
Power Efficiency for Variation-Tolerant
Multicore Processors

James Donald and Margaret Martonosi
Department of Electrical Engineering

Princeton University
Princeton, NJ

{jdonald, mrm}@princeton.edu

ABSTRACT
Challenges in multicore processor design include meeting de-
mands for performance, power, and reliability. The progres-
sion towards deep submicron process technologies entails in-
creasing challenges of process variability resulting in timing in-
stabilities and leakage power variation. This work introduces
an analytical approach for ensuring timing reliability while
meeting the appropriate performance and power demands in
spite of process variation. We validate our analytical model
using Turandot to simulate an 8-core PowerPCTMprocessor.
We first examine a simplified case of our model on a platform
running independent multiprogrammed workloads consisting
of all 26 of the SPEC 2000 benchmarks. Our simple model ac-
curately predicts the cutoff point with a mean error less than
0.5 W. Next, we extend our analysis to parallel programming
by incorporating Amdahl’s Law in our equations. We use this
relation to establish limit properties of power-performance for
scaling parallel applications, and validate our findings using 8
applications from the SPLASH-2 benchmark suite.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Parallel Architectures; C.4
[Performance of Systems]: Performance Attributes

General Terms
Performance

Keywords
multicore, variation, power, parallel applications

1. INTRODUCTION
Process variation is an ever-increasing challenge in micro-

processor design. Deep submicron technologies pose signifi-
cant risks for wider spread in timing paths, as well as varia-
tions in leakage power. Within a few technology generations,
it is expected that within-die variations will become more sig-
nificant than die-to-die variations [4], and manifest in mul-
ticore chips as core-to-core variations [14]. Architects must
design these chips with appropriate options to ensure relia-
bility while still meeting appropriate performance and power
requirements. This involves fallback modes at the circuit, ar-
chitectural, and system level.

Some post-silicon circuit techniques can be applied to ensure
valid timing, but these entail non-trivial costs in terms of dy-
namic and leakage power. Our starting parameter is Pexcess,
the amount of excess power on a core resulting from inherent
leakage variation or as a side effect of circuit techniques to en-
sure proper timing. For maximum reliability, two techniques
that ensure accurate timing on process-variant cores are adap-
tive body bias (ABB) and VDD adjustment [34]. ABB refers
to toggling an additional voltage between the base and source.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’06, October 4–6, 2006, Tegernsee, Germany.
Copyright 2006 ACM 1-59593-462-6/06/0010 ...$5.00.

This allows various timing paths to be sped up at the cost of
possibly significant leakage power increase. VDD adjustment
generally does not increase the leakage as much, but has reper-
cussions on both leakage and dynamic power. Furthermore,
these effects on core power occur on top of inherent variations
in leakage power, which can vary significantly across cores [14].

Our work takes into account these power discrepancies to
formulate policies for post-silicon adaptivity to meet desired
performance and power budgets. Modern platforms often have
overall goals or configurable power modes that focus on maxi-
mizing the ratio of performance/watt rather than performance
alone. In studying methods toward this goal, our approach is
to turn off cores that are particularly expensive in terms of
power consumption. For this it is necessary to establish the
appropriate optimal tradeoff points. We seek to quantify these
cutoffs depending on the level of variation and execution char-
acteristics of the applications. By giving the system knowledge
of power variation traits through diagnostics, these bounds can
be known or calculated at system runtime and then used to
properly tune performance and power to sustain desired user
demands.

Since chip multiprocessors are becoming a widespread basis
for platforms in the server, desktop, and mobile sectors, we
tailor our analysis toward multicore designs. Modern devices
now run a wide variety of applications, often concurrently, and
must efficiently operate depending on their tasks at hand. We
first derive an appropriate performance/power tradeoff point
for the case of running 8 programs simultaneously through
multiprogramming. We then extend our analysis to parallel
programs, since multicore designs have become a major mo-
tivation factor toward seeing widespread use of parallel appli-
cations in all sectors.

We propose that multicore-based systems can adapt read-
ily to meet power-performance requirements. Specifically, the
core power ratings may be identified at the time of system
integration, and can even be reconfigured through system di-
agnostics after power ratings change due to long-term depreci-
ation effects. With knowledge of these variations, the system
can choose how to efficiently allocate cores to particular tasks
and put cores to sleep if potential additional performance is
not power-efficient. Our specific contributions are as follows:

• We derive an analytical bound for estimating the amount
of tolerable process variation for multicore policies seek-
ing to maximize performance/watt. These excess power
cutoff values, ranging from 1 to 6 W, are used to decide
when to turn off extra power-consuming cores.

• We introduce PTCMP, a fast multicore simulation en-
vironment, and use this to validate our analysis using
workloads formed from the SPEC 2000 suite.

• We extend our equations to the problem of parallel pro-
gramming by incorporating Amdahl’s Law, and use the
new derived relation to establish limit properties for power-
efficient parallel scaling.

• Using extended features of PTCMP we demonstrate these
properties using 8 applications from the SPLASH-2 bench-
mark suite. The high parallel efficiency of raytrace, for
example, allows it to increase in performance/power ra-

304

Global Design Parameters
Process Technology 35nm
Target Supply Voltage 0.9 V (selectively adjusted for variation)
Clock Rate 2.4 GHz
Organization 8-core, shared L2 cache

Core Configuration
Reservation Stations Int queue (2x20), FP queue (2x5), Mem

queue (2x20)
Functional Units 2 FXU, 2 FPU, 2 LSU, 1 BXU
Physical Registers 80 GPR, 72 FPR, 60 SPR, 32 CCR
Branch Predictor 16K-entry bimodal, gshare, selector

Memory Hierarchy
L1 Dcache 32 KB, 2-way, 128 byte blocks, 1-cycle la-

tency, 15-cycle snoop latency
L1 Icache 64 KB, 2-way, 128 byte blocks, 1-cycle la-

tency
L2 cache 8 MB, 4-way LRU, 128 byte blocks, 9-cycle

latency
Main Memory 80-cycle latency

Table 1: Design parameters for modeled 8-core CPU.

tio by running on as many as 7 cores although this max-
imum is easily offset by power variation beyond 0.28 W.

The next section describes our experiment and simulation
methodology. Section 3 provides our analytical model and
simulations for multiprogrammed workloads, while Section 4
extends our analysis and validation to parallel programs. Sec-
tion 5 covers related work and Section 6 offers our conclusions.

2. EXPERIMENT METHODOLOGY
2.1 Architectural Model

We use an enhanced version of Turandot [26] and Pow-
erTimer [5] to model performance and power of an 8-core
PowerPCTMprocessor. Our cycle-level simulator also incor-
porates HotSpot version 2.0 [13, 32] in order to model the
temperature-dependence of leakage power from various com-
ponents. Our process and architectural parameters are given
in Table 1.

We assume ABB and adaptive VDD can be applied at the
granularity of individual cores, ensuring timing correctness
while bringing some cores beyond their normally allowed power
specification.

2.2 Simulation Setup
This work introduces Parallel Turandot CMP (PTCMP),

our cycle-level simulator. Unlike its predecessor Turandot
CMP [21], PTCMP is programmed with POSIX threads rather
than process forking to achieve lightweight synchronization
and parallel speedup. This infrastructure is an alternative
to Zauber [22], which also avoids slowdown in the fork-based
Turandot CMP, but by using a non-cycle-accurate approxima-
tion. Our method maintains all necessary cycle-level commu-
nication. PTCMP is able to test various combinations of CMP
and SMT configurations without limits on the number of cores
that have been vexing for some prior simulators. The main-
tained cycle-level communication not only aids with accurate
modeling of shared cache contention, but is also necessary for
other enhancements described below.

Like its predecessors, PTCMP also incorporates online cal-
culations for power and temperature through integration with
PowerTimer and HotSpot.

2.3 Benchmarks
We use all 26 benchmarks from the SPEC 2000 benchmark

suite [12] to formulate several 8-program workloads. These
programs are traced with Aria [26] in their appropriate Sim-
Point [30] intervals. The SPLASH-2 applications, on the other
hand, are traced using the Amber tool on Mac OS X [2] from
the beginning to end of their complete algorithm executions.

2.4 Modeling Thread Synchronization and
Coherence

There are two main issues in our extensions to Turandot for
parallel program simulation: synchronization and coherency.

Fortunately, from an implementation perspective these can be
dealt with independently. We implement modeled lock syn-
chronization (not to be confused with the implementation’s
internal synchronization) and a MESI cache coherence pro-
tocol [28] to maintain memory consistency across each core’s
local cache with respect to the shared L2 cache.

We use Amber’s thread synchronization tracing system in
order to accurately track the status of pthread-based mutexes
and condition variables. Our trace-driven simulator then mod-
els stalls for individual threads when such thread-communication
dependencies are detected.

For shared memory coherence we implement a MESI [28]
cache-coherence protocol to allow private copies of data in each
core’s local data cache. The data coherence is with respect
to the shared L2 cache. We have correspondingly extended
PowerTimer to account for the energy cost of cache snoop
traffic.

2.5 Metrics
We are most interested in the metric of performance per

watt. Since we use SimPoint-generated [30] subsections of the
SPEC 2000 suite and some benchmarks may complete in dif-
ferent proportions depending on system properties, we use the
weighted speedup metric [33] in order to measure performance.
This effectively takes the sum of the programs’ executions rel-
ative to their baseline single-threaded performance on our pro-
cessor.

For our parallel program experiments, we use complete ex-
ecutions of 8 benchmarks from the SPLASH-2 suite. Because
these are run to completion, in Section 4 we simply use the
speedup ratio relative to the performance of a single node.

3. POWER-PERFORMANCE OF MULTI-
PROGRAMMED WORKLOADS

3.1 Analysis
We seek to maximize the throughput/energy ratio in spite

of excess power on cores due to process variation, defined as
Pexcess. This excess power can arise due to inherent leakage
variation but also as an after-effect of circuit techniques ap-
plied to ensure timing reliability. Specifically, cores that do
not meet timing requirements at the time of manufacture can
be receive ABB or VDD adjustments, but this may cause these
cores to go beyond its specified power limit [34].

ABB, when applied in forward mode, involves placing a pos-
itive bias between the body and source. Thus, these two tech-
niques may be best used in combination to ensure timing re-
quirements. This does not increase the dynamic switching
power, but increases leakage power significantly more than
VDD adjustment [34]. Thus, these techniques may be best
used in combination to ensure timing requirements.

For a given timing adjustment the supply voltage must be
scaled up roughly linearly, resulting in an approximately linear
increase in leakage power and quadratic increase in dynamic
power. For cores which already meet their timing requirements
with sufficient slack, we may also apply ABB in reverse (known
as reverse body bias, RBB) or lower VDD in order to save
power. Even in a fortunate scenario where all cores have some
timing slack, the degree to which ABB or VDD adjustment
can be applied will differ across cores. This combined with
inherent leakage variation results in a set of cores on one die
with possibly very different power characteristics.

For the purpose of managing these resultant power varia-
tions, the metric we aim to maximize is the ratio of perfor-
mance/watt, a current focus for modern server applications
[18] and one of the primary concerns for mobile platforms.
We have also considered some more complex scenarios such
as minimizing power for a fixed performance deadline or max-
imizing performance for a fixed power budget. These other
analysis routes are interesting areas for future study, but for
simplicity we have chosen to focus on maximizing the perfor-
mance/power ratio.

305

Our approach is to find the appropriate cutoff point such
that a system may decide to turn a power-hungry core off.
There may often be a benefit to retaining an extra power-
hungry core, since more running cores can help amortize power
cost of dynamic and leakage power from shared resources such
as the L2 cache.

We wish to see the appropriate cutoff point for when this
core offers enough performance to make its wattage worth-
while, versus when we should put this core into sleep mode
and make do with the remaining resources. Our criteria for
when a core should be disabled can be stated in terms of an
inequality relating the performance/power ratio of N cores to
N − 1 cores, as follows:

perfN
powerN&excess

≤ perfN−1

powerN−1
(1)

Here, perfN and powerN&excess represent the performance of
power of the full processor with all N cores used, including
the core with excess power. The corresponding perfN−1 and
powerN−1 represent those values when the Nth core (sorted
from lowest to highest excess power) is turned off. We then
expand the condition of Equation 1 as such:

Nperf1αN

NPcore + Pexcess + Pshar,N
≤ (N − 1)perf1αN−1

(N − 1)Pcore + Pshar,N−1

(2)
where N represents the number of active cores, Pcore denotes
average core power, Pshar denotes power shared among cores,
such as power consumed by the L2 cache, and α represents a
speed factor to take resource contention into account. Various
elements such as Pshar are subscripted to indicate they have
a specific value for different core configurations, while others
such as Pcore are taken as constant across different values of N .
In fact we assume only a single value of Pcore, since core power
tends to vary significantly less than cache and interconnect
power.

α is a factor typically less than 1. It represents the slowdown
caused by contention on shared resources, a critical design
element of CMPs. If there is little shared cache or memory
contention, it becomes likely that α ≈ 1 [21]. This property
does not hold for memory-intensive benchmarks, so we use the
much weaker assumption that αN

αN−1
≈ 1, which says that the

incremental contention from an additional core is reasonably
small for moderately sized N .

Solving for Pexcess under these conditions, this results in:

Pexcess ≥ (
N

N − 1
)Pshar,N−1 − Pshar,N (3)

This equation states our criterion in a relatively simple man-
ner, by depending only on the power cost of shared resources
but not the baseline core power nor contention factors. In
essence, we plan to turn off any cores for which Equation 3
is true. This is one of our key insights that we utilize and
validate.

If the condition of Equation 3 were to be checked and acted
upon dynamically, this would require knowing the value of
Pexcess, which is calculated per core relative to the average
across all cores, and Pshar. Direct power measurement, such
as used in Intel’s Foxton technology [27], could be done indi-
vidually on all cores and the shared cache in order to provide
the numerical input for these calculations.

While not readily apparent from Equation 3, a general char-
acteristic of the cutoff point is that it increases roughly linearly
with respect to the power cost of shared resources. This can
be seen more clearly in the simplest case. When Pshar does
not vary significantly with respect to N , the expression in
Equation 3 simplifies down to:

Pexcess ≥ Pshar

N − 1
(4)

integer-only bzip2, crafty, eon, gcc, parser, perlbmk, vortex,
vpr

FP-only applu, equake, galgel, mesa, mgrid, sixtrack, swim,
wupwise

memory-bound ammp, applu, art, gap, lucas, mgrid, swim, twolf
CPU-bound apsi, eon, equake, fma3d, gcc, gzip, mesa, sixtrack
mix1 ammp, crafty, facerec, galgel, mcf, parser, vpr,

wupwise
mix2 applu, apsi, eon, gap, gcc, gzip, lucas, twolf

Table 2: Various 8-program workloads consisting of
SPEC benchmarks for our experiments.

In this case, the amount of room for power variation increases
linearly with Pshar. Similarly, with N in the denominator,
increasing the number of active cores takes care of amortizing
these costs and hence reduces room for large values of Pexcess.
In our validation experiments, we use Equation 3 to account
for variation in shared cache power, but our results in Section
3.3 do confirm this insight of amortized shared power costs
with varying N .

3.2 Test Workloads
We examine six characteristic workloads for the purpose

of confirming our power-performance tradeoff analysis in the
multiprogramming case. Our specified workloads are grouped
as shown in Table 2. The first four workloads have benchmarks
selected for the purposes as listed in the table. The remaining
two workloads are formulated to include all remaining SPEC
benchmarks.

3.3 Results
Our validation uses the workloads listed in Table 2. How-

ever, when a lower power mode is entered by putting one core
to sleep, one corresponding benchmark must be removed from
the workload. In each case, we remove the median bench-
mark in terms of core power consumption, in order to ensure
its value of Pcore reasonably matches the average core power.
For example in the mix1 workload, ammp is moderate in terms
of power consumption and so is absent in the N = 7 case.

Modern process technologies create a roughly Gaussian dis-
tribution of product bins with nontrivial quantities of proces-
sors in bins for poor timing performance when using default
voltage settings. Thus, our analysis needs to explore power
excesses ranging from zero to as much as 50% in excess of
the target core power. Figure 1 shows the performance/power
ratio across various values of Pexcess for N = 6 and N = 8,
respectively. Each arrow represents the change in overall per-
formance/power ratio due to turning off one core. Specifically,
the lengths of the arrows represent the magnitude of gains or
losses in the ratio due to dropping to a configuration of N − 1
cores. The boxes and cross-marks distinguish whether the an-
alytical criterion in Equation 3 is satisfied or not. In these two
figures, all non-satisfying cases result in a decrease in perfor-
mance/power while almost all criterion-satisfied cases result
in an improvement. The Y axes shows a relevant subrange for
which the ratio rises or falls in this region.

Notably, the observed and predicted safe ranges for Pexcess

are somewhat larger in the 6-program case than the 8-program
one. This is an example of the difference in amortized shared
power costs as we have described in Section 3.1. The smaller
N configuration gives a larger safe range for Pexcess, and we
observe this in most cases of reduced N for all workloads.
Furthermore, for a given 8-core processor the probability of
having a dangerously large excess power remaining after shut-
ting down 3 cores is unlikely as those cores were already likely
to be the most power-hungry ones. The obvious drawback in
the mode with less active cores, as shown in Figure 1(a), is
that this configuration has a lower overall performance/power
ratio. Thus, our most relevant cases lie with using all 8 cores.

For clarity we have performed our tests assuming only a sin-
gle process-variant core, but our equations can also apply to
variance across multiple cores. In the case of multiple vari-
ations, Pcore would refer to the average power of the N − 1
lower power cores, while Pexcess still represents the difference

306

0 1 2 3 4 5 6 7
0.051

0.0515

0.052

0.0525

0.053

0.0535

0.054

0.0545

0.055

0.0555

P
excess

 on Nth core (W)

W
ei

gh
te

d
S

pe
ed

up
 /

P
ow

er
 (

W
-1

)

P
excess

 < N / (N - 1) * P
shar,N-1

 - P
shar,N

P
excess

 >= N / (N - 1) * P
shar,N-1

 - P
shar,N

(a) mix1, N = 6

0 1 2 3 4 5 6 7
0.056

0.0565

0.057

0.0575

0.058

0.0585

0.059

0.0595

0.06

P
excess

 on Nth core (W)

W
ei

gh
te

d
S

pe
ed

up
 /

P
ow

er
 (

W
-1

)

P
excess

 < N / (N - 1) * P
shar,N-1

 - P
shar,N

P
excess

 >= N / (N - 1) * P
shar,N-1

 - P
shar,N

(b) mix1, N = 8

Figure 1: Performance/power ratio impacts due to
sleeping an additional core when running the mix1
workload.

between the default power consumption of the most consum-
ing core and that average.

We have summarized the cutoff points and our analytical
criterion’s margin of error for all workloads in Table 3. Error
in this sense refers to the small range where our analytical cri-
terion would make an incorrect system decision, such as turn-
ing off a core but resulting in reduced performance/power or
not disabling a core when it should have. Equation 3 predicts
the correct Pexcess cutoff points with a mean squared error of
less than 0.5 W. For perspective, the target design power for
the entire processor is around 90 watts, where each core con-
sumes about 8 watts. Total L2 cache and bus power ranges
from 10 watts to 40 watts. At low access rates, the shared
cache primarily consumes leakage power, while at high cache
activity the total L2 power consumption is mainly reflected by
the rate of cache accesses.

3.4 Underlying Themes
Our validation experiments have focused on only CPU power,

but system designers may wish to include the full power cost
of other resources including RAM, chipsets, memory-buffering
add-ons, and other essentials. Equation 4 describes the gen-
eral trend of how including all these elements generally serves
to raise the cutoff point, due to better amortizing shared costs.
This is one way to confirm general intuition regarding power
efficiency of multicore designs.

On the flip side, Equation 4 also denotes an inverse relation
between the Pexcess cutoff and the number of cores. In the
future, if multicore designs can feasibly can scale up to many
more cores, this increases the chance that one core may become
no longer worthwhile to use in the goal of maximizing perfor-
mance/power. Even so, modern mobile platforms are designed

workload (N = 8) Pexcess cutoff model agreement
integer-only 1.25 W −0.04 W
FP-only 3.88 W +0.95 W
memory-bound 5.61 W −0.09 W
CPU-bound 3.48 W −0.01 W
mix1 3.77 W +0.39 W
mix2 2.06 W −0.29 W

Table 3: Summary of Pexcess cutoffs and respec-
tive agreement with analytical model for multipro-
grammed workloads (all N = 8).

with multiple power modes, and feasibly a highest power mode
may seek to maximize performance and still have use for the
core in some situations, while a lower power mode may aim to
maximize performance/watt as has been the goal in our work.

4. POWER-PERFORMANCE OF PARALLEL
APPLICATIONS

4.1 Analysis
Our analysis here uses much of the same methodology as

in Section 3.1. A key difference is that our speed factor is no
longer αNN , which is effectively linear, but rather dictated
strongly by Amdahl’s Law for parallel computation. The vast
topic of parallel computation can certainly entail many com-
plex versions of Amdahl’s Law [11, 24, 31], but we choose the
most basic form as sufficient for our analysis:

speedupN =
1

s + 1−s
N

(5)

where s represents the fraction of sequential/serial computa-
tion that cannot be parallelized, and likewise (1−s) represents
that fraction that can be parallelized. The value of s is an im-
portant important application characteristic in deciding opti-
mal performance tradeoffs. Using this, we perform an analysis
similar to that used in Section 3.1. We evaluate Equation 1
and solve for Pexcess as follows:

1

s+ 1−s
N

perf1

NPcore + Pexcess + Pshar,N
≤

1

s+ 1−s
N−1

perf1

(N − 1)Pcore + Pshar,N−1

(6)

Pexcess ≥ s + 1−s
N−1

s + 1−s
N

[(N−1)Pcore+Pshar,N−1]−NPcore−Pshar,N

(7)
The above relation is more complex than the properties found
in Section 3, but we can use it to study several properties
of parallel programs. Because this criterion relies heavily on
s, which is an empirical constant that varies not only from
benchmark to benchmark but even within different configu-
rations for a single benchmark, it cannot used to accurately
predict cutoff points as we had done in Section 3. It does, how-
ever, have distinct limit properties that give us much insight
to the general power behavior of parallel applications.

First, Equation 7 is actually a special case of its analog for
the multiprogram analysis. When s = 0, this represents that
the application is completely parallelizable with no penalty
of dependencies or contention. Substituting s = 0 into the
expression and simplifying yields exactly Equation 3.

On the other hand, the case of s = 1 represents the worst
case of limited parallel speedup, where a program will not run
any faster on multiple cores as compared to just one. If we sub-
stitute in s = 1, the expression evaluates to Pexcess ≥ −Pcore,
which is always true and confirms that in such a specific situ-
ation reducing the execution down to a single core will always
increase the performance/power ratio. Thus, in order to seek
a Pexcess cutoff that is greater than zero, it helps if s � 1.

Next, always of interest in parallel programming problems
are the limits of scaling up to large values of N . Taking the
limit for large N with a nonzero value of s results in the fol-

307

Pexcess 0.28 W

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5 6 7 8

N (number of active cores)

S
p

ee
d

u
p

 /
P

o
w

er
 (

W
-1

)

P_excess= 0

P_excess = 0.28 W (cutoff)

P_excess = 5.00 W

(a) raytrace, best performance/power ratio at
N = 7.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8

N (number of active cores)

S
p

ee
d

u
p

 /
P

o
w

er
 (

W
-1

)

P_excess = 0

P_excess = 4.85 W (cutoff)

P_excess = 8.00 W

(b) cholesky, best performance/power ratio at
N = 2.

Figure 2: Performance/power for two benchmarks
across varying N and varying Pexcess at the value of
N providing the highest performance/power ratio for
each benchmark.

lowing suboptimality condition:

Pexcess ≥ Pshar,N−1 − Pshar,N − Pcore (8)

Since typically Pshar,N ≥ Pshar,N−1 this relation almost al-
ways also evaluates to a negative cutoff value for Pexcess,
meaning that the performance/power ratio only decreases af-
ter going beyond some finite N . Intuitively, we would thus ex-
pect a plot of this ratio vs increasing N to be a concave-down
function that begins to decrease after leveling off. Further-
more, if the performance/power ratio grows only slowly before
reaching this peak, we would expect a smaller allowable range
for Pexcess, as compared to the values found in Section 3 where
the ratio would continue growing even up through N = 8.

4.2 Results
We use 8 of the 12 benchmarks from the SPLASH-2 bench-

mark suite [36]. Although we have actually conducted experi-
ments with all 12 programs, three of the benchmarks—ocean,
fft and radix—are algorithmically restricted from running a
number of threads that is not a power of 2. To show clear
tradeoffs across the number of cores we have focused only on
other benchmarks which do provide this flexibility. Among
the remaining 9 benchmarks, volrend’s runtimes are an order
of magnitude longer than that of other programs, so we have
focused on the remaining 8.

We use only the true execution phase of each SPLASH-2
benchmark run for our timing and power measurements. This
phase begins after creation of all child threads and ends upon
their completion, but does not include any long initialization
phases beforehand nor the section of code at the end of each
benchmark that generates a summary report.

Figure 2 gives examples of varying performance/power ra-
tios with respect to N and Pexcess. In each case, the main
curve spanning all core counts assumes zero power excess on
all cores. The two additional lines represent the change in

application s max N Pexcess cutoff
barnes 0.039 7 2.02 W
cholesky 0.254 2 4.85 W
fmm 0.066 5 1.41 W
lu -0.009 8 1.34 W
radiosity 0.083 6 6.04 W
raytrace 0.044 7 0.28 W
water-nsquared 0.025 8 2.03 W
water-spatial 0.019 4 9.15 W

Table 4: Experimental results for SPLASH-2 bench-
marks, showing most power-efficient N , cutoff for
Pexcess at that configuration, and each benchmark’s
corresponding s value.

power efficiency for possible values of Pexcess at the other-
wise optimal performance/watt point. In the first example
(raytrace), we see a best configuration at N = 7, with only
a small allowable range of power variation. In the second ex-
ample (cholesky), we see good power efficiency occurring not
beyond 2 cores. This is largely in part due to this algorithm’s
large serial portion [36].

The non-smooth patterns in the cholesky graph reveal other
notable effects. In particular, core configurations that are not
set as a power of 2 each take an additional performance reduc-
tion, consequently resulting in poorer performance/power. In
fact, most of our benchmarks were found to show some degree
of performance preference towards power-of-2 thread counts.
This can be explained by non-ideal realities such as cache
alignment. Such additional factors affecting performance have
a rather direct effect on the performance/power ratio.

One difference between our results here as compared to Sec-
tion 3 is that limitations are reached at a finite number of
cores, as formulated by our analysis in Section 4.1. Our results
for all parallel programs are summarized in Table 4. Individ-
ual s values used in our calculations for various benchmarks
are calculated from the best fit according to speedups obtained
through our simulations. However, we have also tested these
programs on a real 8-way SMP system to confirm similar re-
spective parallel speedup characteristics.

There are a few interesting cases shown. For one, lu’s char-
acteristics best fit a negative value of s, meaning it received
super-linear speedup with respect to N in some cases. This
is unusual, although not impossible, as many complex effects
such as improved cache hit ratios can combine for such a re-
sult.

Second, radiosity and water-spatial have unusually high
allowable Pexcess ranges for their optimal core configurations.
The reason for this seems to be due to an interplay of ef-
fects that just happen to cause peak performance—possibly
more due to negative effects on the adjacent configurations—
at these choices of N for these two benchmarks.

Overall, these results confirm much of the intuitive limit
behavior specified by our analytical formulation. However,
unlike in Section 3, this formulation cannot accurately pre-
dict the numerical value of Pexcess at any given finite point.
These deviations from the analytical prediction are due to
many application-specific non-ideal factors. A power-efficient
multicore system design can take advantage of estimates based
on the limit behaviors we have formulated, but an interesting
topic for future study would be how a dynamic policy would
adjust estimates to take into account application-specific spe-
cial cases. Such a policy would not only utilize direct mea-
surement of core power, as needed in the multiprogrammed
case of Section 3, but also involve performance monitoring to
track parallel efficiencies.

5. RELATED WORK
Much prior work has examined power and performance char-

acteristics of multicore architectures when running multipro-
grammed workloads [7, 10, 16, 17, 21, 22, 29] as well as parallel
applications [3, 8, 15, 19, 20]. To the best of our knowledge,
however, ours is the first to examine these problems in the
context of process variation.

Although the majority of past research on variation toler-

308

ance has been at the circuit and device levels, recently a num-
ber of architectural approaches have been proposed. These
include variation-tolerant register files [23], caches [1, 25], and
pipeline organizations [9, 35]. Furthermore, Humenay et al.
propose a model for variations in multicore architectures [14]
while Chandra et al. provide a methodology for modeling vari-
ations during system-level power analysis [6].

6. CONCLUSIONS
Our work presents a foundation for power-performance op-

timization in the face of process variation challenges. We have
formulated a simple analytical condition relating the shared
power costs to predict an optimal cutoff point for turning off
extra cores. Using PTCMP to model an 8-core processor, we
have shown our model agrees on average within 0.5 W for the
basic case of multiprogrammed workloads. Pexcess cutoff val-
ues on our simulated processor range from 1 to 6 W depending
on the workloads at hand.

Our analysis has been extended to parallel programming,
a more complex problem that is relevant as software in the
server, desktop, and mobile sectors all toward more common
use of multithreaded applications. We have shown that our
equations can be augmented to incorporate Amdahl’s Law.
Using the parameter s to represent each application’s frac-
tion of sequential execution, we have formulated a model to
predict limit property trends across a range of parameters and
demonstrated these properties on the SPLASH-2 benchmarks.

The purpose for finding these appropriate tradeoff points
comes from a system design perspective. If a system is aware
of its inter-component dynamic and leakage power excesses,
it can make variation-aware decisions for allocating cores in a
power-efficient manner. For future work, we intend to combine
our on-off mechanism with dynamic voltage and frequency
scaling and dynamic ABB to cover a more exhaustive power
management design space. In an age when portable devices
may execute different types of applications, such techniques
are necessary to provide appropriate tradeoffs in performance
and power in spite of different application characteristics and
process variations.

7. ACKNOWLEDGEMENTS
We thank the Architecture/Performance Group at Apple

and Jonathan Chang for their assistance with various tools.
We also thank Chris Sadler and the anonymous reviewers for
their helpful comments. This work is supported in part by
grants from NSF, Intel, SRC, and the C2S2/GSRC joint mi-
croarchitecture thrust.

8. REFERENCES
[1] A. Agarwal et al. A Process-Tolerant Cache Architecture for

Improved Yield in Nanoscale Technologies. IEEE Transactions
on VLSI Systems, 13(1), Jan. 2005.

[2] amber(1) manual page. BSD General Commands Manual, Dec.
2005.

[3] M. Annavaram, E. Grochowski, and J. Shen. Mitigating Amdahl’s
Law Through EPI Throttling. In ISCA ’05: Proc. of the 32nd
Intl. Symp. on Computer Architecture, June 2005.

[4] S. Borkar et al. Parameter Variations and Impact on Circuits and
Microarchitecture. In DAC ’03: Proc. of the 40th Design
Automation Conf., June 2003.

[5] D. Brooks et al. Power-Aware Microarchitecture: Design and
Modeling Challenges for Next-Generation Microprocessors. IEEE
Micro, 20(6):26–44, Nov/Dec. 2000.

[6] S. Chandra et al. Considering Process Variations During
System-Level Power Analysis. In ISLPED: Proc. of the Intl.
Symp. on Low Power Electronics and Design, Oct. 2006.

[7] J. Donald and M. Martonosi. Temperature-Aware Design Issues
for SMT and CMP Architectures. In WCED-5: Proc. of the 5th
Wkshp. on Complexity-Effective Design, June 2004.

[8] M. Ekman and P. Stenstrom. Performance and Power Impact of
Issue-width in Chip Multiprocessor Cores. In ICPP ’03: Proc. of
the 32nd Intl. Conf. on Parallel Processing, Oct. 2003.

[9] D. Ernst et al. Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation. In MICRO-36: Proc. of the
Intl. Symp. on Microarchitecture, Dec. 2003.

[10] S. Ghiasi and D. Grunwald. Design Choices for Thermal Control
in Dual-Core Processors. In WCED-5: Proc. of the 5th Wkshp.
on Complexity-Effective Design, June 2004.

[11] J. L. Gustafson. Reevaluating Amdahl’s Law. Communications of
the ACM, 31(5):532–533, May 1988.

[12] J. L. Henning. SPEC CPU2000: Measuring CPU Performance in
the New Millennium. IEEE Computer, 33(7):28–35, July 2000.

[13] W. Huang et al. Compact Thermal Modeling for
Temperature-Aware Design. In DAC-41: Proc. of 41st Design
Automation Conf., June 2004.

[14] E. Humenay et al. Impact of Parameter Variations on Multicore
Architectures. In ASGI: Proc. of the First Wkshp. on
Architectural Support for Gigascale Integration, June 2006.

[15] I. Kadayif, M. Kandemir, and U. Sezer. An Integer Linear
Programming Based Approach for Parallelizing Applications in
On-Chip Multiprocessors. In DAC ’02: Proc. of the 39th Design
Automation Conf., June 2002.

[16] S. Kaxiras et al. Comparing Power Consumption of an SMT and
a CMP DSP for Mobile Phone Workloads. In CASES ’01: Proc.
of the 2001 Intl. Conf. on Compilers, Architecture, and
Synthesis for Embedded Systems, Nov. 2001.

[17] R. Kumar et al. Processor Power Reduction via Single-ISA
Heterogeneous Multicore Architectures. Computer Architecture
Letters, Apr. 2003.

[18] J. Laudon. Performance/Watt: The New Server Focus. In
dasCMP ’05: Proc. of the Wkshp. on Design, Analysis, and
Simulation of Chip Multiprocessors, Nov. 2005.

[19] J. Li and J. F. Mart́ınez. Power-performance implications of
thread-level parallelism on chip multiprocessors. In ISPASS:
Proc. of the 2005 Intl. Symp. on Performance Analysis of
Systems and Software, Mar. 2005.

[20] J. Li and J. F. Mart́ınez. Dynamic Power-Performance
Adaptation of Parallel Computation on Chip Multiprocessors. In
HPCA ’06: Proc. of the 12th Intl. Symp. on High-Performance
Computer Architecture, Feb. 2006.

[21] Y. Li et al. Performance, Energy, and Thermal Considerations for
SMT and CMP Architectures. In HPCA ’05: Proc. of the 11th
Intl. Symp. on High-Performance Computer Architecture, Feb.
2005.

[22] Y. Li et al. CMP Design Space Exploration Subject to Physical
Constraints. In HPCA ’06: Proc. of the 12th Intl. Symp. on
High-Performance Computer Architecture, Feb. 2006.

[23] X. Liang and D. Brooks. Latency Adaptation of Multiported
Register Files to Mitigate Variations. In ASGI: Proc. of the First
Wkshp. on Architectural Support for Gigascale Integration, June
2006.

[24] Massively Parallel Technologies.
http://www.massivelyparallel.com/, 2006.

[25] K. Meng and R. Joseph. Process Variation Aware Cache Leakage
Management. In ISLPED: Proc. of the Intl. Symp. on Low
Power Electronics and Design, Oct. 2006.

[26] M. Moudgill, J.-D. Wellman, and J. H. Moreno. Environment for
PowerPC Microarchitecture Exploration. IEEE Micro,
19(3):15–25, May/June 1999.

[27] S. Naffziger. Dynamically Optimized Power Efficiency with
Foxton Technology. In Proc. of Hot Chips 17, Aug. 2005.

[28] M. Papamarcos and J. H. Patel. A Low-Overhead Coherence
Solution for Multiprocessors with Private Cache Memories. In
ISCA ’84: Proc. of the 11th Intl. Symp. on Computer
Architecture, June 1984.

[29] M. D. Powell, M. Gomaa, and T. N. Vijaykumar. Heat-and-Run:
Leveraging SMT and CMP to Manage Power Density Through
the Operating System. In ASPLOS-XI: Proc. of the 11th Intl.
Conf. on Architectural Support for Programming Languages and
Operating Systems, 2004.

[30] T. Sherwood et al. Automatically Characterizing Large Scale
Program Behavior. In ASPLOS-X: Proc. of the 10th Intl. Conf.
on Architectural Support for Programming Languages and
Operating Systems, Oct. 2002.

[31] Y. Shi. Reevaluating Amdahl’s Law and Gustafson’s Law.
Computer Sciences Department, Temple University (MS:38-24),
Oct. 1996.

[32] K. Skadron et al. Temperature-Aware Microarchitecture. In ISCA
’03: Proc. of the 30th Intl. Symp. on Computer Architecture,
Apr. 2003.

[33] A. Snavely and D. Tullsen. Symbiotic Jobscheduling for a
Simultaneous Multithreading Architecture. In ASPLOS IX: Proc.
of the 8th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, Nov. 2000.

[34] J. Tschanz et al. Effectiveness of Adaptive Supply Voltage and
Body Bias for Reducing Impact of Parameter Variations in Low
Power and High Performance Microprocessors. IEEE Journal of
Solid-State Circuits, 38(5), May 2003.

[35] X. Vera, O. Unsal, and A. González. X-Pipe: An Adaptive
Reslient Microarchitecture for Parameter Variations. In ASGI:
Proc. of the First Wkshp. on Architectural Support for
Gigascale Integration, June 2006.

[36] S. C. Woo et al. The SPLASH-2 Programs: Characterization and
Methodological Considerations. In ISCA ’95: Proc. of the 22nd
Intl. Symp. on Computer Architecture, June 1995.

309

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

