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research, and then use those experiences 
to discuss some of the future mobile trends 
and some lessons learned. 

THE ZebraNet WILDLIFE 
TRACKER: 2001-07 
The ZebraNet Project established the field 
of mobile sensor networks. An interdis-
ciplinary collaboration between biology 
and computing, the goal from a biology 
perspective was to track wildlife movements 
at a fine grain in space and time, across 
large tracking areas (hundreds of square 
miles) and with no cellular connectivity or 
other installed infrastructure. In particular, 
certain subspecies of zebra are endangered 
in central Kenya, and the goal was to be able 
to better understand their social and migra-
tion behaviors by being able to track their 
movements at the granularity of minutes 
– not days or hours – and with location 
accuracy of tens of meters or less. 

From an engineering perspective, no 
portable device at that time could achieve 
ZebraNet’s tracking goals; building the 
system would require significant hardware 
and software innovations. In particular, 
at the time, Kenya had almost no rural 
cellular connectivity, so radioing data from 
an arbitrary tracking node back to a base 
station would require several watts of power 
to cover a useful range. ZebraNet instead 
developed energy-efficient protocols for 
short-range, pairwise data transfers. When 
two zebras (or rather, their tracking collars) 
discovered they were within radio range of 
each other, they would swap data. Eventually 
a zebra within range of a base station would 
offload all its data to the base station, 
including data from the many zebras with 
whom it might have swapped. In this way, we 
used store-and-forward techniques and viral 
routing protocols to build a delay-tolerant 
network (DTN) of zebras. 

In addition, GPS receivers at the time 
were quite high power (1W), so taking 
position samples at the desired rate of 
six times per hour would quickly drain 
any batteries that a zebra collar could 
comfortably include. Our project explored 
options for saving GPS power, including 
collaborative localization [15]. 

With collaborative node behavior and 
delay-tolerant peer-to-peer data swaps as 
our fundamental innovations, our project 
also comprehensively addressed other 
issues including: hardware design, energy 
adaptation, communication protocol and 
software structure. Our research spanned 
vertically from application software layers 
through custom-designed middleware, 
hardware design, solar charging circuitry 
and even the physical design and imple-
mentation of the zebra collars themselves. 

At the time, “Smart Dust” and sensor 
networks were getting attention, but 
focused on fixed sensing nodes either 
placed or sprinkled in the target area. A 
major contribution of ZebraNet was in 
highlighting the advantages of mobile 

M
eeting with a biologist on campus, 
the conversation transitioned 
from the campus-tour-in-a-shoe-

box to a more interesting tracking challenge: 
zebras in Kenya. My observation was that 
the state-of-the-art, fine-grained tracking 
system biologists wanted could be designed 
as an innovative sensor network built en-
tirely from mobile tracking nodes. From that 
insight, the ZebraNet project began. 

It has been roughly 15 years since my 
research began to include mobile system 
applications and architectures. Over 
that time, much has changed. Thanks to 
ongoing innovation driven by academic 
research groups and considerable industry 
attention, the underlying mobile tech-
nologies have matured remarkably. The 
applications and services have both driven
device innovations and also benefited from 
them. In this retrospective, I first give a 
timeline summarizing my own group’s 

It is difficult to think back to a time before smartphones existed, with 
their ubiquitous computing and communication capabilities, and 
with detailed location sensing easily available from Global Positioning 
Systems (GPS). In the late 1990s, when my research group began work 
on mobile sensing, smartphones had not yet been invented. While 
GPS did exist, GPS receivers were expensive, power-hungry and not 
widely available. Our first mobile computing project started as a power-
efficiency study for a GPS-based interactive campus tour. GPS-based 
tour applications are familiar now, but were unheard of then, and the 
physical implementation was a challenge. We used a Palm Pilot PDA 
(personal digital assistant) connected to an external GPS receiver and 
an external Wi-Fi card. In those days, PDAs had neither GPS nor any 
wireless communication capability! Given the bulkiness of the various 
pieces of our “app,” we carried them and their batteries around in a 
shoebox. Since both the GPS and the radio were quite high power (over 
1W), they greatly impacted the system’s battery life. Our power-efficiency 
work explored methods to locally cache maps on the PDA, and to power 
down modules when not in use. 
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sensor nodes. Clearly, attaching the GPS-
based sensors to the zebras themselves 
made sense for tracking their motion; 
other approaches based on fixed detectors 
or cameras would have required much 
more infrastructure and much higher node 
counts. Our peer-to-peer approach faced 
a fundamental chicken-and-egg problem: 
namely, knowing the node mobility patterns 
in advance would have helped inform our 
design decisions about the communication 
protocols, but as a wildlife tracking project, 
knowing the node mobility patterns was 
the desired result rather than input. In the 
end, we designed adaptive protocols we 
could adjust after deployment. Using mobile 
sensors with peer-to-peer data swaps 
allowed us to employ radio ranges 2-10X 
shorter than those of a more traditional 
node-to-base communication protocol. This 
represented 20X or more improvements in 
energy, allowing us to operate with fewer 
solar cells and smaller batteries. 

ZebraNet was deployed twice in Kenya 
(Figure 1). It collected thousands of data 
points, provided biologists with never-
before-seen animal behavior data and 
established the utility of mobile sensor 
networks for many problems. Some of 
its key ideas and innovations are quite 
useful today: (i) Moving sensors provide 
better sensing and network coverage than 
fixed ones, and at lower energy as well. 
Let the tracked entities carry the sensors. 
(ii) Requiring full multi-hop end-to-end 
route connectivity requires much greater 
node density than peer-to-peer techniques. 
DTNs with peer-to-peer swapping offer 

better connectivity at lower energy. (iii) 
For sensing across large areas, much of the 
energy will be in the radio. Under those 
circumstances, strategic on-node data 
preprocessing (e.g., data compression or 
event analysis) offers high-energy savings 
by dramatically reducing the amount 
of data actually sent off-node [12]. The 
ZebraNet compression work is an early 
example of an ongoing trend discussed 
in “Technology and Applications Shifts” 
towards on-device or near-data processing. 

C-LINK: 2007-09 
Whereas ZebraNet was a very vertical 
systems research effort organized around 
a specific applications goal, it also led us 
to think more broadly about issues and 
opportunities for efficient, ultra-low-cost 
data communications. Motivated to further 
explore DTN applications, we turned to 
human contexts and deployed the C-LINK 
system in Nicaragua, as depicted in Figure 
2 [6, 7]. C-LINK used DTN techniques 
similar to ZebraNet’s, but this time aimed 
at offering low-cost Internet access in 
disconnected rural villages. In many places 
around the world, rural areas may have 
poor or expensive broadband connectivity, 
but there are many vehicles (personal cars, 
bush taxis or vans, postal vehicles, etc.) 

traveling between villages and larger cities. 
C-LINK used such vehicles as potential 
“data mules,” using DTN techniques to 
bring web queries from the village kiosk to 
an Internet-connected kiosk in a larger city 
where data could wirelessly “jump off the 
bus” and be transmitted on the full Internet. 

A key innovation of C-LINK was in 
building distributed collaborative caching 
layers on top of the DTN, in order to 
make potentially long web delays less 
visible to users. Collaborative caching is 
a software layer (running underneath a 
normal web browser and invisible to users 
after installation) that lets users choose to 
share their laptop’s cached data with other 
laptops nearby. If the village is currently 
completely disconnected from the Internet, 
local web searches may still succeed 
due to the collaborative caching. A key 
challenge in collaborative caching was in 
designing a resilient indexing scheme that 
let cooperating user nodes find the data 
in nearby caches with little delay, and in a 
manner robust to nodes entering or leaving 
the system arbitrarily. As with ZebraNet, 
another challenge was in designing the 
system to be resilient to variations in the 
node mobility pattern. These recurring 
challenges with node mobility prediction 
motivated our subsequent projects 

FIGURE 2. Sibren Isaacman and Zimo Zheng work with students using C-LINK.  

FIGURE 1. One collared zebra amidst a herd in 
Laikipia, Kenya. Photo, courtesy of Pei Zhang.
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discussed in “WHERE and DP-WHERE.”
Some of the broader lessons learned in 

C-LINK include the value of a collaborative 
data directory that dynamically moves 
information from node to node, and 
dynamically elects new “leader” nodes as 
nodes enter or leave the village. Particularly 
in regions with severe connectivity and 
resource constraints, additional fault 
tolerance and resilience is key to a successful 
design. Finally, we also note the value of 
hybrid forms of connectivity. For example, 
in addition to vehicular DTNs, which are 
the last-resort approach for very rural areas, 
one might have some connectivity through 
weak cellular links or other methods [7]. 
For example, using cheap SMS messages for 
the “uplink” portion of a web search can cut 
latency by 2X, with very little cost increase, 
compared to an approach solely based on 
vehicular DTNs. Several systems now offer 
very fluid web-SMS hybrids similar to what 
C-LINK explored. 

SignalGuru: 2010-11 
Like ZebraNet, the SignalGuru project 
was also a foray into opportunistic mobile 
sensing, but this time vehicular rather 
than wildlife [8]. In today’s terminology, 
SignalGuru was a Collaborative Intelligent 
Transportation System (CITS). The 
SignalGuru project explored methods by 
which cellphones and other mobile devices 
could collaborate to share information 
and solve problems, particularly those 
involving location-aware services. Our work 
implemented and evaluated a method by 
which dashboard-mounted smartphone 
cameras in moving cars could detect 
stoplight transitions and share red-green 
schedule information. This allows users 
within a region to collaboratively share 
information in order to identify “optimal” 
speeds at which each vehicle should travel 
through the traffic to reduce stops for red 
lights and to improve fuel efficiency. 

Similar to ZebraNet, one broad lesson 
learned from SignalGuru was the value 
of collaborative mobile services; allowing 
different SignalGuru nodes to share 
information about traffic light transitions 
observed within a region was instrumental to 
achieving high accuracy. The node densities 
required to offer good performance were 
different depending on the traffic situation. 
When traffic conditions were relatively 

steady-state, low densities of just 1 to 2 nodes 
per feeder area around a stoplight were 
sufficient to get good performance, especially 
if the participating cars were on different 
roads into the same intersection. 

Another broad lesson learned was again 
about the high potential value of on-device 
computation. In particular, SignalGuru 
demonstrated that the relatively modest 
compute capabilities of a smartphone at the 
time were sufficient to solve the real-time 
computer vision problem of identifying 
red or green traffic lights in the scene 
being viewed by a dashboard-mounted 
cellphone camera. Performing the video 
analysis on each local phone allowed us 
to greatly reduce the application’s phone-
cloud communication requirements; this 
improves both latency and energy. As noted 
in “Technology and Applications Shifts,” this 
push towards on-device data processing is a 
strategy that is offering even higher leverage 
as device CPUs become more capable. 

WHERE AND DP-WHERE: 
2009-12 
Where C-LINK and SignalGuru were about 
exploiting mobile sensing directly, we also 
pushed our research towards modeling
human mobility. This was inspired by the 
challenges faced in ZebraNet, C-LINK 
and SignalGuru to build systems without a 
detailed design-time understanding of node 
mobility statistics. With a goal of supporting 
many different urban planning applications, 
our work on region-scale mobility 
characterizations and modeling included 
the WHERE [5] and DP-WHERE [11] 
mobility models. Performed in collaboration 
with AT&T, this research used coarse-
grained, spatiotemporal information gleaned 
from gigabytes of anonymized call detail 
records (CDRs) to form large-scale mobility 
characterizations and synthetic models. On 
their own, these human mobility models 
are important for cellular communications 
network planning. More broadly, they have 
sweeping applications to many diverse 
challenges: controlling automobile and 
highway congestion, guiding the design of 
intelligent transport systems, estimating 
regional carbon footprints and even modeling 
the spread of contagious diseases [1, 5]. 

With cellular network data becoming 
more available, creating human mobility 
characterizations and models from such 

data might seem straightforward, but 
challenges arise because CDRs are spatially 
and temporally coarse-grained. Our CDR 
logs included only the cell tower location 
(not the user’s location) and only at the 
time each phone call was initiated (not 
at any other times). In addition to being 
coarse-grained, CDRs convey only time 
and position; they do not convey whether 
their associated locations correspond 
to the user’s home, work or other 
important places. Without such semantic 
information, it is difficult to abstract CDRs 
into parameterized models applicable to 
scenarios, regions or populations that vary 
from those for which the real-life CDR 
data was collected. For example, if one 
wants to adjust a CDR-based model to 
account for different telecommuting rates, 
one needs to know or be able to infer 
home and work locations. WHERE used 
statistical regression techniques to infer 
home, work and other “important places” 
[3] from CDR log statistics. We showed 
that the best techniques for identifying 
important places were not just based on 
their frequency of occurrence in the CDR 
trace, but also based on their duration of 
days in the trace and other factors. Using 
Markov modeling techniques on top of 
CDR statistics annotated with important 
place labels, we produced accurate models 
reflective of real human movement 
patterns in particular metropolitan regions. 
WHERE can compute “daily range” and 
other urban planning estimates at very low 
error, and can correctly distinguish the 
geographic behaviors of distinct cities such 
as comparing commute patterns in New 
York versus Los Angeles. 

Finally, we also explored methods to 
fully privatize the data characteristics 
of WHERE mobility models using the 
technique of differential privacy. Our 
resulting model, DP-WHERE [11], 
achieves differential privacy by adding 
controlled noise to the set of empirical 
probability distributions that WHERE uses, 
for example, distributions of home and 
work locations. DP-WHERE then proceeds 
identically to WHERE by systematically 
sampling these distributions to generate 
synthetic CDRs containing synthetic 
locations and associated times. The DP-
WHERE approach shows that modest 
revisions to a mobility model drawn from 

[RETROSPECTIVE]



GetMobile    January 2016 | Volume 20, Issue 118

[RETROSPECTIVE]

real-world and large-scale location data can 
allow for rigorous privacy without overly 
compromising its utility or accuracy. DP-
WHERE was the first differentially private 
approach for modeling human mobility 
based on large sets of cellular network data. 
It shows that differential privacy can be 
achieved with only a modest and acceptable 
reduction in accuracy. In particular, across a 
wide array of experiments involving 10,000 
synthetic users moving across more than 
14,000 square miles, the distance between 
synthetic and real population density 
distributions for DP-WHERE differed by 
only 0.17 - 2.2 miles from those of WHERE. 
Finally, linking all the strands together, we 
also showed methods to use WHERE-style 
mobility models (based on either cell phone 
or census data) to inform the design of 
C-LINK deployments being tailored to a 
particular region’s movement patterns. 

TECHNOLOGY AND 
APPLICATIONS SHIFTS 
The research projects discussed span 
more than 15 years. Those years offered 
a remarkable set of technology and 
applications disruptions; our work was 
both influenced by them and also a part 
of the wave of activities that caused them. 
We discuss some highlights below. 

Ubiquity of radios: It is astonishing to 
think back to a time when mobile devices 
(e.g. PDAs) had no wireless connectivity 
and could be synced only when docked 
to a desktop machine. The rise and preva-
lence of on-device radio is matched with 
the prevalence of cellular and Wi-Fi base 
station availability to create an ambient 
infrastructure where it is technologically 
quite easy to approach 100% data connec-
tivity across much of the world. Although 
radios are nearly ubiquitous, however, there 

are still notable costs to communication – 
both in terms of cellular data costs as well 
as in terms of time and energy. Thus, even 
with nearly universal connectivity, it is still 
worthwhile to consider concepts of near-
data (on-device) computation and compres-
sion for data reduction before communicat-
ing to the cloud. 

Ease of localization: Perhaps the most 
remarkable piece of nostalgia is to think 
back to a world where GPS was not only not 
widely available, but was actively scrambled 
[13]. Today, position information can be 
easily and accurately gathered, either by 
the GPSs nearly universally available on 
smartphones, or by other techniques that 
interpolate based on Wi-Fi SSID and signal 
strength information. In addition, work by 
our group and others has pointed the way 
for collaborative localization off of trusted 
nodes [15]. In today’s context with location 
information so easily available, opportunistic 
mobile sensing comes nearly for free; devices 
are doing mobile sensing at all times. On 
the other hand, with that ease of localization 
come concerns about location privacy, which 
future systems will need to address at all 
levels, and early in the hardware and software 
design processes. 

Transition from wimpy to capable CPUs:
In early mobile and sensing devices, 
energy concerns tilted designers towards 
extremely constrained wimpy CPUs, even 
turning back to 8-bit processors. Today’s 
mobile CPUs are much more capable, now 
including 2-4 general-purpose processors, 
and many specialized accelerators. The 
scaling of CPU capability on mobile devices 
is not simply the natural progression of 
Moore’s Law, but has in fact considerably 
exceeded Moore’s Law scaling rates, in 
recognition of the need for substantial 

compute capability on the mobile node 
itself [2]. Applications can now be written 
to aggressively exploit near-data, on-device 
computation, because the device will have 
a CPU that can handle it. Performing 
on-device data processing has both energy 
and bandwidth advantages. On typical 
smartphones, off-device radio energy 
per byte is roughly 1000X greater than 
on-chip CPU energy per instruction, so 
on-device processing can greatly reduce 
the off-device data communication. Such 
near-data processing offers huge savings in 
both device battery energy and downstream 
communication bandwidth and energy. 

Application shifts: In addition to 
technology shifts, applications have shifted 
as well. The dramatic uptake of smartphones 
– from non-existence when we started 
these projects to the billions worldwide 
today – means that roughly one-third of the 
world’s population has a smart sensor in 
their pocket at all times. This offers potent 
opportunities for opportunistic sensing 
and crowd-sourcing. Furthermore, the Big 
Data revolution currently underway relies 
fundamentally on the ability to gather 
many large data streams and to perform 
unique analyses across many of them. As 
such, the power and ubiquity of today’s 
mobile nodes helps drive analytics research 
and application developments by making 
it easier and lower-cost than ever before 
to acquire rich, fine-grained location and 
sensor data. 

THE “OTHER” LESSONS LEARNED 
Many of the technical lessons we learned 
are woven into the project descriptions 
above. But beyond the technical, this stream 
of projects also taught numerous non-
technical lessons as well. 

Reality matters: First and foremost is the 
value of real deployments and at-scale 
datasets. Committing our projects to 
real deployments pulled us into research 
problems that other simulation-oriented 
researchers had not noticed or pursued. 
For example, in ZebraNet, we knew that 
once our tracking nodes had been placed 
onto tranquilized-then-reawakened wild 
zebras, there was simply no way to press a 
reboot button. Thus, we needed a solid plan 
for how to perform over-the-air updates 

FROM AN ENGINEERING PERSPECTIVE, 

NO PORTABLE DEVICE AT THAT TIME COULD 

ACHIEVE ZEBRANET’S TRACKING GOALS; 

BUILDING THE SYSTEM WOULD REQUIRE 

SIGNIFICANT HARDWARE AND SOFTWARE 

INNOVATIONS.
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on nodes out in the field. This pushed us 
towards a middleware layer that allowed 
modular, incremental, peer-to-peer updates 
[10]. Likewise, in our DP-WHERE work, 
it was important that we be able to test 
our differential privacy techniques on real, 
at-scale data. The key question was whether 
the blurring imposed by DP would lead 
to unacceptable degradation in model 
accuracy. Without large, realistic datasets, 
there is no convincing way to answer that 
question. 

Bring your shoebox: My mobile computing 
research began with a project that required 
us to carry bits of hardware around campus 
in a shoebox, because no obvious integrated 
platform existed to perform the functions 
we wanted. While logistically inconvenient, 
I think such hassles are a necessary part of 
doing cutting-edge systems research and 
should be embraced. In systems research, 
pushing beyond what easily exists is the 
best way to get to novel points of the design 
space and therefore to raise the impact 
of the work. This was visibly apparent in 
our campus-tour-in-a-shoebox. In other 
work such as WHERE and DP- WHERE, 
the logistical challenges were not as visible 
but were very present and the logistical 
challenges were part of how we knew we 
were pushing beyond “work as usual” in 
the scale of data we were attacking. I try 
to remember (and embrace!) the mental 
picture of that shoebox as I embark on new 
research projects. If the infrastructure that 
exists on Day One of your research is too 
convenient, then you are not thinking far 
enough ahead. 

The big issues to come: The mobile 
sensing work of the early 2000s needed 
to focus heavily on the mechanics 
of effectively gathering useful data, 
because so little device- or network-level 
infrastructure existed for doing that. The 
basics of performance and connectivity 
were the major focus. Now however, the 
infrastructure for mobile sensing has 
matured considerably, with much data 
easily, opportunistically available. So, the 
tables have turned. In place of challenges 
in getting the data, we are facing challenges 
in processing the data and in doing so 
responsibly. This means that privacy 
mechanisms for location data will become 

a foremost ingredient in future research, 
and should probably be placed very early 
in the data collection pipeline. In addition, 
as systems use mobility and location data 
more widely and in more mission-critical 
ways, reliability concerns also become 
prominent. We must be able to identify data 
irregularities or falsehoods before making 
important decisions based on them. 

Overall, I entered the field of mobile 
systems as a newly-tenured computer 
architect with a background in power-aware 
computing, and I set out to find interesting, 
applied systems research problems with 
stringent power-efficiency challenges. 
Within mobile computing, I found that 
and more. The topic offers compelling 
opportunities to build interesting, at-scale 
prototypes and to experiment across many 
layers of the hardware and software stack. 
Looking forward, the challenge will be to 
take a field that has gone from niche to 

ubiquitous, and suffuse it with the additional 
rigors of privacy, security and reliability so 
important to future applications. 
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