s scheduler improves modularity
of the applications, allowing for easy updates and improve-
ments to the system.

This middleware system is also fast and thin, using lit-
tle code and memory space. It provides a central location
that can control the CPU sleep mode efficiently as well as
monitor status to maintain sanity. Through its simplicity,
it minimizes processing and monitoring requirements of the
middleware and provides a platform to quickly produce re-
liable delay-tolerant networks. Overall, we believe that our
system provides a flexible and simple platform to ease the
development and improve the long-term reliability of long-
running sensor node systems.

9. REFERENCES
[1] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth,

B. Shucker, C. Gruenwald, A. Torgerson, and R. Han. MANTIS
OS An Embedded Multithreaded Operating System for
Wireless Micro Sensor Platforms. In ACM Kluwer Mobile
Networks and Applications (MONET), Special Issue on
Wireless Sensor Networks, vol. 10, no. 4, 2005.

[2] A. Dunkels, B. Grnvall, and T. Voigt. Contiki - a Lightweight
and Flexible Operating System for Tiny Networked Sensors. In
Proceedings of the First IEEE Workshop on Embedded
Networked Sensors 2004 (IEEE EmNetS-I), Nov. 2004.

[3] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava.
A Dynamic Operating System for Sensor Nodes. In Proceedings
of the Third International Conference on Mobile Systems,
Applications, And Services (Mobisys), 2005.

[4] J. Hill, R. Szewczyk, et al. System Architecture Directions for
Networked Sensors. In Proceedings of the 9th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Apr. 2000.

[5] P. Levis and D. Culler. Maté: A Tiny Virtual Machine for
Sensor Networks. In Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X), Oct. 2002.

[6] T. Liu and M. Martonosi. Impala: A Middleware System for
Managing Autonomic, Parallel Sensor Systems. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’03), June 2003.

[7] T. Liu, C. Sadler, P. Zhang, and M. Martonosi. Implementing
Software on Resource-Constrained Mobile Sensors: Experiences
with Impala and ZebraNet. In Proceedings of the Second
International Conference on Mobile Systems, Applications
and Services, 2004.

[8] Maxstream, Inc. XTend OEM RF Module: Product Manual
v1.2.4. http://www.maxstream.net/, Oct. 2005.

[9] C. M. Sadler and M. Martonosi. Data Compression Algorithms
for Energy-Constrained Devices in Delay Tolerant Networks. In
Proc. of the ACM Conf. on Embedded Networked Sensor
Systems (SenSys), Nov. 2006.

[10] Texas Instrument. Single-Cell Li-Ion and Li-Pol Battery Gas
Gauge IC For Portable Applications data sheet.
http://www.ti.com/, 2005.

[11] Texas Instruments. MSP430x16x Mixed Signal Microcontroller.
http://www.ti.com/, 2002.

[12] T. van Dam and K. Langendoen. An Adaptive Energy-Efficient
MAC Protocol for Wireless Sensor Networks. In The First
ACM Conference on Embedded Networked Sensor Systems
(SenSys 2003), 2003.

[13] Xemics. DP1201A, 433.92MHz Drop-in Module Product Brief.
http://www.xemics.com/, Mar. 2004.

[14] P. Zhang, C. Sadler, S. Lyon, and M. Martonosi. Hardware
Design Experiences in ZebraNet. In Proceedings of the ACM
Conference on Embedded Networked Sensor Systems
(SenSys), 2004.

