
Compile-Time Dynamic Voltage Scaling Settings:
Opportunities and Limits

Fen Xie
Department of Electrical

Engineering
Princeton University

Princeton, NJ

fxie@ee.princeton.edu

Margaret Martonosi
Department of Electrical

Engineering
Princeton University

Princeton, NJ

mrm@ee.princeton.edu

Sharad Malik
Department of Electrical

Engineering
Princeton University

Princeton, NJ

sharad@ee.princeton.edu

ABSTRACT
With power-related concerns becoming dominant aspects of hard-
ware and software design, significant research effort has been de-
voted towards system power minimization. Among run-time power-
management techniques, dynamic voltage scaling (DVS) has emerged
as an important approach, with the ability to provide significant
power savings. DVS exploits the ability to control the power con-
sumption by varying a processor’s supply voltage (V) and clock
frequency (f). DVS controls energy by scheduling different parts
of the computation to different (V, f) pairs; the goal is to minimize
energy while meeting performance needs. Although processors like
the Intel XScale and Transmeta Crusoe allow software DVS con-
trol, such control has thus far largely been used at the process/task
level under operating system control. This is mainly because the
energy and time overhead for switching DVS modes is considered
too large and difficult to manage within a single program.

In this paper we explore the opportunities and limits of compile-
time DVS scheduling. We derive an analytical model for the max-
imum energy savings that can be obtained using DVS given a few
known program and processor parameters. We use this model to de-
termine scenarios where energy consumption benefits from compile-
time DVS and those where there is no benefit. The model helps
us extrapolate the benefits of compile-time DVS into the future
as processor parameters change. We then examine how much of
these predicted benefits can actually be achieved through optimal
settings of DVS modes. This is done by extending the existing
Mixed-integer Linear Program (MILP) formulation for this prob-
lem by accurately accounting for DVS energy switching overhead,
by providing finer-grained control on settings and by considering
multiple data categories in the optimization. Overall, this research
provides a comprehensive view of compile-time DVS management,
providing both practical techniques for its immediate deployment
as well theoretical bounds for use into the future.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compilers; D.4.7
[Operating System]: Organization and Design—Real-time Sys-
tems and Embedded Systems; I.6.4 [Computing Methodologies]:
Simulation and Modelling—Model Validation and Analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-662-5/03/0006 ...$5.00.

General Terms
Design, Experimentation

Keywords
Low Power, Compiler, Dynamic Voltage Scaling, Mixed-integer
Linear Programming, Analytical Model

1. INTRODUCTION
The International Technology Roadmap for Semiconductors high-

lights system power consumption as a limiting factor in our ability
to develop designs below the 50nm technology point [26]. Indeed
power/energy consumption has already started to dominate execu-
tion time as the critical metric in system design. This holds not just
for mobile systems due to battery life considerations, but also for
server and desktop systems due to exorbitant cooling, packaging
and power costs.

Dynamic voltage and frequency scaling (DVS) is a technique
that allows the system to explicitly trade off performance for en-
ergy savings, by providing a range of voltage and frequency oper-
ating points. DVS allows one to reduce the supply voltage at run
time to reduce power/energy consumption. However, reducing the
voltage (V) increases the device delay and so must be accompa-
nied by a reduction in clock frequency (f). Thus, the voltage and
frequency must be varied together. Proposals have been made for
purely-hardware DVS [21] as well as for schemes that allow DVS
with software control [7, 14, 12]. DVS accomplishes energy re-
duction through scheduling different parts of the computation to
different (V,f) pairs so as to minimize energy while still meeting
execution time deadlines. Over the past few years DVS has been
shown to be a powerful technique that can potentially reduce over-
all energy consumption by several factors.

More recently DVS control has been exposed at the software
level through instructions that can set particular values of (V,f).
These mode-set instructions are provided in several contemporary
microprocessors, such as Intel XScale [14], StrongArm SA-2 and
AMD mobile K6 Plus [1]. However, the use of these instructions
has been largely at the process/task level under operating system
control. The coarser grain control at this level allows for easy amor-
tization of the energy and run-time overhead incurred in switching
between modes for both the power supply (V) as well as the clock
circuitry (f). It also makes the control algorithm easier since it is
relatively easy to assign priorities to tasks, and schedule higher pri-
ority tasks at higher voltages and lower priority tasks at lower volt-
ages. Providing this control at a finer grain level within a program
would require careful analysis to determine when the mode-switch
advantages outweigh the overhead. Hsu and Kremer provide a
heuristic technique that lowers the voltage for memory bound sec-
tions [10]. The intuition is that the execution time here is bound
by memory access time, and thus the compute time can be slowed
down with little impact on the total execution time, but with poten-
tially significant savings in energy consumption. Using this tech-
nique, they have been able to demonstrate modest energy savings.



Subsequent work on using mathematical optimization by Saputra
et al. [25] provides an exact mixed-integer linear programming
(MILP) technique that can determine the appropriate (V,f) setting
for each each loop nest. This optimization seems to result in better
energy savings. However, this formulation does not account for any
energy penalties incurred by mode switching. Thus, it is unclear
how much of these savings will hold up once those are accounted
for.

In this paper we are interested in studying the opportunities and
limits of DVS using compile-time mode settings. We seek to an-
swer the following questions: Under what scenarios can we get
significant energy savings? What are the limits to these savings?
The answers to these questions determine when and where (if ever)
is compile-time DVS worth pursuing. We answer these questions
by building a detailed analytical model for energy savings for a pro-
gram and examining its upper limits. In the process we determine
the factors that determine energy savings and their relative con-
tributions. These factors include some simple program dependent
parameters, memory speed, and the number of available voltage
levels.

We also examine how these opportunities can be exploited in
practice. Towards this end we develop an MILP optimization for-
mulation that extends the formulation by Saputra et al. by including
energy penalties for mode switches, providing a much finer grain
of program control, and enabling the use of multiple input data
categories to determine optimal settings. We show how the solu-
tion times for this optimization can be made acceptable in practice
through a judicious restriction of the mode setting variables. Fi-
nally, we show how the results of this optimization relate to the
limits predicted by our analytical model.

The rest of this paper is organized as follows. Section 2 re-
views related work in this area. This is followed by a description
of our analytical model and analysis in Section 3. Section 4 derives
the MILP formulation used to determine the values of the optimal
mode setting instructions. Section 5 discusses some implementa-
tion details for our MILP-based approach, and Section 6 provides
the results of various experiments. Critical and unresolved issues
are the focus of Section 7. Finally, we present some concluding
remarks in Section 8.

2. RELATED WORK
DVS scheduling policies have been studied exhaustively at the

operating system, micro-architecture and compiler levels. Algo-
rithms at the OS level using heuristic scheduling include an interval-
based algorithm like Lorch and Smith’s proposal [19] and a task-
based algorithm like Luo and Jha’s work [20]. Integer Linear Pro-
gramming (ILP) based scheduling has also been used in algorithms
at the OS level. For example, Ishihara and Yasuura [15] give an
ILP formulation that does not take into account the transition costs.
Swaminathan and Chakrabarty [28] incorporate the transition costs
into the ILP formulation but make some simplifications and ap-
proximations in order to make the formulation linear. At the micro-
architecture level, Ghiasi [9] suggests the use of IPC (instructions
per cycle) to direct DVS, and Marculescu [21] proposes the use of
cache misses to direct DVS. Both are done through hardware sup-
port at run time.

Some research efforts have targeted the use of mode-set instruc-
tions at compile time. Mode-set instructions are inserted either
evenly at regular intervals in the program like Lee and Sakurai’s
work [18], or on a limited number of control flow edges as proposed
by Shin [27]. In the latter, the mode value is set using worst-case
execution time analysis for each basic block. Hsu and Kremer [10]
suggest lowering voltage/frequency in memory-bound regions us-
ing power-down instructions and provide a non-linear optimization
formulation for optimal scheduling. Saputra et al. [25] derive an
ILP formulation for determining optimal modes for each loop nest,
but do not consider the energy overhead of switching modes.

The efficiency of scheduling policies has also been discussed in
the literature. Hsu and Kremer [11] have introduced a simple model
to estimate theoretical bounds of energy reduction any DVS algo-
rithm can produce. In [15], a simple ideal model which is solely
based on the dynamic power dissipation of CMOS circuits has been
studied and an OS level scheduling policy is discussed based on

that model and ILP. Some other work focuses only on the limits of
energy savings for DVS systems without taking into consideration
actual policies. Qu provides models for feasible DVS systems in
his work [23]. However, evaluating the potential energy savings
of compile-time DVS policies for real programs has not received
much attention thus far. We feel it is important as it gives us deep
insight into opportunities and limits of compile time DVS.

In this paper, we present a realistic analytical model incorporat-
ing features of both real program behavior and compile time DVS
scheduling. We also extend existing ILP formulations to apply
DVS to any granularity of program code with practical transition
costs and multiple data categories.

3. ANALYTICAL MODELING FOR ENERGY
SAVINGS FROM COMPILE-TIME DVS

3.1 Overview
We are interested in answering the following questions: What

are the factors that influence the amount of power savings obtained
by using compile-time DVS? Can we determine the power savings
and upper bounds for them in terms of these factors? The answers
to these questions will help provide insight into what kinds of pro-
grams are likely to benefit from compile-time DVS, under what sce-
narios and by how much. Among other outcomes, accurate analysis
can help lay to rest the debate on the value of intra-program DVS
scheduling.

There has been some research on potential energy savings for
DVS scheduling. Analytical models have been studied in [15] and
[23]. However, that research only models computation operations
and not memory operations, thus not capturing the critical aspect of
program execution. Further, their models are not suitable for bound
analysis for compile time DVS because they ignore critical aspects
of the compile time restriction. In this section, we describe a more
realistic and accurate analytical model to determine achievable en-
ergy savings that overcome the restrictions of prior modeling ef-
forts.

In deriving this model we make the following assumptions about
the program, micro-architecture and circuit implementation:

1. The program’s logical behavior does not change with fre-
quency.

2. Memory is asynchronous with the CPU.

3. The clock is gated when the processor is idle.

4. The relationship between frequency and voltage is: f =
k(v − vt)

α/v where vt is the threshold voltage, and α is
a technology-dependent factor (currently around 1.5) [24].

5. Computation can be assigned to different frequencies at an
arbitrarily fine grain, i.e. a continuous partitioning of the
computation and its assignment to different voltages is pos-
sible.

6. There is no energy or delay penalty associated with switching
between different (V,f) pairs.

While the first 4 assumptions are very realistic, the last two are
optimistic in the sense that they allow for higher energy savings
than may be achievable in practice. As we are interested in deter-
mining upper bounds on the achievable savings, this is acceptable.
Of course, the optimism should not result in the bounds being too
loose and thus useless in practice. We will review the tightness of
the bounds in Section 6.

3.2 Basic Model
The existence of memory operations complicates the analysis.

Cache misses provide an opportunity for intra-program DVS, since
execution time will not change with voltage/frequency if the mem-
ory is asynchronous with the processor. Slowing down the fre-
quency in that region will save energy without impacting perfor-
mance. However, savings are limited by the compile-time aspect
of intra-program DVS. As mode-set instructions are inserted stat-
ically, it applies to all executions of a specific memory reference,



both cache misses as well as hits. It is rare to have a reference
always suffer a miss. Slowing down all executions for that refer-
ence may save energy for cache misses, but will result in loss of
performance for cache hits. Our model captures this effect.

For any piece of static code, we can divide it into two major op-
erations: computation and memory operations. For computation
operations, some operations depend on the result of pending mem-
ory operations, referred to as the dependent part, and some can run
concurrently with memory operations, referred to as the overlap
part. For memory operations, some end up being cache hits and
others need to go to memory to fetch the operands. We define the
following program parameters of the model based on the observa-
tion.

Noverlap The number of execution cycles of computation opera-
tions that can run in parallel with memory operations.

Ndependent The number of execution cycles of computation oper-
ations that are dependent on memory operations.

Ncache The number of execution cycles of memory operations due
to cache hits.

tinvariant The execution time of cache miss memory operations.
As memory operates asynchronously relative to the proces-
sor, this time is independent of processor frequency, and thus
is measured absolutely rather than in terms of processor cy-
cles.

Consequently, the total execution time for any piece of code or
program as it just meets its deadline can be represented as illus-
trated in Figure 1, with the different cases corresponding to differ-
ent relative values of these parameters. In these figures, the fre-
quency f is not fixed through the program execution and may vary.

In the figures, tdeadline is the time deadline that the computation
needs to meet. Note that in actual program execution the memory
operations and the overlapping and dependent computations will be
interleaved in some way. However, we can lump all the occurrences
of each category together as shown in the above figures since, as we
will show, for purposes of the analysis it is sufficient to consider the
total time taken by each of these categories. Also, we can consider
the vertical dimension to be time, and order the three categories as
shown, even though in actual execution they will be interleaved.

In Figure 1(a), parallel computation operations determine the ex-
ecution time of the overlap part and total execution time is Noverlap/f+
Ndependent/f . In Figures 1(b) and 1(c), memory operations domi-
nate the overlap part and total execution time is tinvariant+Ncache/f+
Ndependent/f . The finer distinction between Figures 1(b) and 1(c)
will be made later in the analysis. The total execution time expres-
sion for any of these cases is:

max(tinvariant + Ncache/f, Noverlap/f) + Ndependent/f

The goal of the analytical model is to find minimum energy points
(i.e., maximum energy savings) using different voltages for differ-
ent parts of the execution, subject to the following two time con-
straints:

1. The total execution time is less than tdeadline.

2. The time for the dependent computation operations cannot
overlap with the time for the memory operations tinvariant+
Ncache

f
. This respects the fact that dependent calculations

must wait for the memory operations to complete.

We now state our overall optimization problem. In Figure 1, as-
sume a time ordering from top to bottom. Let t1 be the time the
overlapping computation finishes, t2 be the time the dependent op-
erations start execution and t3 be the time all computation finishes.
The goal, then, is to minimize:

E =

∫ t1

0

v2
1(t)f1(t)dt +

∫ t3

t2

v2
2(t)f2(t)dt

subject to the constraints (i) t3 ≤ tdeadline, (ii) t2 ≥ tinvariant +

Ncache

f1

and (iii) t1 ≤ t2. The first integral represents energy con-
sumption during the overlapping computation. The second integral
represents energy during the dependent computation period. As
mentioned earlier, we assume perfect clock gating when the proces-
sor is waiting for memory, and thus there is no energy consumption
in the processor during idle memory waits. Also, we account here
for only the processor energy; the memory energy is a constant
independent of processor frequency. Unlike models proposed in
[15] or [23], the presence of memory operations adds significant
complexity to the optimization problem. We now consider specific
cases of this optimization, corresponding to different options for
the set of voltages available.

3.3 Continuously Scalable Supply Voltage
We first consider the case where the supply voltage can be scaled

continuously, i.e. v1, v2 can vary continuously over some range
[VL, VH ]. While continuous scaling may not be available in prac-
tice, this analysis serves two purposes. First, it helps us build up to
the discrete case presented in the next section. Second, it approx-
imates the case where the number of discrete voltages available is
sufficiently large. Previous work considering only computation op-
erations and not memory operations showed that for a fixed dead-
line, the optimal solution is to use a single supply voltage which
adjusts the total execution time to just meet the deadline [15]. So,
in this case v1 is a constant over [0, t1] and 0 at other times. v2 is a
constant over [t2, t3] and 0 otherwise. We now need to find appro-
priate v1, v2, [0, t1] and [t2, t3] such that energy is minimized.

3.3.1 Computation Dominated and Memory Domi-
nated Cases

The first two cases illustrated in Figure 1 arise depending on the
balance of computation and memory operations. In the computa-
tion dominated case, the memory time is largely irrelevant, because
meeting the deadline mainly revolves around getting the computa-
tion done in time. Because this case has no slack due to asyn-
chrony with memory, this case is similar to the pure computation
case in [15] and thus a single frequency leads to optimal energy
performance.

In the memory dominated case, the computation is broken into
two parts, the overlapped and the dependent part, each with its own
time constraint. Thus, the optimal operating point arises when two
frequencies are chosen: one for the overlapped computation, and
a different one for the dependent computation. For both the com-
putation and memory dominated cases, the first case we consider
is when the overlapping computation operations take longer than
cache hit memory operations, which means Ncache < Noverlap.
This means that any frequency adjustments done in the upper part
of the timeline will dilate the computation side more than the mem-
ory side. Section 3.3.2 handles the (relatively uncommon) other
possibility later.

A key dividing line between the computation dominated and
memory dominated cases concerns the inflection point when mem-
ory time begins to matter. We use the term finvariant to refer to a
clock frequency at which the execution time of Noverlap −Ncache

cycles of computation operations just balances the cache miss ser-
vice time tinvariant. (Therefore, we use vinvariant to refer to the
voltage setting paired with that frequency). If the optimal energy
point can be reached with a frequency slower than finvariant we
say that the program is computation dominated. If the speed is
slower than finvariant, then the Noverlap −Ncache cycles of com-
putation operations take up all cache miss period tinvariant and go
beyond as shown in 1(a).

The problem becomes one of minimizing:

E(v1, v2) = Noverlap ∗ v2
1 + Ndependent ∗ v2

2

subject to different constraints depending on
If f1 > finvariant

Ncache

f1
+

Ndependent

f2
+ tinvariant = tdeadline



computemem

tdeadline

f

Ndependent

f
N

t cache
iantvarin ++++

f

Noverlap

(a) Computation-Dominated Case.

computemem

tdeadline

f

Ndependent

f
N

t cache
iantvarin ++++

f

Noverlap

(b) Memory-Dominated Case.

computemem

tdeadline

f

Ndependent

f
N

t cache
iantvarin ++++

f

Noverlap

(c) Sub-Case: Memory-Dominated,
with slack.

Figure 1: Possible Overlaps of Memory and Computation

If f1 ≤ finvariant

Noverlap

f1
+

Ndependent

f2
= tdeadline

Representing f as a function of v to get all equations in terms of
v:

If k(v1−vT )α

v1
> finvariant

Ncachev1

k(v1 − vT )α
+

Ndependentv2

k(v2 − vT )α
+ tinvariant = tdeadline

If k(v1−vT )α

v1
≤ finvariant

Noverlapv1

k(v1 − vT )α
+

Ndependentv2

k(v2 − vT )α
= tdeadline

Due to the time constraints, v1 and v2 are not independent. We
use this in deriving the value of v1 (and thus v2) that results in the
least energy as follows.

dE

dv1
= 2Noverlapv1 + 2Ndependentv2

dv2

dv1

dv2

dv1

is obtained from the constraint equations.

If k(v1−vT )α

v1
> finvariant

dv2

dv1
= −

Ncachev1

Ndependentv2

(1 − α − vT

v1

)

(1 − α − vT

v2
)

(v2 − vT )α+1

(v1 − vT )α+1
)

If k(v1−vT )α

v1

≤ finvariant

dv2

dv1
= −

Noverlapv1

Ndependentv2

(1 − α − vT

v1

)

(1 − α − vT

v2
)

(v2 − vT )α+1

(v1 − vT )α+1
)

So, if f1 = k(v1−vT )α

v1

> finvariant, we get:

dE

dv1
= 2Noverlapv1(1 −

Ncache

Noverlap

(1 − α − vT

v1

)

(1 − α − vT

v2
)

(v2 − vT )α+1

(v1 − vT )α+1
)

On the other hand if k(v1−vT )α

v1

≤ finvariant then:

dE

dv1
= 2Noverlapv1(1 −

(1 − α − vT

v1

)

(1 − α − vT

v2
)

(v2 − vT )α+1

(v1 − vT )α+1
)

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

x 10
5

Supply Voltage v1 (volt)

E
ne

rg
y 

C
on

su
m

pt
io

n

V
ideal

 V
invariant

 

Figure 2: Computation Dominated: Energy consumption ver-
sus supply voltage (v1) of overlapped compute/memory region.

We define fideal =
Noverlap+Ndependent

tdeadline
. The conditions for

which minimum energy is achieved depend on the relationship be-
tween finvariant and fideal.

If finvariant ≥ fideal, then using the single frequency fideal,
tinvariant is completely filled up with computation operations as
shown in Figure 1(a). It is obvious that dE

dvideal
= 0. So v1 =

v2 = videal is the required condition to minimize energy. This is
consistent with the equation for the case f1 ≤ finvariant.

Figure 2 shows the relationship between energy consumption
and supply voltage v1 for a set of parameters that satisfy these con-
ditions (i.e. Ncache < Noverlap, finvariant ≥ fideal). The energy
consumption using vinvariant and videal are shown. When v1 <
videal or v1 > videal, energy consumption increases as you move
away from videal. When v1 = v2 = videal, energy is minimized.
The minimum energy is E = (Noverlap + Ndependent)v

2
ideal.

Since a single (V,f) setting is optimal for this case, intra-program
DVS will not provide energy savings here.

If finvariant < fideal, Figure 3 shows the energy consump-
tion with respect to different v1. While the computation-dominated
case had a single frequency setting as its optimal point, this case
requires two different settings for optimality. It is hard to give a
closed-form expression for the optimal settings, but we can use
tools to get numerical solutions. To plot the energy relationship,
we selected various values of v1, and for each v1 we compute the
optimal value of v2 from the relationships above. Therefore, the
minimum energy point in Figure 3 shows the best v1 choice, this



0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

x 10
5

Supply Voltage v
1
 (volt)

E
ne

rg
y 

C
om

su
m

pt
io

n

V
ideal

  

V
opt

 V
invariant

 

Figure 3: Memory Dominated: Energy consumption versus
supply voltage (v1) of mixed compute/memory region.

allows us to select the overall optimal v1, v2 pair. What we see is
that the optimum point in this case is for a v1 that is less than videal

from the computation-dominated case, and a v2 that is greater. This
corresponds to low-frequency operation while the overlapped com-
putation is hidden by the memory latency operation, followed by
high-frequency “hurry-up” execution of the dependent computation
when memory finally returns.

3.3.2 Special Case: Memory-Dominated, with slack.
Thus far, we have dealt with cases where Ncache is relatively

small compared to Noverlap. If Ncache ≥ Noverlap, the cache
hit memory operations take longer than the overlapping computa-
tion operations, and indeed any attempt to slow down the overlap
execution will actually dilate the memory time by an even greater
amount due to Ncache. This case is illustrated in Figure 1(c). This
effect can be thought of as related to the fact that when we assign
clock frequencies to code regions statically, we are fixing the clock
frequency both for executions of the static code that result in many
cache misses as well as for other executions that may result in many
cache hits.

The total execution time here is Ncache

f1

+
Ndependent

f2

+tinvariant.
The problem then reduces to minimizing:

E(v1, v2) = Ncachev
2
1 + Ndependentv

2
2

subject to the following deadline constraint:

Ncachev1

k(v1 − vT )α
+

Ndependentv2

k(v2 − vT )α
+ tinvariant = tdeadline

(Here, we have assumed the (V,f) relationship given in Section 3.1.)
From this we get:

dE

dv1
= 2Ncachev1 ∗ (1 −

(1 − α − vT

v1
)

(1 − α − vT

v2
)
∗

(v2 − vT )α+1

(v1 − vT )α+1
)

Let fideal =
Ncache+Ndependent

tdeadline−tinvariant
and videal the corresponding

supply voltage for this case. Energy consumption satisfying the
above time constraints is a convex function of v1 as shown in Figure
4. It is easy to deduce that when v1 = v2 = videal, dE

dv1
= 0. A

single frequency fideal minimizes energy consumption.

Emin = (Ncache + Ndependent)v
2
ideal

3.3.3 Continuous Voltage Settings: Summary and
Results

The primary result here is that a special relationship between var-
ious parameters is required to achieve energy savings using compile-
time mode settings. Specifically, we need Noverlap > Ncache and
fideal > finvariant. The latter of these conditions translates to:

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5
x 10

5

Supply Voltage v
1
 (volt)

E
ne

rg
y 

C
om

su
m

pt
io

n

V
ideal

 

Figure 4: Memory Dominated, with slack: Energy consump-
tion versus supply voltage (v1) of mixed compute/memory re-
gion.

200 400 600 800 1000 1200 1400 1600 1800500

1000

1500

0

0.02

0.04

0.06

0.08

0.1

N
overlap

 (103 cycles)

N
dependent

 (103 cycles)

E
ne

rg
y 

S
av

in
g

Figure 5: Continuous Case: Energy Saving Ratio with re-
spect to different Noverlap and Ndependent (Ncache = 3 ×
105cycles, tdeadline = 3000µs, tinvariant = 1000µs).

(Noverlap+Ndependent)/tdeadline > (Noverlap−Ncache)/tinvariant.
When all the parameters are consistent with the above conditions,
it is possible to use multiple voltages for different parts of the com-
putation to achieve power savings over the single voltage case. Fur-
ther, the analysis tells us that two voltages suffice for this case.

Energy savings is a function of Noverlap, Ndependent , Ncache,
tinvariant and tdeadline. To visualize the dependence, we now con-
sider various surfaces in this space, keeping three of these parame-
ters at fixed values and varying two of them.

Energy savings for different Noverlap and Ndependent are il-
lustrated in Figure 5. For fixed Ncache, tdeadline and tinvariant,
for most cases, there is no energy savings. When Noverlap is less
than Ncache, computation operations will not extend over the full
tinvariant period, so one single frequency can achieve the min-
imum energy. This corresponds to Figure 4. Recall that single
frequency outcomes offer no energy savings over a fixed a priori
frequency choice. As Noverlap increases, some computations can
be executed within tinvariant without increasing execution time.
Two frequencies instead of one can then used to achieve minimum
energy, as shown in Figure 3. As Noverlap keeps increasing, even-
tually computation operations dominate. At this point, the “virtual”
deadline set by memory operations is of no consequence and a sin-
gle frequency (this time due to computation dominance) will once
again be optimal. This corresponds to Figure 2. Thus there are
again no energy savings when compared to the best static single
frequency setting.

In Figure 6, Noverlap, Ndependent and tdeadline are fixed. As
tinvariant increases, energy saving increases. This is intuitive be-
cause as the memory bottleneck increases, the opportunities for



500

1000

1500

2000

2500

3000

3500

200
400

600
800

1000
1200

1400
1600

1800

0

0.1

0.2

0.3

0.4

0.5

N
cache

 (103 cycles)

t
invariant

 (µs)

E
ne

rg
y 

S
av

in
g

Figure 6: Continuous Case: Energy Saving Ratio with re-
spect to different Ncache and tinvariant (Noverlap = 4 ×
106cycles,Ndependent = 5.8 × 106cycles, tdeadline = 5000µs).

1500
2000

2500
3000

3500
4000

4500
5000

500

1000

1500

2000

2500

3000

3500

4000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t
deadline

(µs)

N
cache

 (103cycles)

E
ne

rg
y 

S
av

in
g

Figure 7: Continuous Case: Energy Saving Ratio with re-
spect to different tdeadline and Ncache (Noverlap = 4 ×
106cycles,Ndependent = 5.7 × 106cycles, tinvariant =
1000µs).

voltage scaling due to overlap slack increase. Usually when
Ncache = 0, energy saving is maximized. This is because when
all memory operations are cache miss memory operations, slowing
down the overlap computations does not dilate the memory time-
line, and thus does not impede the start of the dependent operations.

Figure 7 shows energy savings with respect to different tdeadline

and Ncache. Other parameters are fixed. When Ncache is small,
as tdeadline increases, energy savings increase. Once again, this
makes intuitive sense because the greater slack gives more oppor-
tunities for energy savings. As Ncache gets bigger, however, en-
ergy savings go up, achieve a maximum point and then go down
again. This is because as Ncache increases, the slowdown over the
tinvariant has more impact on the execution time. So it is less
likely two frequencies will reduce energy.

3.4 Scaling Voltage with Discrete Settings
In the case where voltage is continuously scalable, optimal set-

tings can always be obtained with either one or two voltage choices.
In real processors, however, supply voltages are much more likely
to be scalable only in discrete steps. Thus, rather than having free
choice of v1 and v2, they must be selected from a set of values
(VL, VL2...Vh). The problem becomes one of minimizing:

E =
h∑
i

V 2
i x1i +

h∑
j=0

V 2
j x2j =

h∑
i

V 2
i (x1i + x2i)

Subject to constraint:

h∑
i

(x1i + x2i)

Fi

≤ tdeadline

Here x1i and x2i are the number of cycles at voltage level i for
the two parts of the computation respectively. The constraint above
is just the minimum constraint. Other constraints will depend on
the values of certain parameters and will be added on a case by
case basis.

Leveraging off prior work by [15] allows us to progress on the
problem. We have already used the result that for computation with
a fixed deadline and no memory operations, with continuous volt-
age scaling, a single voltage level results in the least energy. We
now use a second result provided there. For the discrete case they
show that the minimum energy can be obtained by selecting the
two immediate neighbors of the optimum voltage in the continuous
case that are available in the discrete set. Thus, for the computation
bound and memory bound with slack cases, both of which needed
a single optimum frequency, fopt, in the continuous case, we know
that the discrete case will require the two immediate neighbors of
fopt from the available voltages. What remains to be determined is
the number of cycles each of these frequencies is used for.

We determine this for the computation dominated case from Sec-
tion 3.3. The memory bounded with slack case is similar and will
not be discussed here. Consider the two neighboring values for
voltage and frequency: va < videal < vb and fa < fideal < fb.
Say that xa cycles are executed with voltage va and xb cycles are
executed with voltage vb. The values for xa and xb are determined
by solving for the following constraints:

xa/fa + xb/fb = tdeadline

xa + xb = Noverlap + Ndependent

Consider next the memory-dominated case that resulted in two
frequencies in the continuous-scaling approach. We cannot use the
two frequencies from the continuous case to find discrete frequen-
cies that minimize the energy as we did for the single frequency
case. Instead, this needs a fresh analysis approach.

Let variable y represent the execution time for Ncache. Then
Ncache

y
must be less than finvariant to stay in the memory-dominated

case. Since y is a deadline for Ncache, we know that f1 = Ncache

y

is the optimal frequency for this code in the continuous case. Sim-
ilarly, f2 =

Ndependent

tdeadline−tinvariant−y
is the optimal frequency for

Ndependent . This gives us: fa, fb the immediate discrete neigh-
bors of f1 and fc, fd the immediate discrete neighbors of f2, as the
four frequencies required in this case. What remains to be deter-
mined is the number of cycles executed at each frequency. These
are obtained by solving for the following constraints:

xa/fa + xb/fb = y

xc/fc + xd/fd = tdeadline − tinvariant − y

xa + xb = Ncache

xc + xd = Ndependent

Note that thus far, all the frequencies and cycle counts deter-
mined are a function of y, i.e. they depend on the value of y se-
lected. We can also express the minimum energy as a function of
y. We run as many execution cycles as possible from Noverlap −
Ncache at the lower frequency fa and the remaining (if any) at fre-
quency fb.

Emin(y) = va(y)2xa + vb(y)2xb + vc(y)2xc + vd(y)2xd+
tinvariant

y
xava(y)2 +

max((Noverlap − Ncache − tinvariantxa

y
)vb(y)2, 0)



1.1 1.2 1.3 1.4 1.5 1.6 1.7

x 10
5

2.25

2.3

2.35

2.4

2.45

2.5

2.55
x 10

5

y

E
ne

rg
y

Figure 8: Discrete case: energy consumption versus the execu-
tion time of Ncache, i.e. y.

500

1000

1500

200
400

600
800

1000
1200

1400
1600

1800

0

0.1

0.2

0.3

0.4

0.5

N
dependent

 (103 cycles)
N

overlap
 (103 cycles)

E
ne

rg
y 

S
av

in
g

Figure 9: Discrete Case: Energy savings with respect to differ-
ent Noverlap and Ndependent relative to best single-frequency
setting that meets the deadline. (7 voltage levels, Ncache =
2 × 105cycles, tdeadline = 5200µs, tinvariant = 1000µs).

Emin(y) =
fa(y)fb(y)

fb(y) − fa(y)
[(

Ncache

fa(y)
− y)vb(y)2+

(1 + tinvariant

y
)(y − Ncache

fb(y)
)va(y)2] +

fc(y)fd(y)
fd(y)−fc(y)

[(
Ndependent

fc(y)
− (tdeadline − tinvariant − y))vd(y)2

+(tdeadline − tinvariant − y −
Ndependent+y

fd(y)
)vc(y)2] +

max((Noverlap − Ncache −
tinvariant

y

fa(y)fb(y)
fb(y)−fa(y)

(y − Ncache

fb(y)
))vb(y)2, 0)

fa(y), fb(y), fc(y), fd(y) are staircase functions of y. It is hard
to determine analytically for what value of y is Emin(y) mini-
mized. However, we can do this numerically for a specific instance.
Figure 8 shows how Emin(y) changes with y for a particular case,
which enables us to select the y for which energy is minimized.

3.4.1 Discrete Voltage Settings: Summary and Re-
sults

The main results in this case are that for the compute bound and
memory bound with slack cases, we can use the two voltages from
the available set that are nearest neighbors of the single optimal
voltage in the continuous case. For the memory bound case, four
voltages are needed, and can be determined using the techniques
described.

We now examine the surfaces for the energy savings obtained in
terms of the dependent parameters in Figures 11, 9 and 10. The
figures do a good job of conveying the complexity of the energy op-

0.5

1

1.5

2

x 10
5

5000

10000

15000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t
invariant

 (ms)

N
cache

 (103 cycles)

E
ne

rg
y 

S
av

in
g

Figure 10: Discrete Voltage Levels: Energy savings for dif-
ferent Ncache and tinvariant relative to best single-frequency
setting that meets the deadline. (7 discrete voltage lev-
els, Noverlap = 1.3 × 107cycles, Ndependent = 7 ×
107cycles, tdeadline = 3.5 × 105µs).

100
150

200
250

500

1000

1500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t
deadline

 (µs)

N
cache

     

 (103 cycles)

E
ne

rg
y 

S
av

in
g

Figure 11: Discrete Case: Energy savings for different tdeadline

and Ncache relative to best single-frequency setting that meets
the deadline. This graph is plotted for a case with seven possible
discrete voltage levels. (tdeadline = 1340µs, Noverlap = 1.3 ×
107cycles, Ndependent = 7 × 107cycles).

timization space when discrete voltage settings are involved. Bene-
fits of intra-program DVS peak and drop as one moves into regions
that are either poorly-served or well-served by a single static fre-
quency setting. In fact, one of the main motivations of the MILP-
based DVS formulation presented in the next section is that it offers
a concrete way of navigating this complex optimization space.

When more voltage settings are available, the number of peaks in
the graphs increases. When the stepsize between voltage settings is
smaller, the amplitude of each peak becomes smaller as well. This
follows fairly intuitively from the fact that fine-grained voltage set-
tings allow one to do fairly well just by setting a single voltage for
the whole program run; intra-program readjustments are of lesser
value if the initial setting can be done with sufficient precision.

To better understand energy trends in the discrete voltage case,
we study here a set of benchmarks considering situations with 3, 7
or 13 available voltage levels. In all experiments, α = 1.5, vt =
0.45V , and we considered 5 different deadlines as elaborated on
in Section 6. By using cycle-level CPU simulation to get program
parameters Ncache, Noverlap,Ndependent and tinvariant, we can
plug the values into the analytic models generated in this section.
The maximum energy savings predicted by the models is illustrated
in Table 1.

Interestingly, energy savings is not monotonic with deadline be-
cause we compare not to the highest-frequency operation, but to



Benchmark Voltages levels Deadline1 Deadline2 Deadline3 Deadline4 Deadline5
adpcm 3 0.62 0.37 0.02 0.15 0.06

7 0.23 0.02 0.05 0.19 0.08
13 0.11 0.03 0.06 0.09 0.09

epic 3 0.62 0.33 0.04 0.31 0.09
7 0.22 0.23 0.14 0.14 0.12
13 0.10 0.12 0.03 0.04 0.13

gsm 3 0.60 0.37 0.10 0.33 0.12
7 0.21 0.02 0.03 0.16 0.15
13 0.10 0.03 0.05 0.06 0.05

mpeg/decode 3 0.66 0.38 0.03 0.26 0.07
7 0.26 0.03 0.10 0.10 0.09
13 0.14 0.03 0.12 0.11 0.10

Table 1: Analytical Results of Energy Saving Ratio for different voltage levels

the best single frequency that meets the deadline. Nonetheless, lax
deadlines (e.g., Deadline 1) and few voltage levels offer the best
scenario for compile-time DVS. Overall, the key message of the
analytic model, particularly for the case of discrete voltage settings,
is that while DVS offers significant energy savings in some cases,
the optimization space is complex. Achieving energy savings via
compile-time, intra-program DVS seems to require a fairly intelli-
gent optimization process. Our MILP-based proposal for managing
this optimization is presented in the next section.

4. PRACTICAL ENERGY SAVINGS USING
MATHEMATICAL OPTIMIZATION

Section 3 provides a detailed analysis for the maximum energy
savings possible using profile-based intra-program DVS. As it uses
some simplifying assumptions, it leaves open the question as to
how much of the predicted savings can actually be extracted in
practice. In this and the following section, we answer this question
using a practical implementation of a mathematical optimization
formulation of the problem.

4.1 Overview
Here we assume that instructions or system calls are available

to allow software to invoke changes in clock frequency and sup-
ply voltage. For example, in the Intel XScale processor, the clock
configuration is specified by writing to a particular register [14].
Throughout the paper we refer to these invocations generically as
“mode-set instructions”, although their implementations may range
from single instructions to privileged system calls. For this study
we use a Mixed-Integer Linear Programming (MILP) based tech-
nique to determine optimal placements of the mode-set instructions
in the code such that total program energy is minimized, subject to
meeting a constraint, or deadline, regarding the program run-time.
Overall, the goal is to operate different parts of the program at the
lowest possible frequency that will allow the program to meet its
deadline with the least power consumption.

This MILP formulation extends the one presented by Saputra et
al. [25] by including the energy cost of a mode switch, consid-
ering finer grain control over code regions controlled by a single
setting, and considering multiple input data categories to drive the
optimization.

Since executing a mode-set instruction has both time and energy
cost, we wish to place them at execution points that will allow the
benefit of invoking them (improvements in energy or in ability to
meet the deadline) to outweigh the time/energy cost of invoking
them. Thus, some knowledge is needed of the execution time and
frequencies for different parts of the program. As shown in Fig-
ure 12, an initial approach might involve considering the beginning
of each basic block as a potential point for inserting a mode-set
instruction. Some blocks, however, such as blocks 2 or 5 in the di-
agram, may benefit from different mode settings depending on the
path by which the program arrives at them. For example, if block
5 is entered through block 4, and this flow is along the critical path
of the program, then it may be desirable to run this at a different

1

4
3

5

2

6

Figure 12: An Example Control Flow Graph

mode setting than if it is entered through block 3, in which case
it is not on the critical path.

For reasons like this, our optimization is actually based on pro-
gram edges rather than basic blocks. Edge-based analysis is more
general than block-based analysis; it allows us to incorporate con-
text regarding which block preceded the one we are about to enter.

Figure 13 gives the general flow of our technique. The MILP
formulation, briefly described in the next section, presumes that
we have profiled the program and have a set of transition counts
that correspond to how often we execute a basic block by entering
it through a specific edge and leaving it through a specific edge.
This is referred to as the local path through a basic block. We also
profile to determine the execution time and energy of each basic
block. Section 4.2 discusses our methodology further, and Section
4.3 discusses how this methodology can be generalized to allow
for profiling multiple input sets or categories of input types. We
assume, as is common in current processors, that there are a finite
number of discrete voltage/frequency settings at which the chip can
operate. (This improves upon some prior work that relied upon a
continuous tradeoff function for voltage/frequency levels [19]; such
continuous (V,f) scaling is less commercially-feasible.) Figure 13
also shows a step where the possible set of mode instructions is
passed through a filtering set, where some of them are restricted to
be dependent on other instructions based on the program flow. This
independent set of mode instructions is used to formulate the MILP
program which will determine the value for each mode instruction.
Subsequent sections discuss the criteria used in restriction as well
as its implementation.

4.2 The MILP Formulation
We start by accounting for the transition energy and time costs.

Let SE(vi, vj) be the energy transition cost in switching from volt-
age vi to vj and ST (vi, vj) be the execution time switching cost



Profiler

MILP
solver

Program�

Filter

Compiler
DVS’ed
program

Dependence�
constraints

Figure 13: Flow Diagram of the Technique

from vi to vj .

SE = (1 − u) ∗ c ∗ |v2
i − v2

j |

ST =
2 ∗ c

IMAX

|vi − vj |

Equations for SE , ST have been taken from [4], and are considered
to be an accurate modeling of these transition costs. The variable c
is the voltage regulator capacitance and u is the energy-efficiency
of the voltage regulator. IMAX is the maximum allowed current.

Let there be N possible modes that can be set by the mode-
set instruction. For an edge (i, j) in the control flow graph there
are N binary-valued (0/1) mode variables kijm, m = 1, 2, ...N .
kijm = 1 if and only if the mode-set instruction along edge (i, j)
sets the mode to m as a result of the DVS scheduling, and is 0 oth-
erwise. Since each edge can be set to at most one mode, we have
the following constraint among the mode variables for a given edge
(i, j):

∑N

m=1 kijm = 1
With this, the optimization problem to be solved is to minimize:

R∑
i=1

R∑
j=1

N∑
m=1

kijmGijEjm +

R∑
h=1

R∑
i=1

R∑
j=1

DhijSE(
−→
khi,

−→
kij)

subject to the following constraint:

R∑
i=1

R∑
j=1

N∑
m=1

kijmGijTjm+

R∑
h=1

R∑
i=1

R∑
j=1

DhijST (
−→
khi,

−→
kij) ≤ deadline

In the relationships above, R is the number of regions, i.e., nodes
such as basic blocks in a control-flow graph. N is the number of
mode settings, kijm is the mode variable for mode m on edge (i, j)

and
−→
kij is the set of mode variables (N in all) for edge (i, j). Ejm

is the energy consumption for a single invocation of region j under
mode m. Gij is the number of times region j is entered through
edge (i, j) and Dhij is the number of times region i is entered
through edge (h, i) and exited through edge (i, j). Tjm is the ex-
ecution time for a single invocation of region j under mode m.
These last four values are all constants determined by profiling.

If we let Vm be the supply voltage of mode m, then SE is the
transition energy cost for one mode transition, such that SE(

−→
khi,

−→
kij) =

c ∗ (1 − u)|
∑N

m=1 khimV 2
m −

∑N

m=1 kijmV 2
m|. Likewise, ST ,

the transition time cost for one mode transition, is represented as:

ST (
−→
khi,

−→
kij) = 2∗c

IMAX
|
∑N

m=1 khimVm −
∑N

m=1 kijmVm|.
The introduction of the mode variables instead of the voltage

variables linearizes the energy and execution time costs Ei and
Ti for region i. While SE and ST are still non-linear due to the

absolute value term, there is no quadratic dependence on the vari-
ables; the Vm term in SE is now a constant. The absolute value
dependence can be linearized using a straightforward technique.
To remove the absolute value, |x|, we introduce a new variable y
to replace |x| and add the following additional constraints: −y ≤
x ≤ y. Applying this technique to SE and ST , the formulation is
completely linearized as follows. Minimize

∑
i

∑
j

∑
m

GijkijmEjm +
∑

h

∑
i

∑
j

DhijehijCE

subject to the constraints:

∑
i

∑
j

∑
m

GijkijmTjm +
∑

h

∑
i

∑
j

DhijthijCT ≤ deadline

∑
m

kijm = 1

−ehij ≤
∑
m

(khimV 2
m − kijmV 2

m) ≤ ehij

−thij ≤
∑
m

(khimVm − kijmVm) ≤ thij

The absolute value operations in the switching time and energy
relationships have been removed; the new variables ehij and thij

are part of constraints introduced for their removal, and CE = c ∗
(1 − u), CT = 2∗c

IMAX
are constants related to switching energy

and time in the linearized form.
Note that while each edge has a mode set instruction, if at run

time the mode value for an edge is the same as the previous one, no
transition cost is incurred. This is due to the nature of the transition
cost functions SE and ST , which, as expected, have non-zero value
only if the two modes are distinct. Thus, a mode set instruction in
the backward edge of a heavily executed loop will be “silent” for
all but possibly the first iteration. A post-pass optimization within
a compiler can easily hoist some such instructions out of the loop.

As mentioned in Section 4.1, the run time for the MILP solver
can be significantly reduced by a careful restriction of the solution
space. The mode instruction on some edge (i, j) can be forced to
have the same value as the mode instruction on some other edge
(u, v), so that

−→
kij =

−→
kuv . This reduces the number of independent

variables for the MILP solver, and consequently its runtime. While
this restriction can potentially result in some loss of optimality in
the objective function, the deadline constraints are still met. The
practical issues in deciding which edges to select for this restriction
are discussed in the experimental section.

4.3 Handling Multiple Data Sets
The formulation described thus far optimizes based on a single

profile run from a single input data set. Here we extend the method-
ology to cover multiple categories of inputs. While different data
inputs typically cause some variation in both execution time and
energy, one can often sort types of inputs into particular categories.
For example, with mpeg, it is common to consider categories of
inputs based on their motion and complexity.

The MILP-based scheduling algorithm can be adapted to handle
multiple categories of inputs. For each category of inputs, a “typi-
cal” input data set is chosen. The goal is to minimize the weighted
average of energy consumption of different input data sets while
making sure that the execution time using different typical input
data sets meets a common or individual deadlines.

The formulation is remodeled as working to minimize:

∑
g

pg(
∑

i

∑
j

∑
m

kijmGijgEjmg +
∑

h

∑
i

∑
j

DhijgehijCE)



subject to the following constraints:

∀g
∑

i

∑
j

∑
m

kijmGijgTjmg+

∑
h

∑
i

∑
j

DhijgthijCT ≤ deadline

∑
m

kijm = 1

−ehij ≤
∑
m

(khimV 2
m − kijmV 2

m) ≤ ehij

−thij ≤
∑
m

(khimVm − kijmVm) ≤ thij

In these relations, pg is the possibility of input category g as
input. Ejmg is the energy consumption of region j in mode m for
input data in category g and likewise Tjmg is the execution time
of region j in mode m for input data in category g. Gijg is the
number of times region j is entered through edge (i, j) for input
data in category g and the path counter Dhijg refers to the number
of times region i is entered through edge (h, i) and exited through
edge (i, j) for input data in category g. The other terms are the
same as before.

These modifications retain the linearity of the objective func-
tion and constraints. The objective function now minimizes the
weighted average energy over the different categories, and the dead-
line constraints ensure that this is done while obeying the deadline
over all categories. If applicable, this formulation also allows for
having a separate deadline for different categories if needed. The
following section describes our actual MILP-based implementation
in further detail before we present our energy results.

5. DVS IMPLEMENTATION USING PROFILE-
DRIVEN MILP

As shown in Figure 13, our optimal frequency setting algorithm
works by profiling execution, filtering down to the most important
frequency-setting opportunities, and then sending the results to an
MILP solver. This section describes this flow in greater detail, with
the following subsections discussing the profiler, filter, and solver
steps respectively.

5.1 Simulation-based Program Profiling
As already described, our MILP approach requires profiling data

on the per-block execution time, per-block execution energy, and
local path (the entry and exit for a basic block) frequencies through
the program being optimized. While the local path frequencies
need only be gathered once, the per-block execution times and en-
ergies must be gathered once per possible mode setting. This is
because the overlap between CPU and memory instructions will
mean that the execution time is not a simple linear scaling by the
clock frequency. (That is, we assume that memory is asynchronous
relative to the CPU and that its absolute response time is unaffected
by changes in the local CPU clock.)

To gather the profile data for the experiments shown here, we use
simulation. We note however, that other means of profiling would
also work well. One could for example, use hardware performance
counters to profile both performance and energy data for real, not
simulated, application runs [16].

The data shown here have been gathered using the Wattch power/-
performance simulator [3], which is based on SimpleScalar [5].
Our simulations are run to completion for the provided inputs, so
we get a full view of program execution. (Sampling methods might
be accurate enough to give good profiles while reducing profile
time.) For both our time/energy profiles and for our experimen-
tal results in subsequent sections, we used the simulation configu-
ration listed in Table 2. We assume that the CPU has three scaling
levels for (V,f). They are a frequency of 200MHz paired with a sup-
ply voltage of 0.7V, 600MHz at 1.3V, and a maximum performance
setting of 800MHz at 1.65V. This is similar to some of the voltage-
frequency pairings available in Intel’s XScale processors [6].

Parameter Value
RUU size 64 instructions
LSQ size 32 instructions
Fetch Queue size 8 instructions
Fetch width 4 instructions/cycle
Decode width 4 instructions/cycle
Issue width 4 instructions/cycle
Commit width 4 instructions/cycle
Functional Units 4 Integer ALUs

1 integer multiply/divide
1 FP add, 1 FP multiply
1 FP divide/sqrt

Branch Predictor Combined, bimodal 2K table
2-level 1K table, 8bit history
1K chooser

BTB 512-entry, 4 way
L1 data-cache 64K, 4-way(LRU)

32B blocks, 1 cycle latency
L1 instruction-cache same as L1 data-cache
L2 Unified, 521K, 4-way(LRU)

32B blocks, 16-cycle latency
TLBs 32-entry, 4096-byte page

Table 2: Configuration parameters for CPU simulation.

5.2 Filtering Edges to Reduce MILP Solution
Time

While our MILP approach generally works in practice for even
large programs, its runtime can be reduced by filtering the edges
that are considered as candidates for mode-set instructions. As dis-
cussed in Section 4.2, the frequencies in certain regions may be
linked to (i.e., the same as) the frequencies in other regions. This
reduces the number of independent variables for the ILP solver. A
simple and intuitive rule for doing this is as follows.

Our goal is to identify edges (i, j) such that the total power con-
sumption of block j when entered from (i, j) is relatively negli-
gible. In this case, not much is lost by giving up the flexibility of
independently setting the mode instruction along (i, j). If this edge
is selected, then its mode value can be made to be the same as that
for edge (k, i) which has the largest count (obtained during pro-
filing) for all incoming edges to block i. The motivation for this
is that it will result in edge (i, j) not changing its mode whenever
block i is entered from edge (k, i).

The selection rule is as follows. We filter out all edges whose
total destination energy is in the tail of the energy distribution that
cumulatively comprises less than 2% of the total energy (for an
arbitrarily selected mode). Filtered edges are still considered as
far as timing constraints are concerned, so all deadlines are met.
Filtering only affects the energy achieved.

5.3 Mathematical Programming: Details
Once profiles have been collected and filtering strategies have

been applied, the transition counts and the program graph structure
are used to construct the equations that express DVS constraints.
We use AMPL [8] to express the mathematical constraints and to
enable pruning and optimizations before feeding the MILP problem
into the CPLEX solver [13].

As shown in Figure 14, our edge filtering method greatly prunes
the search space for the MILP solver, and brings optimization times
down from hours to seconds. (We gather these data for six of the
MediaBench applications [17], with a transition time of 12 µs, and
transition energy of 1.2µJ.)

Table 3 shows that for the benchmarks considered the minimum
energy determined by the solver remain essentially unchanged from
the case when the full set of edges is considered. As discussed in
Section 4.2, the deadlines will still be met exactly, even with the
filtering in place.



0

50

100

150

200

250

300

350

400

m
pe

g/de
co

de

gs
m

/en
co

de

m
pg

123 ep
ic

ad
pc

m

gh
os

tsc
rip

t

M
IL

P
 S

o
lv

er
 S

p
ee

d
u

p
 d

u
e 

to
 F

il
te

ri
n

g

Figure 14: Speedup in MILP solution time when edge filtering
is applied.

benchmark All:Energy Subset:Energy
mpeg 122392.8 µJ 122392.8 µJ
gsm 72287.6 µJ 72287.6 µJ
mpg123 37291.4 µJ 37291.4 µJ
adpcm 10194.3 µJ 10195.4 µJ
epic 33021.9 µJ 33021.9 µJ
ghostscript 357.3µJ 357.3µJ

Table 3: Energy consumption when the MILP solver is run on
the full set of program edges (left) or the filtered subset of tran-
sition edges (right).

6. EXPERIMENTAL RESULTS
This section provides experimental results showing the improve-

ments offered by “real-world optimal” DVS settings chosen by MILP.

6.1 Benchmarks and Methodology
Our method is based on compile-time profiling and user-provided

(or compiler-constructed) timing deadlines. To evaluate it here, we
focus on multimedia applications in which one can make a solid
case for the idea that performance should meet a certain threshold,
but beyond that threshold, further increases in performance are of
lesser value. For example, once you can view a movie or listen to
an audio stream in real-time, there is lesser value in pushing speed
beyond real-time playback; as long as a specified speed level has
been reached, we argue that energy savings should be paramount.

The benchmarks we have chosen are applications from the Me-
diabench suite [17] except for mpg123. Unless otherwise specified,
we use the inputs provided with the suite, and we run the programs
to completion.

6.2 Impact of Transition Cost
Changing a processor’s voltage and frequency has a cost both in

terms of delay and in terms of energy consumption. Thus, the time
or energy required to perform a DVS mode setting instruction can
have an important impact on the DVS settings chosen by the MILP
approach, and thus the total execution time and energy. Frequent
or heavyweight switches can have significant time/energy cost, and
thus the MILP solver is less likely to choose DVS settings that re-
quire them.

The first experiment we discuss here shows the impact of tran-
sition cost on minimum energy. As given by the equations in Sec-
tion 4.2, transition time and transition energy are both functions of
the power regulator capacitance as well as the values of the two
voltages that the change is between. Thus, for a given voltage dif-
ference, one can explore the impact of different switching costs by
varying the power regulator capacitance, c. As c drops, so do both
transition costs.

In the data shown here, we examine five power regulator capaci-
tances. They show a range of transition costs from much higher to

0

0.2

0.4

0.6

0.8

1

1.2

m
pe

g/
de

co
de

gs
m

/en
co

de

m
pg

12
3

ad
pc

m
/e

nc
od

e
ep

ic

gh
os

tsc
rip

t

N
o

rm
al

iz
ed

 E
n

er
g

y

c=100uf

c=10uf

c=1uf

c=0.1uf

c=0.01uf

Figure 15: Impact of transition cost. Energy is normalized to
minimum energy without transition.

Exec_time1
All�at�800Mhz

1 2 3 54

Exec_time2
All�at�600Mhz

Exec_time3
All�at�200Mhz

Figure 16: Positions of deadlines

much lower than those typically found in real processors. A typical
capacitance c of 10µf yields 12µs transition time and 1.2µJ transi-
tion energy cost for a transition from 600MHz/1.3V to 200MHz/0.7V.
This 12µs transition time corresponds well to published data for
XScale [14]. We used a wide range of c from 100µ to 0.01µf in
our experiments. In order to focus on transition cost in this experi-
ment, we hold the deadline constant. In particular, all benchmarks
are asked to operate at a deadline that corresponds to point 5 in
Figure 16. This is given, for each benchmark, by the time in the
“Deadline 5” column of Table 4. This range of deadlines will be
discussed shortly in more detail when the examine the impact of
different deadlines on energy savings.

Results for six Mediabench benchmarks are shown in Figure 15.
For each benchmark, the energy is normalized to that program run-
ning at a fixed 600MHz clock rate. This clock rate is sufficient to
meet the deadline, so for very high transition costs (c = 100µf),
there are few or no transitions and so the energy is the same as in
the base case. At the highest transition cost shown, there are fewer
than 10 transitions executed for most of the benchmarks across their
whole run.

As c decreases, transition costs drop, and so does the minimum
energy. This is because when transition cost drops, there are more
chances to eliminate the slack by having more and more of the
program execute at 200MHz. For example, in the mpeg bench-
mark, zero transitions are attempted at the highest transition cost,
while at the lowest one, a run of the benchmark results in a total of
over 112,000 mode-setting instructions being executed (dynamic).
If there were no transition energy costs at all, the maximum en-
ergy saving would be bounded by the ratio of the V 2f values, or
0.72/1.32 which equals 0.29. For the smallest possible c values,
one can see that we approach this value, since transition costs are
quite small.

6.3 Impact of Deadline on Program Energy
The second experiment shows the impact of deadline choice on

minimum energy. Although the absolute values of the deadlines
vary for each benchmark, the deadline positions we choose are il-
lustrated abstractly and generally in Figure 16. For the most aggres-
sive deadlines (these smaller times are towards the left hand side)
the program must run at the fastest frequency to meet the dead-
line. Towards the right hand side of the figure, denoting the very
lax deadlines, programs can run almost entirely at the low-energy
200MHz frequency and yet still meet the deadline. Between these
two extremes, programs will run at a mix of frequencies, with some



Benchmark Exec time Exec time Exec time Deadline 5 Deadline 4 Deadline 3 Deadline 2 Deadline 1
at 200 MHz at 600 MHz at 800 MHz

adpcm/encode 29.5 9.9 7.4 29.0 20.0 10.0 8.1 7.6
mpeg/decode 557.6 187.3 141.0 557.6 300.0 190.0 181.0 151.0
gsm/encode 334.0 111.4 83.6 333.0 220.0 120.0 100.0 90.0
epic 152.6 53.6 41.0 150.0 100.0 60.0 50.0 45.0
ghostscript 2.0 0.89 0.74 2.0 1.5 1.0 0.81 0.76
mpg123 177.7 59.2 44.4 177.6 100.0 60.0 58.0 45.0

Table 4: Deadline boundaries and chosen deadlines for benchmarks (ms)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

N
o

rm
al

iz
ed

 E
n

er
g

y

mpeg/decode
gsm/encode
mpg123
adpcm/encode

epic
ghostscript

Figure 17: Impact of deadline on energy. Energy is normalized
to the energy of the best of the three possible single frequency
settings.

0

50

100

150

200

250

300

1 2 3 4 5

M
L

P
 S

o
lv

in
g

 T
im

e

mpeg2/decode
gsm/encode 
mpg123 
epic
adpcm/encode
ghostscript

Figure 18: MILP solution time (in seconds) for different dead-
lines.

number of transitions between them.
To make this more concrete for the benchmarks we consider,

Table 4 includes the runtimes of each benchmark when operat-
ing purely at 800MHz, 600MHz, or 200MHz without any transi-
tions. To test MILP-based DVS on each benchmark, we choose 5
application-specific deadlines per benchmark that are intended to
exercise different points along the possible range. These chosen
deadlines are also given in Table 4. The results here are shown for
a “typical” transition cost of c = 10µf.

Figure 17 shows the optimized energies for these experiments.
Moving from deadline 1 (stringent) towards deadline 5 (lax) the
program energy is reduced by nearly a factor of 2 or more. Across
the range, the MILP solver is able to find the operating point that
offers minimal energy while still meeting the deadline.

As shown in Figure 18, the chosen deadline can sometimes have
an effect on the required solution time. In some cases (e.g. gsm/en-
code), the solution time can dramatically change with changing

0

50

100

150

200

250

300

350

400

450

500

100b.m2v bbc.m2v cact.m2v flwr.m2v

T
im

e

opt.

opt.�for�flwr

opt.�for�bbc

opt.�for�average

Figure 19: Dependence of program runtime on input data used
for MILP profiling.

deadlines, reflecting the changing complexity of the solution space.
Table 5 shows the variations in the dynamic mode transition

counts for the benchmarks for different deadlines (for c=10µf tran-
sition cost). At the extremes (Deadlines 1 and 5) there are few
choices and thus not too many mode transitions. However, closer
to the middle, we see significant mode transitions for most bench-
marks as they have all three (V,f) choices to draw from. This
demonstrates the ability of the formulation to navigate the range
of choices, and switching many times to find the best (V,f) choice
for each part of the program.

6.4 Results for Multiple Profiled Data Inputs
The results here demonstrate the resilience of energy choices

across different input data sets as well as the result of optimiza-
tion for average energy as formulated previously. We focus here on
the mpeg benchmark, and we examine four different data inputs.
The inputs can be considered to fall into two different categories,
based on different encoding options. The first category uses no ‘B’
frames; it includes 100b.m2v and bbc.m2v. The second category
uses 2 ‘B’ frames between I and P frames; it includes flwr.m2v and
cact.m2v. All mpeg files are Test Bitstreams from [22].

Figure 19 shows program execution times for different input data
and profiling runs for the mpeg benchmark. In particular, the x-
axis shows four different input files for the benchmark. For each
benchmark, we show the runtime results from four different profil-
ing approaches. The leftmost bar shows the runtime for an mpeg
run on that input file when the profiling run is also on that input
file. The second bar shows the runtime in which the profiling data
was collected using the flwr input set for all runs. The third bar
shows the runtime when the bbc input was used for the profiling
runs. The rightmost bar shows the runtime when optimization is
done for the average of flwr and bbc input sets (with equal weight).
The data show that the multi-input case is often nearly as good as
optimizing based on the identical input. An exception, however,
is that optimizing based on the bbc input leads to poor execution
time estimation, however. We believe this is because the bbc in-
put is from the input category with no ‘B’ frames, so the MILP
solver does poorly in estimating the time and energy impact of the
code related to their processing. Finally, optimizing for the average



mpeg/decode gsm/encode mpg123 epic adpcm/encode ghostscript
Deadline 1 5 1 190 4 0 2
Deadline 2 2645 2777 1559 519 0 7
Deadline 3 5 85 936 552 0 3
Deadline 4 2645 8206 1550 492 0 23
Deadline 5 0 1845 6 4 0 2

Table 5: Dynamic Mode Transition Counts

Benchmark Ncache Noverlap Ndependent tinvariant

(Kcycles) (Kcycles) (Kcycles) (µs)
adpcm 732.7 735.6 4302.0 915.9
epic 8835.6 12190.4 9290.1 4955.9
gsm 13979.6 13383.0 29438.3 389.0
mpeg/decode 42621.1 44068.7 27592.1 2713.4

Table 7: Simulation results of program parameters

case makes sure that the deadlines are met for both the cases being
considered. Further, Figure 19 also illustrates the representative
nature of these two input sets. Using the average case (rightmost
bar) works as well as using the single profile data set (leftmost bar)
across the board - even when the specific data sets are not included
in the average as with cact and 100b. We have similarly measured
the sensitivity of energy results to specific profile inputs and have
found results as good or better than the runtime results presented
here; the sensitivity is fairly modest overall.

6.5 A Comparison of Analytical and Profile-
Driven Results

By using cycle-level CPU simulation to get the key program pa-
rameters as shown in Table 7, we plugged values into the analytic
models generated in Section 3 and discussed the resulting maxi-
mum energy savings predicted by the models in Table 1. Now,
Table 6 gives the energy savings results for the same programs
when run through the MILP-based optimization process. Because
the analytical model makes optimistic assumptions about switching
time and energy, it is expected to be an optimistic bound, and in-
deed, the savings predicted by the analytical model exceed those of
MILP-based approaches at all but one point. (For the gsm bench-
mark with three voltage levels at Deadline 5, the simulation energy
savings exceeds that of the analytical model by 0.01, apparently a
rounding issue.) Nonetheless, the general trends in both tables are
similar. Further, the comparison shows that the analytical bounds
are close enough to be of practical value.

Because energy savings is not monotonic with deadline and be-
cause the optimization space is relatively complex, an MILP-based
approach seems to be an important enabling technique for compile-
time, intra-program DVS.

A second message here is that as we increase the number of
available voltage levels, the benefits of DVS scheduling decrease
significantly. In fact it could well be argued that if circuit imple-
mentations permit a very large number of DVS settings, it may not
be worth resorting to intra-program DVS—a single voltage selec-
tion can come close enough. This is not surprising given the results
for our model with continuous voltage scaling, which is the limiting
case of increasing the number of discrete levels. We would like to
highlight this important by-product of our modeling—for the case
of only inter-program and no intra-program DVS, our model can
help determine a single optimal voltage based on a few simple pa-
rameters.

7. DISCUSSION AND FUTURE WORK
This paper examines the opportunities and limits of DVS scal-

ing through detailed modeling for analysis, and exact mathemat-
ical optimization formulations for compiler optimization. While
this study offers useful insight into, and techniques for compiler-
optimized DVS, there are subtleties and avenues for future work
that we will touch on briefly here.

In the analytical model we ignore delay and energy penalties for
DVS. This was required because it was not possible to a priori pre-
dict how many times, and between what voltages, the switches will
happen. This potentially made the model optimistic in terms of
achievable energy savings. It remains open to see if we can extend
the model to account for these costs.

The second optimistic assumption of fine-grain control on the
level of granularity of control for DVS mode setting, while opti-
mistic, is not particularly so. We can potentially insert mode set-
ting instructions for every instruction, and that represents reason-
ably fine grain control.

On the optimization side, a key issue in the formulation of the
problem concerns which code locations are available for inserting
mode-set instructions. While our early work focused on methods
that considered possible mode-sets at the beginning of each basic
block, we feel that edges are more general because MILP solutions
may assign a different frequency to a basic block depending on
the entry path into it. On the other hand, this generalization will
warrant certain code optimizations when actually implemented in
a compiler. First, annotating execution on an edge would, if im-
plemented naively, add an extra branch instruction to each edge
since one would need to branch to the mode set instruction and
then branch onward to the original branch destination. Clearly, op-
timizations to hoist or coalesce mode-set instructions to avoid extra
branches can potentially improve performance.

More generally, we hope to broaden our MILP formulation to
target larger code regions or paths [2]. Moving from edges to
paths would allow us to build more program context into our anal-
ysis of mode-set positioning. Furthermore, it would also allow us
to more accurately profile the time/energy costs of code regions;
by not breaking execution on basic block boundaries, our profile
would more faithfully reflect execution on deeply-pipelined ma-
chines with extensive branch speculation.

8. SUMMARY
This paper seeks to address the basic questions regarding the

opportunities and limits for compile-time mode settings for DVS.
When and where (if ever) is this useful? What are the limits to the
achievable power savings?

We start by providing a detail analytical model that helps de-
termine the achievable power savings in terms of simple program
parameters, the memory speed, and the number of available voltage
levels. This model helps point to scenarios, in terms of these pa-
rameters, for which we can expect to see significant energy savings,
and scenarios for which we cannot. One important result of this
modeling is that as the number of available voltage levels increase,
the energy savings obtained decrease significantly. If we expect fu-
ture processors to offer fine grain DVS settings, then compile-time
intra-program DVS settings will not yield significant benefit and
thus will not be worth it.

For the scenarios where compile-time DVS is likely to yield en-
ergy savings—few voltage settings, lax program deadlines, memory-
bound computation; selecting the locations and values of mode set-
tings is non-obvious. Here we show how an extension of the exist-
ing MILP formulation for this can handle fine grain mode-settings,
use accurate energy penalties for mode switches and deal with mul-
tiple input data categories. Through careful filtering of independent
locations for mode setting instructions, we show how this optimiza-
tion can be done with acceptable solution times. Finally we apply
this to show how the available savings can be achieved in practice.



Benchmark Voltage levels Deadline 1 Deadline 2 Deadline 3 Deadline 4 Deadline 5
adpcm 3 0.49 0.23 0.00 0.03 0.01

7 0.16 0.01 0.01 0.04 0.01
13 0.09 0.01 0.02 0.02 0.02

epic 3 0.57 0.30 0.03 0.27 0.05
7 0.18 0.19 0.10 0.10 0.07

13 0.10 0.09 0.01 0.01 0.08
gsm 3 0.57 0.37 0.09 0.32 0.13

7 0.18 0.02 0.03 0.16 0.14
13 0.10 0.02 0.05 0.06 0.05

mpeg/decode 3 0.60 0.34 0.03 0.24 0.05
7 0.21 0.02 0.09 0.08 0.07

13 0.13 0.02 0.11 0.10 0.08

Table 6: Simulation results of energy savings for different numbers of voltage levels.

9. REFERENCES
[1] Advanced Micro Devices Corporation. AMD-K6 processor

mobile tech docs, 2002. http://www.amd.com.
[2] T. Ball and J. R. Larus. Efficient path profiling. In

International Symposium on Microarchitecture, pages
46–57, 1996.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th International
Symposium on Computer Architecture, June 2000.

[4] T. Burd and R. Brodersen. Design issues for dynamic voltage
scaling. In Proceedings of International Symposium on Low
Power Electronics and Design (ISLPED-00), June 2000.

[5] D. Burger, T. M. Austin, and S. Bennett. Evaluating future
microprocessors: the SimpleScalar tool set. Tech. Report
TR-1308, Univ. of Wisconsin-Madison Computer Sciences
Dept., July 1996.

[6] L. T. Clark. Circuit Design of XScale (tm) Microprocessors,
2001. In 2001 Symposium on VLSI Circuits, Short Course
on Physical Design for Low-Power and High-Performance
Microprocessor Circuits.

[7] K. Flautner, S. K. Reinhardt, and T. N. Mudge. Automatic
performance setting for dynamic voltage scaling. In Mobile
Computing and Networking, pages 260–271, 2001.

[8] R. Fourer, D. Gay, and B. Kernighan. AMPL: A modeling
language for mathematical programming. Boyd and Fraser
Publishing Company, Danvers, Massachusetts, 1993.

[9] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC variation
in workloads with externally specified rates to reduce power
consumption. In Workshop on Complexity-Effective Design,
June 2000.

[10] C. Hsu and U. Kremer. Single region vs. multiple regions: A
comparison of different compiler-directed dynamic voltage
scheduling approaches. In Proceedings of Workshop on
Power-Aware Computer Systems (PACS’02), February 2002.

[11] C. Hsu and U. Kremer. The design, implementation, and
evaluation of a compiler algorithm for CPU energy
reduction. In To appear in Proceedings of ACM SIGPLAN
Conference on Programming Languages, Design, and
Implementation (PLDI’03), June 2003.

[12] C. Hughes, J. Srinivasan, and S. Adve. Saving energy with
architectural and frequency adaptations for multimedia
applications. In Proceedings of the 34th Annual International
Symposium on Microarchitecture (MICRO-34), 2001.

[13] ILOG CPLEX. Web page for ILOG CPLEX mathematical
programming software, 2002.
http://ilog.com/products/cplex/.

[14] Intel Corp. Intel XScale (tm) Core Developer’s Manual,
2002. http://developer.intel.com/design/intelxscale/.

[15] T. Ishihara and H. Yasuura. Voltage scheduling problem for
dynamically variable voltage processors. In International
Symposium on Low Power Electronics and Design
(ISLPED-98), pages 197–202, August 1998.

[16] R. Joseph and M. Martonosi. Run-time power estimation in

high-performance microprocessors. In International
Symposium on Low Power Electronics and Design
(ISLPED), 2001.

[17] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communication Systems. In Proceedings of
the 30th International Symp. on Microarchitecture, Dec.
1997.

[18] S. Lee and T. Sakurai. Run-time voltage hopping for
low-power real-time systems. In Proceedings of the 37th
Conference on Design Automation (DAC’00), June 2000.

[19] J. Lorch and A. Smith. Improving dynamic voltage
algorithms with PACE. In Proceedings of the International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS 2001), June 2001.

[20] J. Luo and N. K. Jha. Power-profile driven variable voltage
scaling for heterogeneous distributed real-time embedded
systems. In Int. Conf. VLSI design, Jan. 2003.

[21] D. Marculescu. On the use of microarchitecture-driven
dynamic voltage scaling. In Workshop on
Complexity-Effective Design, June 2000.

[22] MpegTv. Mpeg video test bitstreams.
http://www.mpeg.org/MPEG/video.html, 1998.

[23] G. Qu. What is the limit of energy saving by dynamic
voltage scaling? In Proceedings of the International
Conference on Computer Aided Design, 2001.

[24] T. Sakurai and A. Newton. Alpha-power model, and its
application to CMOS inverter delay and other formulas.
IEEE Journal of Solid-State Circuits, 25:584–594, Apr 1990.

[25] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. Irwin, J. Hu,
C.-H. Hsu, and U. Kremer. Energy-conscious compilation
based on voltage scaling. In Joint Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’02)
and Software and Compilers for Embedded Systems
(SCOPES’02), June 2002.

[26] Semiconductor Industry Association. International
Technology Roadmap for Semiconductors, 2001.
http://public.itrs.net/Files/2001ITRS/Home.htm.

[27] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for
low-energy hard real-time applications. IEEE Design and
Test of Computers, 18(2):20–30, March/April 2001.

[28] V. Swaminathan and K. Chakrabarty. Investigating the effect
of voltage switching on low-energy task scheduling in hard
real-time systems. In Asia South Pacific Design Automation
Conference (ASP-DAC’01), January/February 2001.


