
Exploring the Potential of CMP Core Count
Management on Data Center Energy Savings

Ozlem Bilgir

Princeton University

Margaret Martonosi

Princeton University

Qiang Wu

Facebook, Inc.

Abstract

A data center’s power and energy consumption is a crucial
design issue, and is often a fundamental determiner of its
performance potential. Conventional power/energy man-
agement approaches data centers have focused on unipro-
cessor rather than multiprocessor servers and on techniques
such as Dynamic Voltage and Frequency Scaling (DVFS).
Given the increasing use of chip multiprocessors (CMPs)
and the decreasing leverage of DVFS, it is time to re-
examine energy and power management possibilities with
an eye towards future data center implementations. In par-
ticular, it is interesting to consider whether per-core power
management techniques on a multi-core chip can offer suf-
ficient leverage, and whether inter-core resource contention
on CMPs may influence what sorts of core scheduling tech-
niques make sense.

In this paper, we focus on cross-server core count man-
agement techniques and evaluate a range of design ques-
tions for CMP-based data center power managers. Our re-
sults are based on a highly-parameterized simulation envi-
ronment. We evaluate several possible approaches for se-
lecting the number of cores to use, and selecting how the
desired core count should be mapped onto the available
CMPs. We evaluate these techniques on a real-world work-
load representing 24 hours of Facebook requests. For the
scenarios considered, total core energy savings of 35% are
possible from appropriate core count selection and map-
ping. Overall, this work represents a high-level view of
CMPs as data center servers, and can be a guide for more
detailed future studies on power management and server
design questions.

1. Introduction

Energy consumption and related cooling costs have be-
come a paramount concern for data center design and
operation [1, 12]. Electricity costs represent roughly 20-
30% of data center operating expenses [10], and cool-
ing costs/equipment also rise when power consumption
rises. Therefore, managing data center energy and power
dissipation represents a fundamental issue for operating
data centers and scaling Internet services. Furthermore, en-
ergy management is difficult to do well, because although
servers have modest utilizations (10-50% [2]), it is difficult
to predict bursts of idle and busy times, and often even idle
servers consume as much of 60% of their maximum energy
[2, 9].

In response to power and energy concerns, many re-
searchers have proposed dynamic management techniques

to mitigate them. Dynamic resource management by con-
solidating the load to a small subset of servers and en-
tirely turning off the idle servers has been studied widely
[5, 6, 21]. Although it theoretically offers good power sav-
ing potential, applying it to current data centers is not desir-
able for a few reasons. First, in many data centers, servers
are updated with new code very frequently, and techni-
cians prefer always-ON servers to ease the application of
code pushes and possible resulting problems. Second, sys-
tems are expected to be robust but it is not guaranteed that
server will turn on properly when needed. Third, high boot
latencies affect performance because load prediction can
only allow partial back-grounding of boot times. For all
these reasons and others, turning servers off completely has
been avoided by data center operators. Furthermore, nearly
all these server control papers have assumed uniprocessor
servers, whereas the dominant platform in today’s data cen-
ters uses chip multiprocessors (CMPs).

Other data center power management techniques have
considered Dynamic Voltage and Frequency Scaling (DVFS)
applied to processors [11, 17, 22]. Some researchers in-
crease the benefits of DVFS by combining it with resource
consolidation [3, 7, 23]. Although DVFS has offered con-
siderable power savings in the past, its leverage is decreas-
ing. For example, the ITRS roadmap [14] predicts that op-
erating voltages will continue to decrease in future tech-
nologies, causing Vdd get closer to threshold voltage. This
reduces the dynamic range in which DVFS can operate and
offer savings. In addition, the prominence of leakage power
makes it less favorable to operate CPUs at slow DVFS set-
tings where leakage will be substantial.

The decreasing leverage of DVFS and the increasing
prominence of CMPs calls for a reexamination of power
control opportunities and trends. In particular, the ability
to turn off individual processor cores on a CMP, rather than
turning on or off the whole server, offers an appealing gran-
ularity at which to manage power and energy. While some
initial aspects of per-core power gating have been briefly
explored [16, 18, 19], many questions remain. For exam-
ple, how much power-saving leverage exists from adjust-
ing core counts dynamically, without necessarily turning
servers on or off? Also, how do contention issues influence
how one should assign jobs to cores? For example, if one
has 4 quad-core CMPs and enough current workload for
4 processor cores, consolidating the requests onto a sin-
gle CMP chip seems appealing from a power perspective,
but may lead to extra contention for shared chip resources
such as shared caches and on-chip interconnect. Finally,
since processor cores can be power-gated off and on more



smoothly and quickly than whole servers, how does this in-
fluence power management decisions? This last question is
particularly relevant for data center workloads that may al-
ternate unpredictably between frequent bursts of busy and
idle periods.

To answer these questions, this paper uses abstract mod-
els to explore the large possible design space. We evaluate
the different design possibilities using a workload trace de-
rived from real Facebook data center processing. The pri-
mary contributions of this work are;
• This paper quantifies potential power savings for a
family of core count management techniques in multi-
server CMP systems. Although simple, our method con-
sistently satisfies service-level agreements for 75th per-
centile request latency.

• Based on both a real Facebook workload and other
stochastic workloads, we evaluate the potential energy
savings offered by our techniques. Our results show
that total core energy consumption can be decreased
by 35% with our method still satisfying the same 75th

percentile latency goal. Effect of core energy saving
on total energy consumption varies from 3% to 15%
(depending on power breakdown) . Power savings are
even larger when data centers see large idle periods.

• We explore how chip-level contention influences the de-
sign of core count managers. At periods of very high
or very low load, the differences between round-robin
(cross-core) versus consolidating schedulers are mod-
est. At intermediate load, however, round-robin is more
effective at garnering high performance out of CMPs
prone to contention effects. Such issues should be con-
sidered by those designing request schedulers for data
centers built on large aggregations of CMPs.

This paper is structured as follows. Section 2 explains
related work in more detail and describes our family of pro-
posed core count management techniques. Section 3 then
describes experimental methodology. Section 4 introduces
the results and Section 5 gives discussion about the results.
Section 6 offers conclusions.

2. Core Count Management

2.1 Related Work

Due to the reasons discussed in Section 1, server consoli-
dation is not a good candidate for power management real
system. Instead of turning servers off, PowerNap [20] pro-
poses using low-power server states. Since the latency of
entering a low-power state is much lower than that of server
turn off, this method provides a better power saving op-
portunity. However, this system only works at times where
the whole system is idle and this highly depends on work-
load characteristics. Thus, depending on the application,
controlling the low power states of individual components
(CPU, memory, disk, fan) allows finer grain power man-
agement and can be more desirable.

CPU power management has been an interesting topic to
many researchers. Chen et al. [7] and Bertini et al. [3] fo-
cused on applying DVFS and server consolidation to het-
erogeneous unicore-servers for multiple applications. Al-
though these techniques have been successful, our work has
an advantage over them because we focus on CMP systems

which are becoming more common in high-performance
data centers. Moreover, our technique will not be affected
by current technology trends unlike DVFS. Although per-
core DVFS is also possible, because of current technology
trends, we believe that our technique can be an alternative
for per-core DVFS as well.

Power-gating in CMPs has been studied by previous re-
searches. Leverich et al. introduce per-core power gating
to cut the voltage to the cores to eliminate leakage power
[16]. They use utilization information to decide whether to
enable or disable a core. Our method differs from this work
since we have a cross-server system where the necessary
number of ON cores is decided at a front-end level. There-
fore, the jobs can be consolidated to a subset of cores. The
rest of the cores are kept off for at least one decision period
which is high enough to avoid the penalties from frequent
turn on and offs. Madan et al. raise the concept of guarded
power gating which disables the power manager when there
is an unexpected workload behavior or power virus attack
to decrease the cost of frequent turn on-offs [18, 19]. This
is still in the server level and does not give a global control
over multi-server clusters. However, our work will need to
use the hardware infrastructure for per-core power gating
introduces by these works or recent Nehalem power gating
techniques [15].

2.2 Heuristic Core Count Management Approach

We determine the total necessary number of ON cores for
the whole system using a look-up table. This look-up table
gives the total necessary number of ON cores for different
workload ranges in order to achieve a latency goal. It is
created beforehand as follows; we turn on cores one by one
and for each ON core count, we increase the load rate until
the latency goal is exceeded. We record this load rate as the
maximum that the given core count can handle.

Turning on cores from different processors or from the
same processor also affects the latency and should be taken
into account when creating the look-up table. The reason
for this effect comes from the resource sharing in CMPs.
In CMPs, cores share last level cache, memory controller,
interconnection network and I/O hub. This causes a con-
tention problem which affects their performance and en-
ergy consumption [4, 8, 13]. For example, if one of the
cores frequently evicts cache lines which are necessary for
other core(s), than this behavior will cause a degradation
in performance and increase in power. For this reason, we
first determine the mechanism that decides which proces-
sors the ON cores should reside. Using this mechanism, we
create the lookup table. At the time we use the look-up ta-
ble, we use the same mechanism to turn on the necessary
number of cores and this ensures that we get the predicted
behavior in terms of latency.

An example look up table is given in Table 1. This table
shows the maximum allowed load rates for each ON core
count to guarantee the 75th percentile latency goal for a
system with 4 quad-core servers. All load rates are given
as ratios to the maximum load rate. The maximum load
rate of 100% is defined as the rate at which 75th percentile
latency reaches 250 msec when all cores are ON in all
servers. For a given load rate and latency goal, this table
is searched to find the necessary number of ON cores.



Core Count 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Latency Goal

150 msec 0% 4% 9% 14% 19% 25% 30% 36% 42% 48% 55% 61% 67% 73% 80% 86%

200 msec 1% 7% 13% 20% 26% 32% 38% 45% 51% 57% 64% 70% 77% 84% 90% 97%

250 msec 3% 9% 14% 21% 28% 34% 40% 47% 54% 60% 66% 72% 79% 86% 93% 100%

Table 1. An example look-up table for a 4 quad-core-server system. When all resources are available, ie. all cores are ON in all servers, the maximum
load rate is defined as 100% when the 75th percentile latency reaches 250 msec. Other load rates are shown as a percentage of the maximum load rate.
Each entry tells the maximum load rate percentage that the given number of ON cores can process and the 75th percentile latency is not above the given
latency goal. Contention between cores is not taken into account for this table. Additional look up tables are created for the cases where core contention is
taken into account.

For example, if we want the 75th percentile latency to be
below 200 msec at 15% load, then the table says we need
4 cores ON. For this particular case, core contention is
ignored. As a result, performance will not be affected by
the distribution of ON cores to the servers. Thus, the same
table can be used for different distribution schemes for
this case. When contention is taken into account, different
tables are created.

Regional approaches, per-application tables, and control
theoretic approaches are all related options for future work.
Here we focus mainly on CMP aspects of the control op-
portunities.

2.3 Core Count Management Alternatives

As explained in Section 2.2, different distribution of ON
core across servers have different performance and power
effects when contention is taken into account. These are;
• Round-Robin Scheme (RR): In this scheme, cores are
chosen from the servers in a round-robin scheme. We
start by turning on 1 core from each server and continue
with 2 cores, etc. This method mitigates the effect of
core contention by distributing the jobs evenly to the
servers.

• Same-Server Scheme (SS): In this scheme, cores are
chosen from the same server until all of its cores are ON.
Only after all cores in a server are turned on, cores can
be chosen from the next server. Thus, in this scheme,
cores are consolidated to the smallest possible number
of servers. Therefore, server power contribution will be
less. In this method, effect of contention on performance
would be more visible.

• Chip Turn On/Off (CT) : In this scheme, the entire chip
is turned on/off. This method will have faster reaction
to quick changes in load rate since all the cores in the
chip are ON even though they are not being used in that
period.

Note that, load balancing across servers should also be
consistent with the applied core count management tech-
nique.By comparing different management techniques, we
try to understand how beneficial a technique is under dif-
ferent load rate and contention models.

3. Simulation Methodology

The design and analysis of comprehensive data center sim-
ulators are complex processes. Since the goal in this study
is to explore the potential of core count management, we
implemented an abstract stochastic data center simulator as
described below. Section 3.2 discusses its performance and
power models. Section 3.3 discusses the workloads used

Simulation Parameter Explanation Value

S Server Count 4

N Core Count per

Server

4

- Inter-Arrival Time

Distribution

Exponential

- Service Time

Distribution

Exponential

Service timebase Mean Service Time 100 msec

T Control Period 10min

Cratio Degradation of

Service Time with

each Busy Core

0%, 15%

-
Pcores

Ptotal
10%, 35%, 50%

-
Pcore idle

Pcore busy
40%

W 75th percentile

Latency Goal

150 msec, 250

msec

Table 2. Simulation parameters used. Parameters with more than one
value means that different different values are used for that parameter to
see the effect on total energy and performance.

for our evaluation, including a day-long trace based on ac-
tual Facebook workload logs.

3.1 Simulator Design

When a new request arrives at the modeled multi-server
data center, it goes to a front-end device. This device
queues requests until they can be sent to an available server.
Each server can handle a number of requests equal to its
core count, so any queueing occurs at the front end. For
simplicity, we study a single-tier data center, but multi-tier
requests could also be modeled. It is also assumed that the
workload consists of single-threaded applications, with one
thread running per core.

The front-end devices use a table such as Table 1 to
determine the appropriate number of ON devices at each
interval, T , as described in Section 2.2. This means that
every T minutes, a new table look up is performed to get a
new core count based on the latency target and the observed
workload in the past interval. Once table lookup gives
the correct core count, load distribution (i.e. which cores
are on) occurs according to one of the possible heuristics:
same-server, chip turn-on, or round-robin as previously
described.

The simulator allows us to vary and study the number
of servers, number of cores per server, number of ON cores
for each server, and power breakdown of servers. Power,
energy, request throughput, and request latency are the
metrics tracked by the simulator. Requests into the system
are modeled based on stochastic arrival and processing



 30

 40

 50

 60

 70

 80

 90

 100

22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

W
o
rk

la
o
d

 a
s 

P
er

ce
n

ta
g
e

Figure 1. Typical server workload in Facebook data centers. Workload
is given as a percentage of the maximum allowed workload.

times. The means and distributions of these times can be
varied, and Section 3.3 discusses the workloads modeled
here. Performance goal is chosen to be 75th percentile
but the method can be adapted to other levels easily. All
parameters used in the simulations and their definitions can
be found in Table 2.

3.2 Performance and Power Models

The service time for each request is stochastically gener-
ated. For this paper, we presume an exponential distribu-
tion with a mean of Service time although other distri-
butions could be modeled as well. In our simplest perfor-
mance model, we assume that a core’s performance (and
therefore a request’s service time) is not affected by any
inter-core resource contention on the CMP. For other ex-
periments, however, we assume that having multiple busy
cores on the same CMP can degrade performance due
to contention for shared cache and interconnect. In ex-
periments where we wish to account for this contention,
we use a simple linear contention model. In this model,
we assume that a core’s mean service time increases lin-
early with the number of other busy cores, weighted by a
contention factor:Service time = Service timebase +
(Nbusy − 1) ∗Cratio. Nbusy is how many of a chip’s cores
are currently busy, and Cratio is the contention degrada-
tion factor. If Nbusy=1, then the average service time is
Service timebase.

The total core power of a server is given by,

Pcores = Nbusy ∗ Pcore busy +Nidle ∗ Pcore idle (1)

and the total power of a server is given by,

Ptotal = PnonCpu + Pcores (2)

Here,Pcore busy is the busy power of a core andPcore idle

is the idle power of a core. Pcore busy and Pcore idle are
multiplied by the number of busy (Nbusy) and idle cores
(Nidle) respectively. Our model distinguishes between idle
ON cores (Pcore idle) and cores that have been fully turned
off (0 power). PnonCpu is the power of all the components
except the processor cores themselves (including uncore
components on the CMP chip). When multiple busy cores
induce resource contention effects, these are modeled as
longer processing times as discussed above. Thus the en-
ergy impact of resource contention is implicitly calculated
through its impact on the idle and busy times of the proces-
sors.

3.3 Workload

The main workload used in our simulations is obtained
from the real logs of Facebook servers in the web tier
which serves mixed page requests to www.facebook.com,
mobile.facebook.com, and apps.facebook.com. The most
popular page requests include those for news feed, status

Parameter Value

Cratio 0%

Load Facebook Workload

Empty Servers Assigned to

Other Jobs

No

75
th Percentile Latency Goal 250 msec

Table 3. Default values of key parameters which are used in the simu-
lations.

update, profile change, wall posting, photo loading and up-
loading, and games. Figure 1 shows per-server workload
in a typical 24-hour period starting at 10pm and ending at
10pm the next day. For public release, all workload values
can only be given as a percentage of the maximum possi-
ble workload. Clearly, daytime request rates are more than
double the night time workload, which highlights the po-
tential for power savings with appropriate resource man-
agement.

The figure shows the total number of requests arriving in
4-minute windows as logged. To model individual request
arrivals, we use the 4-minute workload as a guide, and gen-
erate individual inter-arrival times with exponential distri-
bution based on that mean. Facebook’s production servers
which handle this workload are 8-core, 16-threaded ma-
chines. In our simulations, we use 4-core single threaded
servers. Thus, we scaled the workload with respect to our
server configuration.

Apart from the real Facebook workload, we also gen-
erated 3 additional workloads with stationary exponential
distributions corresponding to stable load rates at low (5%),
medium (40%) and high (85%) levels. These workloads
more clearly highlight how different core count manage-
ment schemes work under different workload levels.

4. Results

In this section, we discuss how our core count manage-
ment techniques work under different scenarios. First, we
compare the total core energy and 75th percentile latency
obtained by our 3 core count management schemes with
the ”Baseline” case. In the Baseline, all the cores in all
servers are ON all the time. Jobs are distributed to these
servers in a round-robin scheme. In all core count manage-
ment schemes, all servers are assumed to start ON. Table 3
shows the parameters used in the simulations unless other-
wise stated in particular cases.

4.1 Effect of Different Load Rates

Turning-off unused cores saves idle energy, thus we expect
better core energy savings with low loads. In order to verify
this, we used the three different levels of workload and the
Facebook workload which can be seen as combination of
different level workloads.

In Figure 2, we see the normalized total core energy
with respect to the Baseline’s total core energy at 85% load.
As expected, all of the core count management techniques
have relatively greater energy savings as the load rate get
smaller. Although for 85% load, only 5% energy saving can
be obtained by SS, savings reach 80% under 5% load. For
the Facebook workload, the savings are 35%. The reason
for not having much energy savings under high workload
comes from the fact that the most of the cores need to



 0

 0.2

 0.4

 0.6

 0.8

 1

5.00% 40.00% 85.00% Facebook WorkloadN
o
rm

a
li

ze
d

 T
o
ta

l 
C

o
re

 E
n

er
g
y

Workload

Baseline
SS

CTO
RR

Figure 2. Normalized total core energy at different workload levels.
Although energy saving with SS is 35% compare to baseline case under
Facebook workload, it can reach up to 80% when load rate is 5%.

1 2 3 4 ... 16

590msec 165msec 143msec 142msec ... 142msec

Table 4. 75
th percentile latency under 5% load when different number

of cores are ON. As can be seen, although the latency is only 165 msec
when 2 cores are ON, our techniques do not chose to turn on 1 core
because in that case, latency would exceed the goal.

 0.1

 0.15

 0.2

 0.25

5% 40% 85% Facebook Workload7
5

th
 P

er
ce

n
ti

le
 L

a
te

n
cy

 [
se

c]

Workload

Baseline
SS

CTO
RR

Figure 3. 75
th percentile latency at different workload levels with

different techniques. All techniques manage to ensure the latency goal
of 250 msec.

be ON to satisfy the latency goal. Comparing the total
core energy saving with SS, CTO, and RR, we see that
there is no difference between SS and RR. This is expected
behavior. Since we assumed here that there is no contention
between cores in this case, having ON cores in the same
server or at different servers does not make a difference
energy-wise. The CTO results in slightly higher energy
consumption than SS, which again is expected behavior
since fewer cores can be turned on.

In Figure 3, we see that all schemes manage to achieve
the latency goal of 250 msec. In all cases, CTO has lower
latency values as expected. At 5% load, 75th percentile
latency is only around 165 msec in SS and RR. This is
very small compared to our allowed limit. If more cores
were turned off, energy saving would increase. However,
our core count management technique does not decrease
the number of ON cores, because that would degrade the
performance to an undesired level. To illustrate this, Table
4 shows the 75th percentile latency under 5% load for a
range of core counts. As can be seen, reducing the core
count from 2 to 1 has a big impact on latency and would
cause latency to exceed the latency goal. Therefore, our
techniques do not chose to turn on 1 core even though the
2-core latency is much better than the expected.

4.2 Effect of Contention

When we take the contention between cores into account,
total core energy saving and performance differ. Figure 4
shows that under contention, total core energy consump-
tion is increased in all schemes.This is because the ser-
vice times, hence busy energy, increase under contention.
Schemes where the jobs are distributed in a round robin
scheme, ie. Baseline and RR, are affected less than the
schemes where the jobs are sent to the same server first, ie.
SS and CTO. The reason for this is that when the ON cores

 0

 0.2

 0.4

 0.6

 0.8

 1

0.00% 15.00%

N
o
rm

a
li

ze
d

 T
o
ta

l 
C

o
re

 E
n

er
g
y

Cratio

Baseline
SS

CTO
RR

Figure 4. Effect of contention on total core energy with different core
count management schemes. Energy gains obtained by different schemes
decreased by the contention in different amounts. Increase in total core
energy consumption with RR scheme is around 13% while in SS, this
increase is almost 30%.

 0.1

 0.15

 0.2

 0.25

0.00% 15.00%7
5

th
 P

er
ce

n
ti

le
 L

a
te

n
cy

 [
se

c]

Cratio

Baseline
SS

CTO
RR

Figure 5. Effect of contention on 75
th percentile latency with differ-

ent core count management schemes. Latency is increased in all schemes
under contention. The increase in CTO is higher than the increase in SS
because more cores can be busy at the same time, hence are affected by
the contention more. The increase in RR is higher than the baseline case
because of the similar reason.

 0

 0.2

 0.4

 0.6

 0.8

 1

250msec 150msecN
o
rm

a
li

ze
d

 T
o
ta

l 
C

o
re

 E
n

er
g
y

Latency Goal

Baseline
SS

CTO

Figure 6. Effect of latency goal on total core energy. With the lower
latency goal, total core energy consumptions increase since the idle energy
increase with the more number of ON cores. The increase in idle energy
increases the energy spent by SS around 10% and CTO around 6%.

are distributed across many servers, the contention effect
is less dominant. For example, under contention, increase
in total core energy consumption with RR is around 13%
while in SS, this increase is almost 30%. When there is no
contention effect, SS and RR have the same total core en-
ergy consumption, however RR becomes less than SS when
the contention takes place.

Figure 5 shows that the latency is increased in all
schemes under contention. The increase in CTO is higher
than the increase in SS because more cores are available
and can be busy at the same time. For example, if there
are jobs waiting in the queue in the the SS scheme, CTO
schedules these jobs on the extra cores. This will increase
the service time because of the contention but at the same
time, decrease the queuing latency. The result shows that
the increase ratio is around 20% in CTO while the over-
all latency is still lower than SS where the increase ratio
is around 10%. Similarly, the increase in RR is around
4% where in the Baseline case, this ratio is around 7%.
Thus, we see that when there more available cores, latency
increases because of contention can be higher than the de-
crease in queuing time coming from the parallel processing
of more jobs.

4.3 Effect of Latency Goal

When we have a tighter latency goal, it may be necessary to
turn on more cores. Hence saved energy from idle cores de-



 0.5

 0.6

 0.7

 0.8

 0.9

 1

10% 35% 50%

N
o
rm

a
li

ze
d

 T
o
ta

l 
S

er
v
er

 E
n

er
g
y

Core Power Percentage

Baseline
SS

CTO

Figure 7. Effect of different core power percentages on total server
energy. As the core power percentage increases, the energy gain obtained
by core count management techniques increase.

creases. Figure 6 shows how different schemes are affected
by a tighter latency goal. Total core energy consumption
is around 10% higher with SS and 6% higher with CTO
when the latency goal is 150 msec instead of 250 msec. SS
increases more because in CTO, we have a coarser grain
granularity in choosing ON core count. Effect on RR is not
showed separately, since RR has the same core energy char-
acteristics with SS under when contention is not taken into
account.

4.4 Effect of Power Breakdown

Our core count management techniques reduce the energy
consumption of the cores. Thus, the effect of our techniques

on total power consumption depends on Pcores

Ptotal
. As the core

power percentage increases with respect to total power, we
will get relatively more energy gain with our techniques.
We assumed that for a quad-core machine, 50% of power
goes to processor and 30% of this power goes to uncore

part. Thus, Pcores

Ptotal
becomes 35% in this case. In order to

see the the effect of different breakdowns, we used a lower
(10%) and a higher (50%) core power percentage. Again, it
is assumed that there is no contention between the cores.
Results are shown in Figure 7. When core power ratio
is 35%, the energy savings is 9% with SS. The energy
savings decreases to 3% when the core power ratio is 10%.
However when we increase core power ratio to 50%, the
energy gain increases to 15%. Similar effect can be seen
with CTO. Energy savings becomes 2%, 7% and 11% as
we increase the power breakdown from 10% to 50%.

4.5 Effect of Server Management

Until now, we talked about the load consolidation in core
level. In this part, we want to discuss about consolidating
an application to a small subset of servers and use the
remaining servers to other applications.

For a single application, when we apply our core count
management techniques, some servers stay empty for some
periods. When server turn off is not allowed, extra energy
consumption by non-productive servers can not be elimi-
nated. As an alternative, empty servers can be assigned to
other applications when they are empty. Since we change
the ON core count at the beginning of each control period
T , we can assign the empty servers to other applications
for at least one period. This method will help us to see the
distinction of the SS and RR in terms of power because the
number of servers they chose are different.

Figure 8 shows the effect of assigning empty servers
to other applications on total energy consumption. Energy
spent by other applications will not add up to the total spent
by the main application. It is assumed that when the server
is needed again for the main application, it can be in use

 0

 0.2

 0.4

 0.6

 0.8

 1

All Servers Empty Servers Assigned to OthersN
o
rm

a
li

ze
d

 T
o
ta

l 
S

er
v
er

 E
n

er
g
y

Baseline
SS

CTO
RR

Figure 8. Normalized total server energy when all active servers are
dedicated to the main application and when the empty servers are assigned
to other jobs. Making use of empty servers results in 41% decrease in
energy with SS method.

instantly. Other jobs can be chosen as low priority jobs
so they will not be affected by this change. We see that
energy gain s obtained by SS method increases from 9% to
41% with this method. Energy gain from CTO method is
also affected by this method and increased to around 39%.
However, we do not see much difference in RR because of
the fact that in RR, ON cores are chosen from different
servers as much as possible. RR does not allow having
many completely empty servers, hence energy gain is not
affected much for this load. From this figure, it is clear that
SS has more advantages in terms of power when the cores
do not have contention. We already showed that the latency
is same for these two cases.

5. Discussion and Results Summary

By using stochastic simulation, we discuss the effect of
cross-server core count management on energy and perfor-
mance. For Facebook workload, total core energy savings
of 35% can be obtained while satisfying the same latency
goal. Depending on the cores contribution to total power,
total energy savings of 3% to 15% are likely, with even
higher savings in some cases.

We can list the key findings in the simulations as fol-
lows;
• In general, energy saving is higher at low load rates
because cores tend to stay longer in idle at low load
rates.

• SS and RR shows similar core energy consumption and
latency results when contention effect is ignored. How-
ever, when contention is taken into account, we see that
RR has higher core energy saving potential than SS
since effect of contention is minimized by distributing
ON cores to more servers.

• The value of contention ratio has a bigger effect on SS
than on RR. This comes from the fact that SS uses cores
from the same server as much as possible, hence the
effect of contention is higher.

• If use of empty servers by other applications are al-
lowed, SS and CTO has great server energy saving po-
tentials. For example, such offloading can result in 41%
energy savings for the main application when the energy
consumed by other applications are not accounted.

6. Conclusion

This work uses extensive stochastic simulation and real-
world Facebook workloads to explore a range of core count
management issues in multi-server CMP systems. In addi-
tion to selecting how many cores should be actively execut-
ing a particular workload, CMP-based systems mean that it



is important to also consider how they should be mapped
across the various CMPs.

When one accounts for core-to-core contention for on-
chip interconnect and cache resources, round-robin map-
ping schemes can show energy and performance advan-
tages over other schemes that consolidate ON cores onto a
single CMP. On the other hand, same-server schemes more
effectively free some of the servers from the workload,
so if other uses (e.g. lower-priority applications) for the
free servers can be found, they become preferable. Overall,
these issues highlight the need for reexamining core-count
and core-mapping decisions in the face of widespread CMP
servers. We see this as a first step towards more detailed
studies that evaluate techniques on real servers and that
explore hardware alternatives for further improving power
leverage and energy proportionality.

References

[1] L. A. Barroso. The price of performance. Queue, 3, 2005.

[2] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing. Computer, 40, 2007.

[3] L. Bertini, J. C. B. Leite, and D. Mossé. Power optimization for
dynamic configuration in heterogeneous web server clusters. J. Syst.
Softw., 83, 2010.

[4] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread
cache contention on a chip multi-processor architecture. In Pro-
ceedings of the 11th International Symposium on High-Performance
Computer Architecture, 2005.

[5] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle. Managing energy and server resources in hosting centers.
In Proceedings of the eighteenth ACM symposium on Operating
systems principles, 2001.

[6] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and
F. Zhao. Energy-aware server provisioning and load dispatching
for connection-intensive internet services. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implemen-
tation, 2008.

[7] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and
N. Gautam. Managing server energy and operational costs in host-
ing centers. In Proceedings of the 2005 ACM SIGMETRICS inter-
national conference on Measurement and modeling of computer sys-
tems, 2005.

[8] S. Cho and L. Jin. Managing distributed, shared l2 caches through
os-level page allocation. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, 2006.

[9] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for
a warehouse-sized computer. In Proceedings of the 34th annual
international symposium on Computer architecture, 2007.

[10] J. Hamilton. Perspectives. blog on data center design and manage-
ment, 2011. http://perspectives.mvdirona.com/.

[11] S. Herbert and D. Marculescu. Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors. In Proceedings of the
2007 international symposium on Low power electronics and design,
2007.

[12] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan
and Claypool Publishers, 2009.

[13] R. Illikkal, V. Chadha, A. Herdrich, R. Iyer, and D. Newell. Pirate:
Qos and performance management in cmp architectures. SIGMET-
RICS Perform. Eval. Rev., 37, 2010.

[14] ITRS. International technology roadmap for semiconductors, 2007.
http://www.itrs.net/Links/2007ITRS/Home2007.htm.

[15] R. Kumar and G. Hinton. A family of 45nm ia processors. In Solid-
state circuits conference - Digest of Technical Papers, 2009.

[16] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and
C. Kozyrakis. Power management of datacenter workloads using
per-core power gating. IEEE Comput. Archit. Lett., 8, 2009.

[17] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadron.
Control-theoretic dynamic frequency and voltage scaling for multi-
media workloads. In Proceedings of the 2002 international confer-
ence on Compilers, architecture, and synthesis for embedded sys-
tems, 2002.

[18] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram.
Guarded power gating in a multi-core setting. In Workshop on En-
ergy Efficient Design. (Associated with ISCA)., 2010.

[19] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram. A case
for guarded power gating in multi-core processors. In The 17th IEEE
International Symposium on High Performance Computer Architec-
ture (HPCA-17), 2011.

[20] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: eliminating
server idle power. In Proceeding of the 14th international conference
on Architectural support for programming languages and operating
systems, 2009.

[21] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Dynamic clus-
ter reconfiguration for power and performance. Kluwer Academic
Publishers, 2003.

[22] K. Rajamani, F. Rawson, M.Ware, H. Hanson, J. Carter, T. Rosedahl,
A. Geissler, G. Silva, and H. Hua. Power-performance management
on an ibm power7 server. In Proceedings of the 16th ACM/IEEE in-
ternational symposium on Low power electronics and design, 2010.

[23] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely. Dynamic
resource allocation and power management in virtualized data cen-
ters. In IEEE/IFIP Network Operations and Management Sympo-
sium, 2010.


