Live, Runtime Power Measurements as a Foundation for
Evaluating Power/Performance Tradeoffs

Russ Joseph, David Brooks, and Margaret Martonosi
Department of Electrical Engineering
Princeton University
Princeton, New Jersey 08544-5263

{rjoseph, dbrooks, mrm}@ee.princeton.edu

ABSTRACT

Of the many ways one could gauge the complexity-effectiveness

of a design or design element, one candidate approach is to
consider a design’s power/performance tradeoffs. This paper
describes our early-stage results in a broad effort to evaluate
the power-performance tradeoffs of a range of benchmarks
and microarchitectures. In particular, this paper presents
power data collected on-the-fly on real x86 machines as they
execute carefully-constructed microbenchmarks. The mi-
crobenchmarks exercise aspects of the system such as data
cache and branch predictor. They are parametrically-variable
to consider how load dependence, cache miss rate, branch
mispredict rate, and branch distance all impact the power
and performance of a CPU. For example, from these ex-
periments, we learn that CPU performance increases essen-
tially monotonically with cache hit rate, while CPU power
encounters a maximum at roughly 80-90% cache hit rates.
Likewise, we show results demonstrating that performance-
neutral issues such as bit populations in the data cache val-
ues can display interesting power trends. While the exper-
imental results are preliminary, we feel that the techniques
described in this paper will offer a useful foundation for a
broad range of power/performance tradeoffs.

1. INTRODUCTION

The notion of complexity-effective design can mean differ-
ent things to different designers. At its most basic level,
however, it means that the design elements should give ben-
efits that are commensurate with their cost. Benefits of a
design choice can include factors like higher performance or
increased reliability. Metrics for evaluating a design choice’s
cost might include transistor counts, CPU yield rates or
power dissipation. The exact preferences for benefits and
cost depend on the type of the CPU being built and its
intended usage.

In this paper, we focus on comparing performance benefits
to power costs for particular design elements. The platform
for these experiments involves real CPU power and perfor-
mance measurements developed for our Castle power esti-
mation project [6]. Our Castle work gives accurate power
profiles for programs as they execute. An exploration of the
interplay between power and performance effects presented
in this paper seemed a natural extension.

In order to isolate particular performance effects, we have
developed a benchmark generator we call TraumaGen. As

the name implies, TraumaGen allows one to set up assembly
language codes with particularly diabolical—and parametri-
cally controlled— behaviors. That is, by inputting machine
characteristics, we can get from TraumaGen a benchmark
with a given instruction or data cache miss rate, or one with
a particular branch mispredict behavior.

The synthetic microbenchmarks created by TraumaGen can
be put to many uses, but in this paper we use them for
comparing the power costs and performance benefits of a
particular design. This allows us to get one sense of the
complexity-effectiveness of the design choices. The work de-
scribed in this paper is a start on a much larger effort to char-
acterize power /performance tradeoffs using real-machine mea-
surements on a range of programs and CPUs. We present
some initial results here. While the early results are already
of interest on their own, the paper’s description of our tech-
nique is, we feel, also a contribution since it is general and
promises useful future data. The design we focus on here
is the Pentium Pro microarchitecture." While Pentium Pro
seems somewhat dated, the core microarchitecture of the
Pentium Pro is similar to PII and PIIT as well. The next
step in our research will be to broaden our approach to other
newer architectures.

The remainder of this paper is structured as follows. Sec-
tion 2 gives an overview of the power and performance mea-
surement strategy used. Section 3 describes our TraumaGen
microbenchmark generators. Section 4 outlines the method-
ology used in this paper. Sections 5, 6, and 7 then present
power/performance tradeoff studies on data caches, branch
predictors, and bit activity levels, respectively. Finally, Sec-
tion 8 offers a summary and discussion of future work.

2. POWER AND PERFORMANCE MEASURE-

MENT

For our study, we need both accurate power and perfor-
mance data. Fortunately, we had previously developed a
scheme for observing and recording processor power as part
of our Castle power estimation project [6]. Castle gathers
usage statistics from performance counters and can deter-
mine processor component and total power consumption as a
program executes. Here we present the power measurement

1We will admit that it was chosen because as the least valuable
machine in the lab, it seemed the best candidate for being opened
up and having its power lines cut and manipulated!

approach, and briefly describe our approach for producing
performance statistics.

2.1 Power MeasurementUsing Castle

Castle power estimation uses performance counters and data
sampling to produce processor power profiles, including com-
ponent breakdowns. As part of our Castle development and
verification, we also devised a scheme for direct CPU power
measurement. Figures 1 and 2 give examples of the power
windows displayed with live Castle power readings as the
Olden benchmark health [10] is executed.

T RN

Total Power = 225 Watts

H

on
Awcrape: Powar [Wiatks)

x 3
¥ L
o

Compermnt

=r

Figure 1: Performance counter based Castle power
profile for health

H-MULTIMETER

FAIR LAY

Figure 2: Direct power measurement for health

For this work, we focus on the total power readings given
by direct measurement. While the power breakdowns will
likely prove useful in future work, we do not use them for
results given in this paper.

To collect processor power statistics we apply the scheme
illustrated in Figure 3. This is similar to the approach dis-
cussed for Compaq Itsy power measurements [13]. First,
we cut the connection between the internal power supply,
and motherboard. We then placed a shunt resistor in series

M ultimeter

Shunt Res stor

CPU

Chipset

— Power Supply

Figure 3: Diagram of Power Measurement Setup

with the supply and motherboard. At any point, the current
through the shunt resistor is identical to the current through
the CPU and chipset.

Figure 4: Photograph of Measurement Setup

To deduce the processor and chipset power, we relied on P =
V * 1. The power supply line under examination was known
to deliver a constant 5V. To determine the current through
the shunt resistor, we attached a HP 34401A Digital Mul-
timeter to both terminals of the shunt resistor. Since the
resistance was known, we were able to calculate the current
through the resistor and hence through components consid-
ered with Ohm’s Law (V = I * R). This immediately gave
us the power to the CPU and chipset. Figure 4 shows a
photograph of the system being measured. The multimeter
pictured is connected via a serial cable to a second PC that
collects data over time.

To separate processor from chipset power, we measured power
consumption of the processor in idle mode and compared
this to published information about the Pentium Pro CPU’s
idle mode power [5]. The difference between our measured
value and the value published for the CPU alone is assumed

to be the chipset power. We assume that the chipset power
is constant in our benchmarks and that only the CPU power
varies, since we do not expect chipset elements like bus
controllers to vary in power extensively during these mi-
crobenchmarks. Since our benchmarks are constructed to
minimize off-chip accesses after start up, we feel this is rea-
sonable. (We hope to refine these assumptions further in
future work.)

For the results presented here, our experimental platform
was an Intel Pentium Pro 200MHz Linux workstation with
128 MB RAM and a 2 GB hard drive. The system was run-
ning the Red Hat Linux 2.2.16-3 kernel. While the system is
fairly dated, it served as a good initial platform for our stud-
ies because it has a complex enough CPU to be interesting,
and yet is widespread enough that there are good specifica-
tion documents widely available on the power lines to the
CPU and motherboard. Furthermore, more recent chips like
the Pentium IT and Pentium IIT have a nearly identical mi-
croarchitecture to the Pentium Pro, although they run at
higher clock rates. We should expect many of the trends
identified in this study to hold for other members of the In-
tel P6 family, although the magnitude of the tradeoffs will
vary.

2.2 PerformanceMeasurements

In order to perform detailed performance/power tradeoff
studies, we need extensive performance information about
the programs being run. Towards that end we employed
the CPU’s hardware performance counters [9]. These per-
formance debugging aids are nearly ubiquitous in modern
microprocessors. They can typically be used to tabulate im-
portant processor level events like cache hits/misses, branch
mispredictions, or instruction retirement. In our case, the
specific counters that were the most useful were: (i) exe-
cution cycle counts, (ii) instructions decoded, (iii) instruc-
tions retired, (iv) branch instructions decoded, (v) branch
instructions retired, (vi) branch mispredictions, (vii) mem-
ory references, (viii) L2 cache accesses (as an indicator of L1
cache misses).

While our microbenchmarks were designed to explore the ef-
fect of various microarchitectural events, we also needed to
independently verify that the desired occurrence rates were
actually being sustained. For example, when we attempt to
create a suite of microbenchmarks with L1 cache miss rates
as close as possible to 10%, 20%, 30% and so on for our
tradeoff graphs, we need to know how close we got. We also
need to check that the IPC achieved verifies that we cre-
ated assembly code with the expected number of dependent
instructions on each load. While these checks can clearly
be gotten by visually examining the microbenchmark as-
sembly code, we use performance counters as an additional
sanity check. In particular, to calibrate the accuracy of our
microbenchmarks, we measured critical architectural events
with the Rabbit PMC Library [4]. This toolset affords devel-
opers easy access to the Pentium Pro’s performance coun-
ters. All performance-relevant statistics presented in this
work (such as the IPC and DPC graphs in Figures 9 and
13) were gathered from hardware performance counters with
this library. (While Castle also uses hardware performance
counters, it relies on kernel modifications to read the par-
ticular counters of interest. Our performance studies need

more flexibility in which counters are read and when; for
this reason, Rabbit proved useful here.)

3. THE TRAUMAGEN MICR OBENCHMARK
GENERATOR TOOLSET

In order to exercise the measured system in a known way, we
need to write microbenchmarks that have particular well-
constrained behaviors [11]. For example, Section 5 needs
microbenchmarks with carefully controlled reference rates
and data cache miss rates, while Section 6 studies differ-
ent branch rates and mispredict frequencies. To help us
in generating such codes, we first developed the Trauma-
Gen microbenchmark generator toolset. Each TraumaGen
generator is a C language program, intended to produce a
different type of microbenchmark. These include exercisers
of the data and instruction caches, the branch predictors, as
well as bitline activity exercisers.

Asinput, each TraumaGen generator takes parameters about
the machine being studied (such as the cache size and or-
ganization). As output, it produces an assembly language
program with the desired characteristics. We plan to build
TraumaGen generators for a variety of RISC and CISC ar-
chitectures, but this paper uses ones for building microbench-
marks in the x86 instruction set architecture.

3.1 TraumaGenExample

To better explain TraumaGen’s capabilities, we present here
a running example of generating data cache exercisers using
TraumaGen. In this case, TraumaGen takes as inputs the
desired cache hit rate and dependence information. Using
these plus a knowledge of the target microarchitecture and
instruction set architecture, the generator produces a mi-
crobenchmark with these requested characteristics.

Figure 5 provides a generic overview of the structure of the
microbenchmark TraumaGen produces for this cache exer-
cise example. TraumaGen can generate load instructions to
guarantee that a cache hit or miss will occur.

TOP:

LOAD CACHE MISS -1 .
— } Possible

ADD - : _
Dependencies

ADD . !
Yo! S !

ADD ----memmeeo - !
ADD - !
BRANCH TOP

Figure 5: Structure of L1 D-Cache microbenchmark
as generated by TraumaGen

Linked lig — novl (%ax), %eax
accesswhich addl $1967513926, Y%ecx

resultsin Instructi

cache miss addl %eax, %edx whi rclé ilson
movl (%ebx), %edi independent of
addl $1303455736, oecx Preceding load

Memory access addl %sdi, %edx
whichresultsin = ppy| (Y%eax), Y%eax

cache hit addl $1540383426, Y%ecx ,
Instruction
addl %ax, %edx <«——— whichis
novl (%bx), %esi dependent on

addl $521595368, %ecx preceding load
addl %esi, %edx

Figure 6: Assembly code produced by TraumaGen
for the case of a microbenchmark with a 50% L1
D-Cache miss rate.

Figure 6 shows a specific example of the assembly code Trau-
maGen produces for the case where we desire:

e 50% L1 Cache miss rate

e 1 dependent instruction and 1 independent instruction
per memory reference

e 8KB L1 data cache with 32 byte lines (2-way set asso-
ciative)

For this case TraumaGen produces code with a long loop of
roughly 800 instructions. The key basic block is intention-
ally large to minimize the effects of branch instructions and
branch predictions. On the other hand, the basic block is
sized to be small enough to reside wholly in the L1 instruc-
tion cache, to minimize the effects of Icache misses. The
loop does repeated load instructions to addresses chosen to
interfere in the L1 data cache at a particular rate. Since the
total number of pages referenced by the program is quite
small, TLB effects are not an issue; we applied several san-
ity checks to verify this. Since “real” programs do not simply
bombard the memory system with streams of solely mem-
ory instructions, our microbenchmark intersperses ALU in-
structions between the loads. The Pentium Pro used in this
study can issue up to three instructions per cycle, so our
benchmarks feature a single memory reference and two ALU
instructions per cycle. Finally, we chose to explore some of
the power /performance effects related to memory dependent
instructions, so we vary the dependence of the ALU instruc-
tions on the preceding load. In Figure 6, the user requested
1 dependent instruction and 1 independent instruction per
memory reference.

While this example focuses on TraumaGen’s use for mem-
ory system microbenchmarks, we have also applied similar
techniques to generate benchmarks that stress the branch
prediction hardware and that exercise bitlines with given
activity factors. Such approaches are discussed in more de-
tail in Sections 6 and 7.

4. EXPERIMENT AL SETUP

While the Intel Pentium class systems are fixtures of the
desktop computing landscape, many are not immediately fa-
miliar with the microarchitecture that drives them. Here we
supply a brief introduction to the P6 Microarchitecture and
follow with our procedure for generating microbenchmarks
and analyzing the performance/power effects witnessed by
them.

4.1 Pentium Pro Micr oarchitecture

The P6 Microarchitecture is the underlying implementation
that fuels most of Intel’s family of processors including the
Pentium Pro (used in this study), Pentium II, and Pen-
tium III. A common feature is the ability to convert vari-
able length CISC instructions into simple, fixed size micro-
operations, which are fed to the out-of-order execution en-
gine [3]. This is all done while maintaining fairly high per-
formance.

To support its deep superscalar pipeline, the Pentium Pro
processor relies on very clever instruction fetch and decode
logic. While the details of the decode engine are not the fo-
cus of our study, this logic does draw a considerable amount
of power, and entails significant complexity[8, 3]. The fetch
logic, particularly, the branch prediction implementation are
explored in our study, so we will examine some of its salient
details.

The highlight of P6 branch prediction is the 128 set, 4-way
associative branch target buffer (BTB) [7]. In addition to
tag and status bits, each BTB entry records branch target,
and speculative and non-speculative versions of a local 4-
bit branch history register. The branch history registers
are used to record the taken/not-taken behavior of static
branches. The four entries of a BTB set all share a pattern
history table. In this manner, the P6 supports two-level
adaptive branch prediction [14]. Our work examines some
of the power related effects of branch prediction.

Reservation Station (20)

4 3 2 1 0
y
| AGU1 || AGUO | | IEUL IEUO
JEU FPU
MOB
v A

L1 Data Cache (8KB' |-

Figure 7: P6 Execution Engine

The P6 out-of-order engine pictured in Figure 7 features
five functional units and supports issue of three translated
RISC micro-ops [3]. It features a 20 slot centralized reserva-
tion station which allows a modest amount of out-of-order
execution. Omne complex functional unit pipe supports all
basic integer operations, as well as multiplication, division
and floating point operations. A second functional unit pipe
only handles basic integer and branch instructions. Most
operations are fully pipelined. The memory units feature a

store buffer with forwarding to accompany the standard 8
KB cache. Loads typically execute in three cycles.

4.2 Experimental Procedure

For each study, we constructed a separate TraumaGen mi-
crobenchmark generator. The microbenchmark generators
were then employed to produce the executables used in this
study. The benchmarks were tailored to examine the desired
features. Care was taken to limit unwanted architectural
events (e.g. unwanted cache misses, or I/O access).

We measured the average power consumed by each bench-
mark with the approach described in Section 2 and pictured
in Figure 4. The multimeter data logger was configured
to produce 50 sample readings per second. Typical sample
variance for a given benchmark was on the order of 0.05 W.
Each individual benchmark was run for at least 5 minutes.
This corresponds to 60 billion cycles of observation and a
minimum of 18 billion instructions.

After measuring the power consumption of these bench-
marks, we used the Pentium Pro hardware counters to mon-
itor the performance characteristics of the benchmarks as
described in Section 2.

Finally, with both the power and performance statistics for
our study, we analyzed the available data and Sections 5, 6,
and 7 present a detailed discussion of the trends.

5. DATA CACHE

The first level data cache has a critical impact on both the
performance and power dissipation of most modern micro-
processors including the Pentium Pro. We have studied the
performance and power dissipation of the L1 data cache to
gauge the complexity-effectiveness of this part of the mi-
croarchitecture. To perform this study, we use TraumaGen
as described in Section 3 to generate cache microbenchmarks
that expose the power and performance effects of cache miss
rates and load value dependencies. In this section, we use
TraumaGen microbenchmarks with the following character-
istics:

e All load hits in the benchmark access the same cache
line. All memory accesses are controlled, so this line
is never replaced and always results in a hit.

e All L1 load misses are performed in a sequential man-
ner to a group of conflicting cache lines determined by
cache associativity and sizing parameters. The mem-
ory accesses are chosen so that they will always access
replaced lines.

e No load instructions generate L2 misses. The blocks
generating L1 misses are chosen so that they always
yield L2 hits. This is crucial since we want to minimize
the contributions of off-chip access.

These memory referencing instructions (depicted as

load_cache_miss and load_cache hit in Figure 5) are then
generated in random order to meet the ratio specified by
the user. Since the Pentium Pro can issue two integer oper-
ations in addition to a load operation, two addition instruc-
tions are also generated along with each load operation. The

user can specify the amount of dependence that these ad-
dition operations will have on their corresponding load op-
eration; no dependence, one operation dependent, or both
operations dependent. A large loop operation ensures that
the microbenchmark will run long enough to allow power
and performance measurements to be accurate.

31 ‘ ‘ ‘ ‘ ‘ ‘ : :
Two Dependencies —— X
305 + One Dependency - 2 N
Zero Dependencies - *)
30
295 +

285
28
275 r

Power(Watts)
N
©

26.5 —
0 10 20 30 40 50 60 70 80 90 100
DL1 Hit Rate (%)

Figure 8: Power Consumption vs. Cache Hit Rate

Using TraumaGen and our performance and power measure-
ment infrastructure, we have measured the effect of cache
misses and dependencies on power consumption and IPC.
Figure 8 shows power consumption on the Y-axis and L1-
Dcache hit rate on the X-axis. Three sets of data are plotted
on this graph. The first set of data is the case where there
are no dependencies between the load operation and the two
addition operations that are decoded on each cycle. The sec-
ond and third sets of data show the results when 1 and both
of the addition operations are dependent on the result of the
load operation.

Several interesting trends are revealed by this data. First,
power dissipation peaks at a cache hit rate of approximately
80-85%. Two conflicting actions are occurring within the mi-
croarchitecture to cause this phenomenon. With very good
cache behavior, the nonblocking cache miss support, L1-L2
interconnection network, and L2 cache will not be exercised
frequently resulting in lower power dissipation. On the other
hand with very poor cache behavior, the main pipeline will
be stalled more frequently because of dependencies and the
saturation of the outstanding miss support hardware. Stalls,
or bubbles, in the main pipeline will drastically reduce power
dissipation.

The second interesting trend is related to the amount of de-
pendencies in the microbenchmark. At the peak in power
around 85% hit rate, the 1- and 2-dependency microbench-
marks have lower power dissipation than the 0-dependency
microbenchmark. The reason for this is because as the num-
ber of dependencies increase, there will be more stall cycles
in the main pipeline waiting for these L1-cache misses to be
resolved. As the cache hit rate decreases below 50%, this
trend reverses; at this point, the 0-dependency microbench-
mark uses less power than the 1- and 2-dependency mi-
crobenchmarks. A possible reason for this is because ad-

ditional forwarding and rename logic is being exercised to
provide dependent operations with their data values.

Two Dependencies ——
One Dependency -

2.5+ Zero Dependencies -

Blocking Cache

Instructions Per Cycle
[y
(6]

O I I I I I I I I
0 10 20 30 40 50 60 70 80
DL1 Hit Rate (%)

Figure 9: IPC vs. Cache Hit Rate

Figure 9 shows the IPC measurements for the same suite
of microbenchmarks (read with our hardware performance
counter setup) and the IPC for a microarchitecture with a
blocking cache. The IPC for the blocking cache was com-
puted with the following formula:

1
(CPIpase + PProL2Penalty * (1 — HitRate))
(1)

IPC =

The IPC drops for all three sets of microbenchmarks from a
base IPC of 2.7 instructions per cycle to around 0.5. (The
base IPC reflects the case where there are zero dependent
instructions per load, and the cache is ideal.) However as
witnessed in Figure 9, the non-blocking caches on the Pen-
tium Pro give a significant performance increase over the
blocking cache. Given this significant performance bene-
fit, the additional power dissipation suggested in Figure 8
is complexity-effective when power is used as the metric of
complexity.

6. BRANCH PREDICTION

While the impact of branch prediction on superscalar per-
formance has been well documented, its effects on power are
not well-understood. To support large degrees of speculation
and high branch prediction rates, high performance proces-
sors employ very sophisticated branch prediction schemes
that add considerable complexity [15]. To examine some
aspects in the complexity-effectiveness of the Pentium Pro
branch prediction mechanism, we designed an experiment
again using our TraumaGen toolset.

In many processors, including the Pentium Pro, uncondi-
tional and conditional branches have different mispredict
penalties. This follows since unconditional branches can
be discovered during decode, while mispredicted conditional
branches are not identified until execution. We focused our
study on conditional branches. In particular, we explored

the effect of accuracy of branch direction prediction versus
the frequency of branches. We took care to ensure that our
microbenchmarks were small to minimize cache and BTB
misses. However, our sample space had to be large enough
to give accurate results, and minimize loop effects (e.g. eas-
ily predicted backward loop branches).

‘We only examined branch prediction accuracies greater than
50%. This seemed reasonable since most programs have
prediction accuracy rates above 50%. In addition, we also
increased the average number of cycles between branches
from 1 to 10. While it is quite possible for a wide superscalar
machine to see two or more branches per cycle, this would
typically happen infrequently.

R al
R R
N Cycles {
NT
T T
v NT Y
R R
R R
| |

Figure 10: Structure of Branch Prediction Experi-
ments.

Figure 10 illustrates our branch experiments. For every con-
ditional branch in our example, the code appearing at the
branch fall through is identical to the code at the target.
This was done to ensure that the power-wise contribution
of either arm of the branch would be equivalent. To achieve
specified branch prediction accuracy, we replaced the code
segments including random branches (denoted with 'R’s)
with new branches that will be predicted correctly after a
short warm-up. This allowed us to target arbitrary accu-
racies in the 50-100% range. The other variable examined
in our experiments is the spacing between branches in cy-
cles. Figure 10 shows the flow diagram when the distance in
cycles between branches is N. The cycles between branches
are filled with simple, high IPC code that accesses the data
cache and function units. Figure 11 shows a snippet of
microbenchmark code where there are two cycles between
branches.

sanpl e0013:
movl (%dx), %ebp
addl %bp, %ecx

Rotate register value to addl %bp, %eax §
set condition code mdb\d/: (()/O/edx) y o%esi E
a eax, %ecx
randomy. addl %ax, %eax
stc
Perform two cycles
roll $1, %bx
jc sanpl e0015 of work between
sanpl e0014: branches.
movl (%edx), %edi
addl %edi, %ecx 8
addl %di, %ax °
movl (%dx), %esi &

addl %esi, %ecx
. addl %si, %ax
Set condition code to roll $1, %bx

produce alwaystaken — st ¢
conditional branch. j c sanpl e0016

Figure 11: Assembly code produced by TraumaGen
for the case of a microbenchmark with 2 cycle spac-
ing between branches.

While it could be difficult to cause a given BTB entry to
always make an incorrect prediction, it was easy to make
branch conditions very erratic. It was also easy to make
certain branch conditions extremely predictable. To pro-
duce desired prediction accuracies, we varied the ratio of
predictable and unpredictable branches. Our general ap-
proach is outlined below.

e To produce erratic branches, we made the branch out-
come dependent on data dependent bit rotations of
a specific register. The number of zeros and ones in
the data register is kept equal, so the branch is equally
likely to be taken or not-taken, but the sign of the value
changes in a bizarre pattern that ordinary branch pre-
dictors cannot comprehend.

e For each predictable branch, the outcome was made
dependent on a condition flag that was either always
set or always clear.

e Finally, for the easily predicted branches, we chose to
equally distribute taken/not-taken outcomes.

Figure 12 shows the power for given prediction accuracies
when the distance between branches varies from 1 to 10.
Figure 13 shows the number of instruction decodes per cycle
(DPC). We chose this metric rather than IPC because it
better reflects the notion of total work versus necessary work
that is key to understanding energy related effects of branch
prediction [8]. We will use the DPC presented in Figure 13
as tool for examining power relevant features in Figure 12.

Several interesting trends appear in Figure 12. In general,
power increases as branch prediction accuracy improves for
all basic block sizes. This is not surprising since an increase
in prediction accuracy means that the pipeline has to flush
fewer instructions. Since stalls are essentially nops that can
be clock gated, they draw less instantaneous power than
executing real instructions. This explanation is further sup-
ported by noting that DPC also increases with accuracy.

When there is no extra work between branches, the power

30 ‘ : ‘ ‘
Ten Cycles ——
Eight Cycles ———
297 Six Cycles -
Four Cycles =
28 ¢ Two Cycles = 1
) One Cycle -----
3 27} Zero Cycles -~ - 1
g 26 - /’::/ /;; /,: .]
o X T e - - .
o %X """" 3“ & _ ,l‘ - v
S e]
24 + I e |
23 . ‘ ‘ ‘ ‘ ‘ |
50 55 60 65 70 75 80 85 90 95 100

Branch Prediction Accuracy(%)

Figure 12: Power vs. Branch Prediction Accuracy.

2.4 : ‘ |
Ten Cycles —+—
Eight Cycles ------
22 Six Cycles ----x---]
Four Cycles @& _
@ 2 F Two Cycles -—a-- e |
S One Cycle --o-- = m
O Zero Cycles -~~~ e)]
5 18t ¥
o} - : B
: . S
[%2] - - : D '
S 16| . - |
5 e ,»><»‘ .) . |
2 e D -
ol) e o x
E : /‘I’ . - ' .
3 12} 8 8 T o]
8 3 . .
g - -
& 1t e-m) ‘ |
o-
@ -0 o- o .
o8 r P PUPGRESEEY B A
° ‘ ‘ ’ L L L L L L

50 55 60 65 70 75 80 85 90 95 100
Branch Prediction Accuracy(%)

Figure 13: Decoded Instructions per Cycle vs.
Branch Prediction Accuracy.

consumption drops off considerably. This is not surpris-
ing since there are no additional uses of functional units,
data cache, or any other resources. Non-contiguous instruc-
tion fetches also introduce some pipeline bubbles, which ac-
count for even lower utilization. Finally, with branches be-
ing executed this frequently, speculation depth is most likely
reached very quickly, promoting further stalls and limiting
power usage. So, even when the prediction rate is very high,
power consumption remains low.

In most cases, an increased distance between branches trans-
lates into larger power consumption. This is intuitive since
a larger portion of the code contains compute instructions
which are obviously higher power than pipeline bubbles. As
basic block size and the number of compute instructions in-
crease, the relative impact of pipeline bubbles introduced by
mispredictions diminishes.

Perhaps the most curious feature of Figure 12 is that when
the distance between branches is a small non-zero number
of cycles, the power consumption overtakes larger branch

distances as the accuracy approaches perfect. In particular,
consider a branch cycle distance of one. The processor power
for this case exceeds all other branch cycle distances by a
large margin at 100% accuracy. However, Figure 13 shows
that DPC always increases as distance between branches
increases, regardless of prediction accuracy.

This effect can be explained as follows. When the num-
ber of extra cycles is small, but larger than zero, functional
units and the rest of the execution hardware are utilized
enough to maintain moderate power levels when prediction
accuracy is good. As prediction accuracy approaches the
95-100% range, the execution units are being kept busy,
pipeline bubbles are rare, and the branch hardware is signif-
icantly utilized. This accounts for the increased power con-
sumption. When the distances between branches are larger,
the branch units are not utilized enough to witness large
power increases. This explains why the DPC numbers may
be higher without a corresponding jump in power.

7. DATA ACTIVITY

In several recent studies, architectural techniques have been
proposed to save energy by reducing the amount of unneces-
sary switching within the processor [1, 2, 12]. Reducing data
switching activity when possible is an attractive means to
reduce power dissipation because in some cases significant
savings can be achieved with no performance impact. In
this section, we seek to gauge the potential for these types
of techniques by exploring the effect of data activity fac-
tor on power dissipation within the L1 Data Cache of the
Pentium Pro.

One way to gauge the effect of data activity factors is to
look at the measured power consumption of the Pentium
Pro as we read various values out of the data cache. The
microbenchmarks to perform this is fairly trivial. A data
value is passed as a parameter to TraumaGen, and a mi-
crobenchmark is created which repeatedly reads this value
out of a fixed memory location. By changing only the data
value in the microbenchmarks, we can isolate the effect of
data activity factor.

26.4
26.35
26.3
26.25
26.2
26.15
26.1
26.05 |
26
25.95 ‘ ‘ ‘ ‘

Power(Watts)

Figure 14: Effect of Data Activity Factor within the
DCache on Power Dissipation.

Figure 14 shows power dissipation with various amounts of
data activity within the L1 Data Cache. To quantify the
effect of data activity on power dissipation, we have consid-
ered reading values of 2" and 2" — 1 while varying n from
0 to 32. These values correspond to the case when the nth-
bit is set and when all of the first n-bits are set in the data
value being read from the cache. Figure 14 shows that the
power dissipation is relatively constant as we vary the values
with 2. On the other hand, there is a clear linear increase
in power dissipation when varying the values from 2" — 1.
This trend means that something in the cache’s path to the
registers consumes more power for 1’s than for 0’s. It could
either be a pre-charged bus implementation, single-ended
bitlines in the data cache, or some other similar effect. We
feel it is most likely that the cache structure is implemented
with single-ended bitlines where values of 1 cause the bitline
to evaluate; as we increase the number of 1s in the value be-
ing read from the cache, the number of bitlines pre-charging
and evaluating on each cycle increases, causing the power
dissipation to increase. If double-ended bitline structures
had been used in this structure, which are also common in
caches, identifying and capitalizing on cases to reduce the
data activity factor may be fruitful.

From Figure 14 it is clear that data activity factor can
have an appreciable effect on power dissipation within cache
structures. The measured range in power dissipation was
around 0.4W; from the Pentium Pro power breakdown data
presented in [8] we estimate that the worst case power dissi-
pation of the Data cache unit is slightly over 2W. While our
current experiments do not let us draw conclusions about
the effect of data activity factor within other structures, we
do feel that it can play a significant factor as a performance-
invariant index of power dissipation.

Although a 0.4W difference seems to be a small fraction of
overall system power, our studies were restricted to a portion
of the datapath. We are planning an extensive analysis of
data activity in the rest of the processor, which may uncover
more a drastic influence of data activity on total power.

8. SUMMARY

This paper represents a first-step in a broader effort to char-
acterize power/performance tradeoffs across a range of archi-
tectures. Live power measurements allow us to avoid some of
the inaccuracies of simulation based approaches. The Trau-
maGen microbenchmark generator toolset allowed us to cre-
ate microbenchmarks with particular cache, bit activity, and
branch prediction behaviors. With these microbenchmarks,
we compared power and performance responses to a range
of situations. The immediate data is interesting because it
represents some of the most detailed live data published on
superscalar, out-of-order processors. We expect to broaden
the approach and the results to encompass more CPU design
elements and a wider range of processors.

9. REFERENCES

[1] D. Brooks and M. Martonosi. Dynamically exploiting
narrow width operands to improve processor power
and performance. In Proceedings of the 5th
International Symposium on High Performance
Computer Architecture, Jan. 1999.

[2] R. Canal, A. Gonzalez, and J. Smith. Very low power
pipelines using significance compression. In
Proceedings of the 33rd International Symposium on
Microarchitecture, Dec. 2000.

[3] L. Gwennap. Intel’s P6 uses decoupled superscalar
design. Microprocessor Report, pages 9—15, February
1995.

[4] D. Heller. Rabbit: A Performance
Counters Library for Intel/AMD Processors and Linux.
http://www.scl.ameslab.gov /Projects/Rabbit /index.html.

[5] Intel Corp. Intel Quickstart Technology.
http://www.intel.com/mobile/technology /management.htm.

[6] R. Joseph and M. Martonosi. Run-time power
estimation in high-performance microprocessors. In
Proceedings of the International Symposium on
Low-Power Electronics and Design, Aug. 2001.

[7] J. Lee and A. Smith. Branch prediction strategies and
branch target buffer design. IEEE Computer, pages
6-22, Jan. 1984.

[8] S. Manne, A. Klauser, and D. Grunwald. Pipeline
gating: Speculation control for energy reduction. In
Proceedings of the 25th International Symposium on
Computer Architecture, pages 132-41, June 1998.

[9] T. Mathisen. Pentium secrets. Byte Magazine, pages
191-192, July 1994.

[10] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren.
Supporting dynamic data structures on distributed
memory machines. In ACM Transactions on
Programming Languages and Systems, 17(2), March
1995.

[11] R. Saavedra, R. Gaines, and M. Carlton. Micro
benchmark analysis of the KSR1. In Proceedings of
Supercomputing 93, Nov. 1993.

[12] L. Villa, M. Zhang, and K. Asanovic. Dynamic zero
compression for cache energy reduction. In Proceedings
of the 33rd International Symposium on
Microarchitecture, Dec. 2000.

[13] M. A. Viredaz and D. A. Wallach. Power evaulation of
itsy version 2.3. Tech. Note TN 57, Digital Western
Research Laboratory, October 2000.

[14] T. Yeh and Y. Patt. Two-level adaptive training
branch prediction. In Proceedings of the 24th
International Symposium on Microarchitecture,
November 1991.

[15] T. Yeh and Y. Patt. A comparison of dynamic branch
predictors that use two levels of branch history. In
Proceedings of the 20th Annual International
Symposium on Computer Architecture, pages 257—266,
1993.

