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Abstract—Today’s mobile devices offer multiple network con-
nectivity options with orders of magnitude differences in cost,
power, speed and reliability. Given this high variability, dynamic
optimization of radio connectivity choice is promising. To increase
the flexibility and payoff of such optimizations, we recognize
that many applications have significant delay tolerance, which
we exploit to schedule data transmissions. This paper proposes
and evaluates techniques for cost-optimizing connectivity choice
based on application delay tolerance, as well as on predictions of
upcoming data usage and connectivity availability. We explore op-
timal (MILP-based) and heuristic approaches for optimizing this
choice while abiding by application performance requirements.
Our work studies how errors in predicting data usage or network
connectivity impact each approach’s success at cost reduction. We
evaluate the technique through both simulation and a prototype
on an Android smartphone. Overall, our technique averages
more than 2X reduction in cellular data usage, and for some
scenarios, the reduction is as high as 5X. In addition, the Android
prototype also demonstrates the importance of accounting for
radio switching overhead and TCP flow migration time.

I. INTRODUCTION

Mobile devices have many connectivity options with
widely varying characteristics. For 3G, WiFi and LTE, through-
put varies from Mbps to Gbps [4, 20, 26]. Energy consumption
per bit varies by more than an order of magnitude: 0.29 uJ/bit
for WiFi, 5.86 uJ/bit for 3G, and 0.73 uJ/bit for LTE [12]. In
addition, WiFi is often free but cellular usually requires some
cost per byte or per month [1]. Sometimes, users might prefer
to use free WiFi to avoid depleting their cellular network quota.
In others, if WiFi is not fast enough, users might be willing
to pay extra for a fast LTE connection for high-throughput or
performance-sensitive applications like video-chat.

Although users have choices in networks, the existing
strategies for selecting among them are brittle and hard to
optimize. In addition, some applications can be tolerant to
delays; this allows the possibility of delaying a transmission,
in order to exploit some connectivity option that is predicted to
soon appear. Currently, however, applications do not provide
such delay tolerance information. Moreover, even if delay
tolerance information is obtained, it can be difficult to predict
connectivity and data usage and plan for unknown future
data transmissions under unknown future connectivity options.
Furthermore, leveraging connectivity tradeoffs requires the
ability to quickly and seamlessly switch between networks, and
to sometimes introduce small delays for transmission on delay-
tolerant applications in order to use more efficient networks
later. These are not well supported in current mobile devices.
As a result, users may pay higher per-byte service costs or
experience high battery usage because they cannot nimbly
employ lower cost or lower energy networks when available.

To address these challenges, this paper explores optimizing
connectivity choice as a data transmission scheduling prob-
lem. We propose optimal and heuristic scheduling solutions.

Material based upon work supported by NSF Grant CNS-1135953.

For each pending data transmission, our approaches choose
between using WiFi if available, using cellular, or briefly
postponing the transmission if new connectivity is predicted
to appear. Our goal is to reduce data usage costs, while
abiding by application performance requirements. In addition,
we explore whether the optimization accuracy is worth the
solution time, or whether heuristic approaches can provide
sufficient functionality with lower implementation complexity.
Proposed approaches also differ in terms of their reliance on
prediction and reducing network energy usage. On an Android
smartphone, we show that exploiting application-specified de-
lay tolerance can significantly reduce cellular usage.

The contributions of our work are as follows. First our
simulations (with real usage traces as input) show that all of
our scheduler approaches decrease cellular data usage signif-
icantly compared to the no WiFi baseline. Even the simplest
greedy heuristic, which does not consider delay tolerance,
cuts cellular data usage by more than 25%. Under moderate
delay tolerance, MILP-based can decrease cellular data usage
by 80%. Moreover, despite its simple implementation, one
heuristic approach (“chunking” (CH)) achieves similar results.

Second, we show that correct prediction of WiFi and data
characteristics enables better resource utilization and better
scheduling. Scheduler approaches that rely heavily on predic-
tion, however, are less resilient to dynamic or hard-to-predict
situations. Because our MILP-based approach relies the most
on advanced planning, it is the least resilient to prediction
errors. In contrast, heuristic techniques using little or no
prediction perform more resiliently across different scenarios.

Third, even though the greedy heuristic is the most error
resilient, it uses over 100× more scanning energy than the
other approaches even under high prediction errors. When
prediction errors occur, CH is the winner if both cellular data
usage and network energy usage are considered.

Fourth, we also evaluate the cellular/WiFi optimizing tech-
niques in an Android smartphone using delaying and seamless
network switch mechanisms. Our approach is novel in account-
ing for system delay when switching networks and migrating
flows. This saves roughly 20% in cellular data usage.

Fifth, we explore application delay tolerance by adding
support for pausing data transmissions, in addition to switching
between connectivity options. With this support, our Android
smartphone prototype reduced cellular usage by 45%.

II. OPTIMIZING NETWORK SELECTION

We frame network connectivity selection as a scheduling
problem with three options: transmitting data via cellular net-
work, transmitting via WiFi network, or pausing data transmis-
sion to wait for WiFi by exploiting application delay tolerance.
The overall problem scenario considers a person using a
mobile device as they move through their day. Sometimes WiFi
is available, sometimes not. For each data transmission, if WiFi
is not connected, the question is whether to send it now, or
wait for WiFi that might appear soon. Constant WiFi scanning



TABLE I. COMPARISON OF PRIOR AND PROPOSED SCHEDULING METHODS.

Offloading
Method

Cellular vs WiFi Decision Data Pre-
diction?

Data
Delay?

Data Chunking? WiFi Pre-
diction?

WiFi Scanning? Commodity
Phone?

Greedy
(GH)

No scheduling, use WiFi if
available

No No Yes, use WiFi if available,
then switch

No Every N seconds Yes

Non-
Chunking
(NCH)

Use WiFi now if predicted
available, schedule for fu-
ture if predicted soon

No Yes No, use WiFi only if long
enough for full data request

Yes
(avail. and
throughput)

Only when a transmission is
scheduled

Yes

P
ro
p
o
se
d Chunking

(CH)
Same as above No Yes Yes, greedily use shorter WiFi

windows for data chunks
Same as
above

Same as above Yes

MILP-
based
(MILP)

Optimal schedule using
MILP, use CH if MILP
infeasible

Yes Yes Yes, optimal chunks consider-
ing predicted data requests

Same as
above

Same as above Yes

Wiffler [6] Use WiFi if available, de-
lay if WiFi predicted soon

No Yes Yes, use WiFi is available,
then switch

Yes, only
throughput

Every 1 second to check WiFi
avail. if data is waiting

No, requires
proxy support

P
ri
o
r Rahmati

and Zhong
[21]

No scheduling, try WiFi
connection and use it if
overall energy is better

No No No, use WiFi if predicted to
be available

Yes, only
availability

Scan if probabilistically finding
and using WiFi is more energy ef-
ficient than using current network

No, modified ap-
plication makes
the selection

Total Cellular Data Usage :

∑

s∈S,u∈Us

(USu + Hu) × nsu,M (1)

Availability Constraint : ∀i ∈ S, u ∈ Us : τu ≥ As (2)

Deadline Constraints : ∀s ∈ S, u ∈ Us, n ∈ N : τu + (USu + Hu)/BWn + Ln ≤ Tmax × (1 − nsu,n) + Es (3)

Sequencing Constraints : ∀s ∈ S, u ∈ Us, u
′
∈ Us, u

′
≤ u : sequ,u′ = 1 (4)

∀s ∈ S, k ∈ S, u ∈ Us, u
′
∈ Uk, u 6= u

′
: sequ,u′ = 1 − sequ′,u (5)

Networks Constraints : ∀s ∈ S, u ∈ Us :

∑

n∈N

nsu,n = 1 (6)

∀s ∈ S, u ∈ Us, n ∈ N,n 6= M : nsu,n × (Bn + OWiFi) ≤ τu (7)

∀s ∈ S, u ∈ Us, n ∈ N : τu + (USu + Hu)/BWn ≤ Tmax × (1 − nsu,n) + Fn (8)

Bandwidth Constraints : ∀s ∈ S, k ∈ S, u ∈ Us, u
′
∈ Uk, u 6= u

′
:

τu′ + (USu′ + Hu′ )/BWM + OWiFi ≤ τu + Tmax × (2 − nsu′,M − sequ,u′ + nsu,M ) (9)

∀s ∈ S, k ∈ S, u ∈ Us, n ∈ N,n 6= M,u
′
∈ Uk, u 6= u

′
:

τu′ + (USu′ + Hu′ )/BWn + OCell ≤ τu + Tmax × (3 − nsu′,n − nsu,M − sequ,u′ ) (10)

Fig. 1. MILP formulation to optimize cellular data usage.

TABLE II. FORMULATION VARIABLES, CONSTANTS AND SETS USED IN

THE MILP FORMULATION GIVEN IN FIGURE 1.

Term Description Type
As Availability time of data stream s Constant
Bn Beginning time of network n Constant
BWn Bandwidth of network n Constant
Es Deadline to receive/send data stream s Constant
Fn Ending time of network n Constant
Hu Header size of sched. unit u ∈ Us Constant
Ln Latency of network n Constant
M Cellular network index Constant
N Networks Set
OWiFi/Cell System overhead for switching to new interface

and migrating the flows
Constant

S Data streams Set
Tmax Time upper-bound Constant
Us Sched. units belonging data stream s Set
USu Payload size of sched. unit u ∈ Us Constant
nsu,n Schedul. unit u ∈ Us is scheduled to network n Var Binary
sequ,u′ Sched. unit u ∈ Us is scheduled after sched.

unit u′ ∈ Uk (u 6= u′, As < Ek ,Ak < Es)
Var Binary

τu Schedule time of sched. unit u ∈ Us Var Real

is energy intensive, but always using cellular can be costly.
It is useful to be able to predict and schedule upcoming data
requests and to predict the WiFi windows that may be used to
transmit them. However, if scheduling decisions rely heavily
on predictions, the effect of prediction errors on these decisions
is also important. These prediction effects and scheduling
decision questions are the focus of this paper.

Deciding which network to use and when to delay transmis-
sions depends on network characteristics, application charac-
teristics, user objectives, and system overheads. Network char-
acteristics include transmission energy, maximum throughput,
cost, and availability. Application characteristics include the
size and arrival times of data to be transmitted, and its delay
tolerance. User objectives vary from person to person and
from situation to situation. Some examples of user objectives
include maximizing performance, minimizing battery usage,
and curtailing cellular network usage.

System overheads are inevitable in real implementations
and yet often ignored in prior work. The primary overheads
are the time required for switching between cellular and
WiFi channels and migrating data flows. Switching to WiFi
takes longer than switching to cellular because of extra steps
required, such as scanning through multiple access points,
picking one to associate with, and often requesting an IP
address with DHCP [18]. In addition to switching, the flow
migration mechanism used for seamless network switches
brings additional overhead. We account for both.

Scheduling Approaches: Table I compares our approaches
with each other and with two previously-proposed network
adaptation methods. Wiffler is a simple and effective approach,
but requires high scanning energy; it checks WiFi every second
if there is data waiting [6]. The paper also does not discuss
implementation of the required proxy support for interface
management both in server and client side. Rahmati and Zhong
studied network condition prediction from context information
for energy efficient data offloading [21]. However, they do not
focus on scheduling mechanisms to exploit application delay
tolerance, as we do.

We evaluate four scheduling approaches, greedy heuris-
tic (GH), non-chunking heuristic (NCH), chunking heuristic
(CH), and MILP-based (MILP). These approaches decide on
whether to use cellular or WiFi network, when to start the
transmission, and how much data is to be transmitted. GH is
a simple baseline which reduces cellular usage by greedily
connecting to WiFi if possible. This approach works similarly
to on-the-spot offloading already supported on current phones
[15]. However, that model relies on application support for
reconnections in case of network changes. Instead, our system
design seamlessly migrates network flows without application
support [19], and exploits delay tolerance by pausing and
resuming TCP connections.



The NCH and CH approaches make scheduling decisions
for each current data stream by predicting future network
availability and throughput. If the capacity of predicted WiFi is
insufficient, they schedule the data to cellular network. While
NCH fits data into available WiFi windows based only on the
full size of the request, CH chunks data into smaller scheduling
units to exploit shorter WiFi regions. As a result, CH is better
able to reduce cellular data usage and hence decrease transfer
energy, but might have increased scanning energy costs since
it can schedule the scheduling units to more WiFi regions.
(In MILP, CH, and NCH, WiFi duration is compared against
the switching time overhead. If the predicted WiFi duration is
too small to accommodate the switching time overhead, these
approaches do not consider connecting to it.)

The MILP approach uses Mixed Integer Linear Program-
ming (MILP) to find the minimum-cost schedules by breaking
data streams with varying size and delay tolerance into smaller
scheduling units. In [7], we proposed an optimal scheduling
framework using MILP and briefly experimented with it under
different data and network scenarios. However, that scheduler
does not account for system overheads, and it allows multiple
physical interfaces to be ON at the same time (not commonly
supported in real systems). We altered these aspects here to be
applicable to the real system Android implementation.

Figure 1 and Table II shows the MILP formulation and
its parameters. This formulation minimizes Eq. 1, the sum of
bytes transmitted through cellular interface. Eq. 2 ensures that
data is scheduled after it is generated and Eq. 3 ensures that all
transmissions finish before the application deadline. Eq. 4 and
5 are constraints to ensure the correct ordering of scheduling
units. Eq. 6 guarantees that each scheduling unit is scheduled to
one and only one network. Eq. 7 accounts for system overheads
and ensures that transmissions start on WiFi only after the WiFi
network becomes available. Similarly, Eq. 8 guarantees that
transmissions finish before a network becomes unavailable. Eq.
9 and 10 ensure that overhead is considered while changing
networks if two consecutive scheduling units are scheduled to
different networks. For the problem sizes in our experiments,
this optimization can be solved in less than ten minutes using
CPLEX on a 2.33 GHZ Intel Xeon Quad-Core CPU with 16GB
memory. On the other hand, heuristic approaches can be solved
in linear time. One goal of this work is to see when MILP’s
extra complexity is worthwhile.

Responding to Prediction Errors: If data or network
prediction errors occur, the scheduler’s plans for upcoming
transmissions may not hold. For example, WiFi might not
be available at the time the data is scheduled, the estimated
data size might be smaller or larger than the real data size,
or from the application, data might arrive earlier or later
than the estimated arrival time. The following rules address
these situations. If estimated data size is bigger than the
real size, excess data is sent with the last scheduled unit. If
there are scheduling decisions for data that has not arrived
yet (i.e., data arrival is later than the estimated time), those
scheduling decisions are skipped. If data eventually arrives
but all decisions about it have already been skipped, the data
is transmitted right away. These first three rules apply for
MILP since it is the only one which makes decisions based
on data predictions. Finally, if data is scheduled to a network
which does not appear at the predicted time, our retry interval,
t, is decided by t + Dsize/BWWiFi <= Dsize/BWCell.
The interval is set conservatively so that at decision time,
waiting and transmitting via WiFi will never take longer than
transmitting right away with the cellular network.

Fig. 2. Design diagram.

III. SYSTEM IMPLEMENTATION

Figure 2 shows our system design with five major compo-
nents: Prediction Module, Scheduler, Issuer, Migration Mod-
ule, and Pausing Module. The prediction module, scheduler
and issuer operate in user level and use the underlying
kernel-level pausing and migration mechanisms. We have
implemented our CH and NCH schedulers on an HTC G2
smartphone which runs on Android version 2.3.7 on kernel
version 2.6.35, but the modules are easily transferable to newer
versions of Android.

Migration Module and Delay Tolerance: Migrating flows
among different interfaces is a key part of our design. Since
IP addresses change when a new network connection occurs,
seamless connection over different networks is problematic.
For our migration module, we utilize the flow migration of
Serval [19] so that the transmissions can be migrated from one
interface to another seamlessly. Serval proposes a new layer to
the network stack which uses service IDs to identify services
instead of network address and port number, and flow IDs
to identify the ongoing transmissions. Thus, network address
changes do not disrupt ongoing services.

We modified Serval to support delay tolerance. We encode
a service’s delay tolerance using Serval IDs. Service IDs in
Serval consists of as many as 256 bits, without any overhead
for an active connection since service IDs are in use only
during the connection establishment. In our system, lower bits
of the Serval service IDs can be used to indicate the delay
tolerance of the service. For example, an email service may
be offered with through service IDs 0-15 with increasing delay
tolerance. With this usage, every “write” call to the socket of
a service defines a new data package that must be delivered
within the delay tolerance indicated by the service.

Pausing Module: This module pauses the flow of data when
delaying a transfer is warranted by the Issuer. We focus on
TCP connections here. TCP has congestion-control and flow-
management techniques that use several timers to implement
window management. However, in order to utilize the delay
tolerance of applications, the TCP layer also needs to be able to
temporarily pause a transfer and resume it later (same network
or elsewhere) when unpause is called.

We implement pausing by changing the management of the
data send queue in the TCP layer. TCP first breaks application
data into segments and forms a data queue. It then sends a
window of data to the receiver over the network and waits
for acknowledgments before sending the rest of the segments.
In our module, whenever a pause is requested, the queue
management pauses. Packets that are currently in flight are
handled by the TCP layer just as if the flow had not been
paused at all. When the pausing module continues the transfer,
the queue is unpaused, and the rest of the packets in the queue
are pushed through the network as they would have been.
This method is advantageous because the application’s only
responsibility is to tell the system a flow’s delay tolerance.



Predictor, Scheduler and Issuer Modules: The prediction
module makes predictions about future network or data be-
havior. We assume a simple history-based predictor using a
sliding window average. More advanced predictor methods
[10, 17] can be used here, but this work focuses exploring
different schedulers. We do, however, experiment to see how
their different prediction reliance affects results.

The Scheduler operates according to one of the approaches
previously described, and the Issuer is responsible for schedul-
ing the data to the networks, as stated in the schedule output. It
has five main responsibilities: (i) tracking the bytes transmitted
for each application data since the scheduled unit size varies
depending on the scheduling approach, (ii) initiating pausing
for the applications that need to wait for a future network or
that gave priority to another application with a shorter deadline
for the current network, (iii) turning on/off the interfaces before
switching networks, (iv) initiating migration of flows between
networks, and (v) deciding how to adjust the plan in case of
prediction errors following the rules explained in Section II.

IV. EXPERIMENTAL METHODOLOGY

We use both simulations and real implementation to eval-
uate our scheduler approaches. For simulations, we imple-
mented our schedulers in Python. MILP is written in AMPL
and IBM CPLEX 12.05 is used to solve it [3, 13]. We repeat
each simulation 10 times since some of our input parameters
are chosen from probabilistic distributions.

Application Data Usage: We used both real and synthetic
workloads with varying averages in our experiments. Our real
data usage traces were logged from different users using an
Android app we built. It collects total transferred bytes by
gmail, google docs and gallery application (when auto back up
is set) per-second. We logged 5 days of usage for 7 individuals
who were Android Ice Cream users and who were already
using these applications regularly.

For our real system implementation, we used synthetic
data generated by our client-server file transfer application on
Android. This application takes the size and arrival times of
data as input, and sends corresponding data to our local server
at designated times. Data sizes and inter-arrival times vary
depending on the application. For example, the average Web
page size is almost 700 KB [25] and file transfer data sizes
can be a few MBs. Moreover, data arrival intervals can be
tens of seconds up to few hours [15, 21]. For our file transfer
application, we used exponentially distributed data with size
averaging 4MB and inter-arrival averaging 200s.

Although real-time audio/video streaming applications are
very sensitive to transmission delays, gmail, google docs or
photo back up in gallery application can tolerate delays up to
a few hours. Despite this, applications like gmail often transmit
the data immediately from whichever network is available. On
the other hand, applications like gallery always wait for and
use only WiFi (if auto back up feature is set). Instead of not
waiting for WiFi at all or waiting for WiFi forever, we study
the effect of different fixed values of delay tolerance on these
applications. We vary this tolerance from 50 to 400s. More
adaptive or dynamic techniques for deducing or predicting
delay tolerance would be interesting for future work.

Network Connectivity Options: Previous work has shown
that the average WiFi inter-connection time and duration can
be a few tens of seconds to a few hours, depending on
the distribution of WiFi and user’s mobility [8, 15]. Thus,
to generate similar WiFi scenarios, we vary the WiFi inter-
connection time between 25s and 400s and WiFi duration from
20s to 320s. In our real experiments, the phone is placed in a
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Fig. 3. Leverage of MILP, NCH, and CH increases with increasing delay
tolerance of gmail.

WiFi and T-Mobile 4G range. We measured the average WiFi
upload bandwidth as 6.64 Mbps and average cellular upload
bandwidth as 800 Kbps for the observed time.

System Overheads: System overheads depend on the hard-
ware, software and network carrier. We measure the time
between the start of an interface switch and the moment the
new connection becomes available on the Android smartphone.
Our measurements show that it takes around 1.2s to switch
from cellular to WiFi network, and it takes around 0.5s to
switch from WiFi to cellular network. Moreover, our exper-
iments show that necessary service table updates can take
between 4s and 13s and migrations take around 0.5s. Thus,
for the simulations, we use 5s for the switching and migration
overhead from WiFi to cellular, and 15s from cellular to WiFi.

Introducing Prediction Errors: We focus on four parame-
ters that are predicted by one or more of the schedulers: WiFi
duration, WiFi arrival time, data size and data arrival time.
For the simulations, rather than focusing on a single prediction
scheme and error rate, we consider a range of possible error
rates that might arise from different prediction approaches. For
each parameter, we randomly choose and apply an error value
from a uniform distribution. For example, for 100% error, we
sample an error value from a uniform distribution ranging from
-100% to 100% and modify the original value by this amount
of error. For real-system experiments, history-based predictor
we built introduces errors inherently.

Energy Usage: We compare our scheduling methods in
terms of resulting scanning and transfer energy usage. For
scanning energy calculations, we take scanning time as 1.1s
and scanning power as 0.56 W [20]. For WiFi mispredictions,
the Issuer triggers scanning for an extra t time as explained
in III. For the transfer energy, we use 0.29 uJ/bit for WiFi
uploads and 5.86 uJ/bit for 3G uploads [12].

V. RESULTS

A. Comparison of Scheduler Approaches

Here, we compare cellular usages of the schedulers under
perfect data and WiFi prediction. Our data traces are for
five days, thus we show the resulting five-day averages and
standard deviations of different days in the graphs.

Effect of Delay Tolerance: Figure 3 shows the cellular data
usages under varying delay tolerance values for a single user’s
gmail trace for an average WiFi duration of 20s and inter-
connection time of 25s. Lower bars indicate lower cellular
data usage. For high delay tolerance, the more successful
scheduling techniques almost reach 0 cellular usage; almost
all transmissions are scheduled onto WiFi. Overall, the graph
clearly shows that all techniques offer significant improve-
ments over cellular-only—even the simplest GH beats it by
roughly 25%. GH does not use delay tolerance in its policy,
so its cellular usage remains unchanged across different delay
tolerance settings. For the other three techniques, increasing
delay tolerance increases their ability to wait for and exploit
future WiFi opportunities. At 100s delay tolerance, MILP
improves over the cellular-only baseline by roughly 75%.
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Fig. 4. Cellular bytes usage values for given application (some users do not
use all of the applications) with the schedulers. Upper: Gmail, middle: Google
docs, lower: Gallery.

0
0.5

1
1.5

2
2.5

3
3.5

4

0% 20% 40% 60% 80% 100%

N
o
rm

. 
C

e
llu

la
r 

D
a
ta

 U
s
a
g
e

(a) Data Inter-Arrival Prediction Error
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(b) WiFi Duration Prediction Error
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(c) WiFi Inter-Connection Prediction Error

Fig. 5. Overall, NCH and CH are better than MILP under high errors.

MILP gives the minimum cellular data usages at all delay
tolerances. At high delay tolerances, both CH and NCH
performances improve and achieve similar result as MILP.
Both are able to achieve almost 0 cellular data usage with
sufficient delay tolerance. CH typically slightly outperforms
NCH because it is able to break data into smaller chunks to
exploit shorter periods of WiFi. For example, at 50s delay
tolerance, CH can achieve 4% less cellular data usage. This be-
havior becomes more prominent when the data sizes increase.
It is advantageous in terms of using WiFi more effectively, but
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Fig. 6. Deadline misses for different schedulers under high error.
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Fig. 7. Energy under high prediction error. Upper: Transfer energy, lower:
Scanning energy.

results in higher number of interface switches, hence results
in more WiFi scanning energy. Section V-B compares the
techniques on energy usage.

Effect of WiFi Conditions: WiFi duration and inter-
connection time (time between WiFi availability windows) also
affect cellular data usage. With longer WiFi durations, cellular
usage decreases with all schedulers. Space constraints preclude
a fuller elaboration of these results.

Effect of Application Usage: Figure 4 shows the cellular
data usages for gmail, google docs and gallery application for
an average WiFi duration of 20s and inter-connection time
of 25s. Application delay tolerances are set to 100s. There
are significant savings in cellular data usage for all three
application types. Leverage compared to GH varies depending
on the user and the application type. MILP can achieve 10-60%
less cellular data usages compare to GH. Even though NCH
performs almost as well as CH, it is up to 8% worse on cellular
usage for some users. Moreover, the standard deviations show
that CH and NCH can exceed GH for some users. (When
new data arrives close to end of WiFi connectivity, one cannot
switch on WiFi fast enough to use it before its connectivity
duration is over. GH opportunistically turns on WiFi whenever
it appears, and MILP pre-plans the switching when it predicts
a data arrival, so they do not experience this same issue.)

Overall, assuming perfect prediction of data usage and
network conditions, MILP performs well as expected. In
addition, CH can be nearly as successful in finding the optimal
schedule and minimizing the cellular usage. Next, we explore
these tradeoffs when prediction errors are introduced.

B. Effect of Prediction Errors

Effects on Data Usage: Figure 5 shows normalized cellular
data usages when there are prediction errors related to data
arrival time, WiFi duration and the inter-connection time. (Er-
rors in predicting data sizes do not substantially affect cellular
data usage.) These are for the default experimental values
of gmail data usage trace, 100s delay tolerance, 20s average
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Fig. 8. Effect of taking overheads into account in real system design.
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Fig. 9. Cellular data usage with the proposed design in real system design.

WiFi duration and 25s average inter-connection. Graphs are
normalized to MILP under no prediction errors.

First, since GH operates without any predictions on either
WiFi or data, it is unaffected by variations in predictability.
Second, CH and NCH use predictions about WiFi availability,
but not about data; they only consider data already in their
queue. As a result, they are susceptible to WiFi prediction
errors, but not data prediction errors. Since MILP makes
predictions about both data and WiFi, it is susceptible to all
four types of error.

Figure 5a show MILP’s sensitivity to data arrival errors.
Because it seeks to aggressively exploit WiFi, based on data
transmission size predictions, it must revert to cellular usage
when more data arrives than expected, or when data arrives
earlier/later than expected and WiFi is unavailable. For these
reasons, heuristic approaches (which schedule only after data
has arrived) can outperform MILP. For example, CH achieves
3× better cellular data usage than MILP when there is high
prediction error on data arrival time. Our history-based data
arrival time predictor has variable performance for different
users and applications. In the best case, it achieves 26%
standard deviation in predicting next data arrival. Figure 5a
shows that even with 20% prediction error (14% standard
deviation) MILP is almost 50% worse than CH. For MILP
to be effective, in addition to additional resources used for the
solver, more advanced data arrival predictors are necessary.

Three of the four techniques are potentially susceptible
to WiFi prediction errors, with MILP affected more than
CH and NCH. Even though it finds better schedules under
perfect prediction, MILP’s cellular data usage becomes worse
when errors are introduced. At high WiFi inter-connection
time prediction error (Figure 5c) MILP’s cellular data usage
increases by more than 3× and becomes even worse than the
simple GH. CH and NCH results in similar cellular data usages
when prediction error is high for this data trace. However,
when data sizes are bigger, NCH still achieves better cellular
data usage than CH since NCH only schedules data in its full
units. Section V-C validates this in real system experiments.

Effects on Energy Usage: Figure 7 shows the relative
scanning and transfer energies under 100% prediction errors
for the gmail data trace. All schedulers except GH use WiFi
predictions to make scheduling decisions, so they do not need
constant WiFi scanning. When MILP, CH, or NCH are used,
the issuer scans and establishes a WiFi connection only if there
is scheduled unit that period. On the other hand, GH scans
WiFi periodically whenever a WiFi connection is not already
established. As a result, GH scanning energy is not affected by
errors. Considering GH schedulers with 5s, 10s, and 60s scan-
ning periods, we see that as scanning becomes less frequent

(from ever 5s to 60s) scanning energy decreases almost 10×.
Compared to NCH and CH, however, GH scanning energy
is still more than 100× higher even under 100% WiFi inter-
connection and duration prediction error. When there is 100%
prediction error on data size and arrival time, MILP results in
3× more scanning energy than CH and NCH. Overall, MILP
uses more WiFi regions than CH, and CH uses more WiFi
regions than NCH, so MILP’s scanning energy is the highest,
with CH much lower and NCH slightly lower still.

When cellular transmit energy per byte is higher than WiFi
transmit energy, transfer energy increases with cellular data
usage. Although infrequent scanning reduces scanning energy,
it results in missing more WiFi regions, and thus larger transfer
energy. Although MILP experiences prediction errors in data
size and arrival time, GH with 60s scanning period uses 3×
more transfer energy than MILP. Even with high WiFi inter-
connection prediction error, the transfer energy of MILP, CH,
or NCH is almost 1.3× less than GH (60s period). Considering
both scanning and transfer energy, MILP, CH, and NCH all
clearly outperform GH—even under high mispredictions.

Performance Effect: In addition to the potential impact
on cellular data usage, another issue pertains to how predic-
tion errors affect whether data transmissions abide by their
deadlines. (That is, when an application specifies a delay
tolerance preference, it should not be exceeded.) Figure 6
shows the percentage of data transmissions that finish after
the deadline. Due to prediction errors, the MILP scheduler
misses the deadlines more often. This is because the MILP
technique is most aggressive in trying to optimize for using
different WiFi windows, so variations on the size/arrival of
either data or WiFi can affect its timeliness the most. The
other heuristics miss fewer deadlines, largely because they are
less aggressive and orchestrated in their attempts to use small
windows of WiFi availability. For example, NCH uses much
less WiFi, and when there are high prediction errors regarding
WiFi duration, it misses roughly 2× fewer deadlines.

C. Real-System Measurements

We have implemented Android prototypes of Section III’s
design. In real systems, the time to switch between interfaces
can be comparable to WiFi availability durations, and thus
these overheads become important for the scheduler’s decision
making. We test our approach using a file transfer application
sending data of exponentially distributed data sizes with an
average size of 4MB and arrival time of 200s. We run the
prototype with network characteristics that match three of the
scenarios previously explored in simulations.

Effect of System Overheads: Figure 8 shows the achieved
cellular data usage in our CH implementation, with and with-
out taking system overheads into account. When the scheduler
does not account for switching overheads, it is optimistic in its
estimate of WiFi capacity. The issuer then needs to send some
of the excess data through the cellular network instead. If the
scheduler accounts for switching overheads, it can better plan
for them. Figure 8 shows this results in better cost savings—
the difference can be up to 20% in these examples.

Effect of Prediction Errors: Figure 9 shows the cellular
data usage CH and NCH. We can achieve results similar to
simulations in a real system with perfect prediction. (The small
difference is due to varying network bandwidths in the real
implementation.) CH can save almost 45% cellular usage. To
predict the next WiFi duration and arrival time, we use a
history-based predictor, averaging the past times across a large
window. This basic predictor inherently introduces prediction
errors. Under high prediction errors, both approaches have an
increase on the cellular data usage. CH’s cellular data usage



increases by 25% and NCH cellular data usage increases by
almost 35% and reaches to baseline. Overall, even though
accurate WiFi prediction is undeniably important, cellular data
usage reduction is still achievable with imperfect predictors.

D. Summary of Results

CH, NCH and MILP all improve greatly over the simple
baseline GH; this indicates the promise for exploiting applica-
tion delay tolerance. Our most sophisticated technique, MILP,
works well when there are no errors in predicting the data ar-
rival and connectivity characteristics it relies on. Given MILP’s
complexity, we sought out simpler alternatives and devised a
much simpler heuristic method, CH, that achieves similar cost
savings as MILP, but with better real-world potential due to its
reduced reliance on context and data prediction. CH and NCH
behave similarly for small transmit sizes, but for the larger
data sizes seen in our real system prototyping, CH performs
substantially better than NCH.

VI. RELATED WORK

Using different wireless channels: Different forms of net-
work discovery and selection problems have been posed and
studied before [2, 5, 6, 15] but are incomplete. Some prior
work does not study constraints of mobile phones, others
rely heavily on energy-intensive WiFi scanning, others do not
exploit application delay tolerance, and others consider system
alternatives but do not tackle the scheduler problem itself.
Our previous work focused on application delay tolerance and
scheduling [7], but this current work is much more complete in
terms of realistic design and detailed technique comparisons.

Power/performance effects of using different wireless chan-
nels have also been studied [21, 22]. Again, the prior work
either does not exploit delay tolerance or makes hardware
assumptions incompatible with off-the-shelf phones. However,
our work runs on commodity phones and uses delay tolerance
to increase network selection’s energy-saving potential.

Seamless switching between wireless channels: Several
proposals exist for seamless switching among different wire-
less channels. These include new transport-layer design [11],
changes in disconnection sequence [18], adopting mobile IPv4
mobility protocol [27], and adding a new layer on top of
existing IP networks [19]. In order to support applications
keeping their connection during network switches, we used
the Serval stack [19] which uses service ids and flow ids to
identify services and maintain ongoing data transmissions even
if destinations move or disconnect.

Network scheduling: To manage network resources, in-
crease bandwidth utilization, solve network congestion and
guarantee certain QoS levels for different services, network
scheduling has been studied widely in the literature, though
only marginally related to our work on optimizing connectivity
choice. Some work proposes scheduling frameworks which
maximize network throughput [9, 16], others focus on QoS
and develop methods for minimizing end-to-end delays or
router delays [24, 28], and others explore efficient DTN routing
[14, 23]. None of these evaluate scheduling approaches for
cellular/WiFi network selection as we do.

VII. CONCLUSION

This paper optimizes network connectivity while abiding
by user cost preferences and application delay tolerances.
We evaluated four different scheduling approaches, greedy,
non-chunking, chunking and MILP-based, to understand their
relative effectiveness in minimizing the cellular data usage. All
four are very promising improvements over today’s state-of-
the-art. When data and network prediction can be performed

accurately, MILP-based approach offer the largest savings in
cost and energy. For less well-predicted scenarios, a chunking
heuristic (CH) offers the best approach, with good performance
that is more resilient to dynamic changes in data or network
behavior. By implementing CH on an Android smartphone,
we confirmed its overall effectiveness, and also demonstrated
the importance of accounting for switching overheads when
building connectivity schedulers of this type. Overall, our work
offers insights by prototyping real connectivity optimizers, and
considering a range of design alternatives.
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