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Abstract * The semantics of program loads and stores present software

with the abstraction of a flat memory space (caching is hid-
den) which hinders implementing memory monitoring tools
in software.

A large and increasing gap exists between processor and memory
speeds in scalable cache-coherent multiprocessorsofie with
this situation, programmers and compiler writers must increasingly
be aware of the memory hierarchy as they implement softwareln response to these fidulties, memory performance tools have,
Tools to support memory performance tuning have, howbeeen in many cases, turned to simulation-based approaches. Such
hobbled by the fact that it is @ifult to observe the caching behav- approaches can give detailed information about how the program
ior of a running program. Little hardware support exists specifi- is likely to behave on a specified memory hierarciiye main
cally for observing caching behavior; furthermore, what support drawback of these approaches is that while thésr @frealistic
does exist is often di€ult to use for making fine-grained observa- view of what might happen to the code, there are no assurances
tions about program memory behavior that the code running on the real machine will behave thiskeay
example, most such tools do not include operating systiattef
Our work observes that in a multiprocesdbe actions required  in their simulation, because the additional references would
for memory performance monitoring are similar to those requiredincrease simulation time. Furthermore, simulations of parallel sys-
for enforcing cache coherence. In fact, wguar that on several  tems sufer slowdowns that increase with increasing numbers of
machines, the coherence/communication system itself can be usggtocessors, preventing interactive use of simulation-based tools.
as machine support for performance monitoring. Wilve demon-  For these reasons, hardware support for memory performance
strated this idea by implementing the FlashPoint memory perfor-monitoring is often needed to get detailed assessments of program
mance monitoring tool. FlashPoint is implemented as a speciabehavior accurately andfigiently.
performance-monitoring coherence protocol for the Stanford o ) )
FLASH Multiprocessar By embedding performance monitoring The key contribution of this paper is to expose the parallels
into a cache-coherence scheme based on a programmable contrdi€tween the system support that is desirable for memory system
ler, we can gather detailed, pdata-structure, memory statistics Performance monitoring and the system support that is already
with less than a 10% slowdown compared to unmonitored programiMplemented on cache-coherent shared memory multiprocessors.
executions. W present results on the accuracy of the data col-The main observation is that the mechanisms used to implement

lected, and on how FlashPoint performance scales with the numbefache coherence are often quite similar in structure to what is

of processors. desired for performance monitoring. In other words, while mem-
ory performance monitoring does need particular forms of support,
1 Introduction we ague that in many cases that support has already been imple-

mented, albeit for another purpose.

In recent years, processor speeds have improved much faster than - . .

DRAM speeds, resulting in significant relative increases in mem- |0 demonstrate concretely the utility of integrating performance
ory latencies. This situation has led to heightened attention on profonitoring with coherence support, we have implemented Flash-
gram memory performance. The problem is particularly acute in Point, al_%erformance monitoring tool_for the FLASH Multiproces-
multiprocessors, due to the potential for accesses over a network 80" [KOH"94]. The tool is integrated into the software handlers of
remote memoryFor example, even in the absence of contention, FLASH'S flexible coherence protocol. It takes advantage of
some remote accesses in the Stanford FLASH Multiprocessor caff-ASH'S existing mechanisms for (i) automatic software activa-

take as many as 380 processor cycles to complate *94]. tion on each second-level cache mi§s and (ii}cpe_he-line
accounting of memory usage. FlashPoint keeps detailed memory

Despite the great importance of memory system behavior to applistatistics for individual program code and data structures. By tak-
cation performance, it is difult to build tools to monitor such  ing advantage of existing cache-coherence support, FlashPoint is
behavior The main challenges are: able to collect these fine-grained statistics at low overheads. Gath-
ering perdata-structure statistics incurs less than 10% overhead,;
gathering pedata-structure, pgrocedure statistics has higher
overheads but still generally results in less than 2X slowdown.

« Memory references happen frequentind therefore require
very frequent, fine-grained monitoring.

« Little hardware support exists to give feedback on caching

and memory behavior FlashPoint represents an interesting and concrete demonstration of

a symbiosis between cache coherence and performance monitoring
in multiprocessors. The papé&oweveris not simply a description

of this particular tool, but rather an analysis of the natural parallels
between these two system functions, and the opportunities for
amortizing hardware and systems costs across both of them.

Section 2 outlines the basic needs of performance monitoring and
coherence systems, and shows the commonalities between the two.



As a case studySection 3 describes the implementation and per- components central to performance monitoring: trigger points,
formance of FlashPoint. Section 4 expands the discussion to conhandlers, and available state storage, have already been imple-
sider possible implementations in other styles of parallel mented for an entirely ddrent purpose. Namelyhey are often
computers. Section 5 discusses related issues and future work, aresent as part of the cache-coherence support on many shared-
Section 6 ders our conclusions. memory multiprocessors.

2 Integrating Monitoring and Coherence At the heart of most current high-performance shared-memory
multiprocessors is a cache coherence protocol, which guarantees

To establish the link between performance monitoring and cachghat the data in each processarache is kept in sync with the data
coherence in parallel systems, this section first outlines the needi other caches throughout the system. Hardware or software will
of both independentlyand then discusses which requirements are track which lines are cached in which processor caches, watch for

common to both. activity on those lines, and send out updates or invalidations
] . accordingly Although cache coherence strategies vargommon
2.1 PerformanceMomtormg theme is that the hardware or software intended to implement

_ _ o cache coherence will Heiggered on “interesting” references (i.e.,
The functionality of a performance monitoring system can be con-loads or stores that cause a protocol state change for the referenced

sidered in terms of three main components: (i) a meatmsygér- cache line). This triggering activates hardware or softvare
ing on events to be monitored, (i) hardware or softwaaedlers dlers. The handlers perform functions such as fetching the data or
to respond to triggering events, afid) state information, or stor- invalidating it from other caches. They may also maintain per

age, to aggregate statistics over a stream of triggering events.  cache-line or pepagestate information that the protocol uses to

. . . maintain coherence.
As an example, consider a hardware histogram morstah as

the DASH Hardware Performance Monitor [Hei93]. Here, moni- One can also extend beyond this surface similahityshared-

toring is triggered by each reference on the shared cluster bus.memory cache coherence protocols, trigger points are those refer-
Hardware (in essence handler) responds to the trigger by incre- ences that require coherence actions—either to fetch a line into the
menting appropriate counts in a set of histograms. These banks afache, or to upgrade its state from shared to exclusive. In scalable
memory-mapped histograms form the statissiese information (e.g. directory-based) protocols, the memory events that cause
for this performance monitoring system. major delays are almost always those requiring coherence actions;

: . therefore, “interesting” coherence events are “interesting” memory
For comparison nsider ftware- roach h ’ Y
or comparison, consider a software-based approach such a erformance monitoring events.

MemSpy [MGA95] or CProf [\W94]. In these tools, the events-to-
be-monitored are memory references in the codgg@r points Once a cache-coherence handler has been invoked, it performs
are created at these events by instrumenting them with calls t@either in hardware or software) a table lookup to check on the
software procedures, onandlers. These monitoring routines coherence state for the cache line. Based on this information, it
update their data structures with statistics about the reference angends out messages as needed and updates the coherence state
then return control to the application. Although itmelementation information. One could modify the protocol handler state machine

of these monitors is quite frent from the hardware-based or software to update statistics counters as part of each coherence
approaches, the three basic components of the performance monaction. Furthermore, by modifying the directory storage to include

tor are still clearly present. counter bits or to include indexing bits that point to an array of

. . . . counters, one could categorize statistics fofedéht regions of
Finally, systems using hardware miss counters (such as implemen-

X h . memory at granularities as small as a cache line. Thus the three
tations of the R1000[IHei95], PentiuniMat94] or DECAlpha . . R .
[DEC92] architectures) trigger on first level cache misses, andrequwed mechanisms for fine-grained memory performance moni

cause counters to be incremented. In this case, the trigger is thteorlng are present in the standard cache-coherence mechanisms.

miss signal resulting from the cache probe, the increment is th int-
hardware handlerand the counter register is the statistics stateee) FlashPoint: A CaseStudy

information. As a concrete example of our ideas, we now describe a tool called
For many tools, the main limitation to theiffieilency and accu- FlashPoint. The tool givedata oriented breakdowns of memory

; : ; P head in the programs being run. That is, similar to tools like
racy has been the lack of lightweight, selective-notification mecha-OVer h
nisms for performing the first of the three main components: MemSpy [MGAS5] and CPROF W94] it presents program per-

identifying and triggering on events to be monitored. While bus formance information in terms of data, as well as code, structures

monitors or on-chip cache miss counters allow one to trigger on alil! t€ program. FlashPoint maintains data structures that map each
memory events (at a particular level of the hierarchy), it can be dif-memory location accessed by the monitored program to its corre-

ficult to trigger selectively on some events or to take actions otherSPONding program data structure identifitne mappings handle

; : heap-allocated as well as static data, and they aggregate together
than aggregate counting. For example, tools like MemSpy catego- : ' > :
J9reg 9 P Ry g lements of dynamic data structures such as linked lists.

rize miss counts according to the code and data structures th : S
incurred the misses. This categorization is still quite time-consum-((MGAS5] and [ZH88] describe similar methods.)

ing even with support such as on-chip miss counters or hardwarg=|ashPoint gathers statistics on the number and latency of read and
histogram bus monitors. If miss detection could be performedwyrite misses. It maintains separate categories of statistics for local
instantaneously in hardware, the overhead for such a tool coulind remote references. It also keeps counts on the number of inval-
drop by a factor of two or more in some cases [Mar93]. The fol- idations required and on the number of cold misses in the program
lowing subsection introduces how cache-coherence mechanismg e., misses to memory not previously referenced since monitoring
can help support selective notification and statistics categorizationpegan). The information gathered by FlashPoint can be viewed
with a graphical user interface to give the programmer a display of
2.2 Cache Coherence the prc?gr;)ns memory behavior ir?familiarptergms (procedurep a%d

. . . . . - iabl f th .
The key observation underlying this research is noting that W|th|nVarla € names from the program)

many cache-coherent shared-memory multiprocessors, the three
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3.1 FlashPoint Implementation \
Lacking adequate, widely-available hardware support for memory dataMessage J&%ay
performance monitoring, tools like MemSpy and CProf were
designed to evaluate application performance based on simulation +
of the program. In contrast, FlashPoint is designed to run directly Outgoing Queues
on the Stanford FLASH Multiprocessor; its implementation takes
advantage of the implicit performance monitoring suppdgred
by FLASH's cache-coherence mechanisms. FlashPoint is imple- Pl NI /o
mented as a modified cache coherence protocol. Instead of th
default protocol, each protocol processor in the machine runs pro Figure 2. Block Diagram of FLASIH’'MAGIC Chip
tocol code that implements both performance monitoring and the
standard coherence actiotfisis crucial to note that unlike Mem- The protocol processor is a programmable controller that imple-
Spy or CProf, FlashPoint is NOT simulation-based; rather, it gath- ments a subset of the DLX instruction set [HP90] with extensions

ers data from a real, running system.l For this reason, it has that include bitfield operations and a bit-wise conditional branch.
several beneficial characteristics. First, it captures informationBoth extensions accelerate the state-bit manipulations that are
about full system écts. Second, it scales with number of proces- common in the protocol handlers. The PP is implemented as a
sors. Third, it requires no additional hardware. dual-issue 64-bit machine with static scheduling. It fetches a pair

. o of instructions on every PP cycle. Since the PP does not support
The FlashPoint method has one potential disadvantage, howevefhterrupts or exceptions, these instructions are executed uncondi-
Unlike simulation-based approaches, FlashPoint is intrusivetionally. The PP also does not support pipeline interlocks or most
because it augments the default coherence protocol with perfortypes of resource conflict detection, so the PP programmer or com-
mance monitoring information. As a result, the timing of a pro- piler must avoid these staticallpur FlashPoint implementation
gram in a FlashPoint system is not identical to its timing in an takes advantage of these PP characteristics: some of the FlashPoint

unmonitored system. Later in this section, we examine the implica-code added to each handler fills otherwise-empty slots in the stati-
tions of this approach on monitoring accuracy and application per-aly-scheduled protocol handlers.

formance.

o . . ) The protocol processa memory hierarchy consists of a KB
FlashPomt IS bUI|'[ by augmen“ng the default prOtOCO| Used n thedirect_mapped On_chip instruction Cache and MBl 2_Way set-
FLASH Multiprocessor For th|S reason, we ﬁrSt deSCI’ibe the associative dfch|p data Cache_ ‘M these parametersy the proto_
FLASH architecture and the default FLASH protocol. Following col processor code experiences very few cache misses; they are
that, we describe the FlashPoint protocol in some detail—coveringnegligible in the results presented in this paper for both the default

its data structures and control mechanisms. protocol and the augmented FlashPoint protocol. The MAGIC chip
. has a taget frequency of 100MHz, therefore all latencies collected
3.1.1 The FLASH Architecture by FlashPoint are stated in terms of theses6ystem cycles.

Figurel shows the ganization of one compute node in the
FLASH architecture. These nodes are interconnected via a two-3':|"2 The Default FLASH Protocol

dimensional mesh network. At the heart of every compute node is-| ASH's default coherence protocol is directory-based, and uses
the MAGIC chip which includes interfaces to the proces®  dynamic pointer allocatiofsim92] to maintain a scalable direc-
network, and the I/O subsystem. MAGIC queues incoming eventsiory structure. In this protocol, eight bytes of state, the directory
from each of these external interfaces, and invokes the appropriateaderis associated with each coherence unit (a 128 byte cache
software handlers on its embedded Protocol Processor (PP) to hafne). The header includes boolean flags that encode the line’
dle these events. (See Figarg state, as well as a link field which is the head of a linked list of
1. Since the system does not yet exist howewer evaluate the performance of the Shar.ers' Fo_r Gtiency the first (.)f these Sh.arers is also stored
FlashPoint protocol code by running it on the FlashLite simultds is precisely within the directory headeEach line has a directory entry at one
how one would evaluate a coherence-only protocol for the system. node in the system; that node is called the home node.




The directory state is maintained via a set of software handlersNI Local Get (Header hdr, Address addr)
The base protocol accepts incoming messages from either the locg

compute node or from the network. Incoming read or read-exclu- aAqqress headLi nkAddr :

sive requests may be satisfied either locally (if this is the home long | ong h:

node for the line) or remotely (otherwise). For local requests, the '
protocol processor checks and updates theslistte, and on .
writes, may also send invalidation requests to other nodes. Fol headLi nkAddr
remote requests, the local protocol processor sends a corresponi h

ing request to the home node for that line. For each request mes

Addr ToHead! i nkAddr (addr) ;
headLi nkAddr ;

sage in the system, a corresponding reply message is sent bac if (!h.Pending) {
these return requested data or acknowledge completion of & if ('h.Dirty) { // dean
requested action. if (!'h.HeadPtr) ({
. /'l no previous sharers

3.1.3 The FlashPoint Protocol hdr . | eE = LEN_CACHELI NE:
The FlashPoint protocol can be viewed as a superset of the defau hdr. msgType = MSG_PUT;
dynamic pointer allocation protocol. It augments several handlers hdr. bin = h.FPBi n;
with additional code that updates the performance counts. In addi- hdr . war m = h. FPVarm
tion, it defines several new handlers not present in the default pro NI Send( header, addr);
tocol. In total, FlashPoint required modifying 12 out of the h. FPVarm = 1;
approximately 100 handlers in the default protocol, and adding h.Ptr = hdr. src;
four new handlers. Figures 3 and 4 show the pseudo-code for twc h. HeadPt r = 1;
FlashPoint handlers. The portion in boldface is the code added tc
the handler for FlashPoint; the remaining code is the default proto- el se { /1 Already sharers
col handler ) T
Performance Data Structures } _ .

else { ... // Dirty bit set
The FlashPoint protocol maintains two fpeocessor data struc- }
tures in addition to the default cache-coherence data structures i ge { ... // Pending bit set

One data structure is a bit field occupying part of the directory }

header for each cache lineeWse eleven previously unused bits }

in the directory header to store a “warm bit” and a ten-bit “bin )

number”. The warm bit indicates whether the cache line has been Figure 4. NiLocalGet Handler

accessed since initialization. The value of the warm bit is checked

on data replies to decide whether or not the reference is a coldhe second data structure is the storage for thbipestatistics. It
miss, and if so, to update statistics accordinglye bin number is an array of statistics structures where each individual record
identifies which data structure the cache line belongs to. For allincludes counters for read misses, write misses, local vs. remote
coherence operations at the home node, the default protocol looksisses, and so on. These records agarozed as a two-dimen-

up the directory header and loads it into a regiStensequentlyit sional array where the first dimension is the procedure number
is available without recalculation for performance monitoring and the second dimension is the bin numieis allows Flash-
code. Point to maintain pedata-structure, pgrocedure statistics. For
voi d efficiency, a pointer to the current procedwedrray of bins is
NI Renot ePut (Header hdr, Address addr) stored in a registern_the_ applicati_ons used in our stutlyis data
{ structure$ average size is approximately 268.
l'ong long binAddr, Iatency; Program Access to Performance State
i nt bin, warm

There are two pieces of information that the deeel system
Pl Send(hdr, addr); needs to pass down to the protocol. The first is the assignment of
bins to cache lines. This is used to categorize memory to form per
data-structure statistics.aNmplement this with an uncached store

| at ency f ReadLat ency(); to a special location. The address of the store is interpreted as a

bin hdr . bi n; command by MAGIC, and the data contains: (i) the starting physi-
war m = hdr. warm cal address for a data bin, (i) the length (in cache lines) of the bin,
bi nAddr = binTabl eStart + and (i) the bin number to assign to that range. The protocol takes
bin * sizeof (FP_BIN); this data and loops over the appropriate directory headers setting
the bin field of each to the new bin numkserd clearing the warm
bi nAddr . r dM ssRenot e++; bit. In a real system, the mapping between the prograirtual
bi nAddr . rdLat encyRenot e += | at ency; memory and the physical memory of the machine can change over
the course of the prograsnexecution. In our experiments we
if (lwarm { assume that all pages are pinned (the virtual to physipal transla-
bi nAddr . col d++: tions do not change, and hence you need to establish bin mappings
' ! only once). Other components of the FLASH design remove this
} page-pinning requiremefftiGD+94]; for simplicity we do not
} address this problem here because we do not believiedtsathe

Figure 3. NIRemotePut Handler quality of our results.



When monitoring peprocedure statistics, the udevel system Lite event-driven reference generator [Gol93). Model latency

also needs to pass the protocol the procedure number on evednd contention accuratellylashLite uses cycle counts and arbitra-
function call and return. Whenever the program switches proce-tion information from a ¥rilog model of the MAGIC chip. Han-
dures the dference between the current procedure number and theller code is compiled using a modified version of [§tall93],

new procedure numhehedelta, is sent down to the memory sys- which generates object code that makes use of tredXxBEnded

tem. The current bin pointer is adjusted by delta times the size oinstruction set. This code is then scheduled using a version of
the bin arra;? This is implemented as an uncached load where thetwine [Smi92], an instruction scheduler originally developed for
page ofset bits contain the procedure delta. the TORCH processor [SJH89]oTmake the comparison fathe
same tools and optimization levels are used when generating the

After the program has run, the statistics need to be read by th‘aefault and FlashPoint versions of the protocol handlers.

main processoiThere are many ways of doing this. For example,
one could send a command to the PP that causes it to flush the biWe evaluate FlashPoint on a subset of the SPLASH-2 suite of par-
data structures from its cache. The main processor can then reaallel applications [WOT+95]. The four programs considered are:

the bin structures like it would any other part of memory FFT, LU, OCEAN, and RADIX. The FFT benchmark uses a data
. . o set of 256K points. LU performs an LU decomposition on a
3.1.4 Fine-Grained Timing Support 512x512 matrix with a block size of 16. OCEAN is a scientific

) . program that studies Ige-scale ocean movements; we run it here
Counts are easy to do in software, but determining accurate latenon a 258x258 grid. FinalljRADIX performs an integer sort with
cies is not. A request may spend an arbitrary amount of timeradix 256 and 1 million keys. Except where specified, we use 16
between the main processor and the PP (waiting in queues). Thergrocessor runs of these applications. Our results are presented in
fore, if the entire latency calculation were done by having the PPtwo parts. First we consider the accuracy of the statistics gathered
set and later read timestamps, it could be arbitrarily inaccurategy FlashPoint by comparing the miss counts and miss latencies it
since it would not have recorded the time the request spent in theeports with those for the same application run with the default
system before being initially serviced by the Ri3tead, there is  coherence protocol. Subsequentiye quantify the performance
hardware directly at the procgssor interface to MAGIC that starts dverhead of running with the FlashPoint protoco| as compared to
counter when the request arrives from the processor bus. When thginning with FLASHS default protocol. Throughout these results,
corresponding reply is sent back to the procesherPP can read e present overview statistics for all applications. Occasionally we
the counter to record the latency in the proper bin. By reading they|so present results focusing in on a single applicatibehaviar
counter after the reply is sent to the main compute node (i.e. outypijcally, we focus on FFETbut its behavior is not qualitatively
side the latency interval itself), FlashPoint obtains a highly accu-different from the other three applications.

rate measurement of the miss latency
3.2.2 Accuracy Impact of FlashPoint

3.1.5 Summary

o ) - Clearly our goal is to collect statistics about program caching
Clearly, some aspects of FlashPagrithplementation are specific  pehavior with only slight perturbation of the behavior being stud-
to the FLASH multiprocessor and its cache-coherence support. Fofed. FlashPoint collects statistics both on cache ooissts and on
example, the programmability of the PP allows protocol modifica- their |atencies, and we would like each of these to reflect the
tions to happen in a flexible waln addition, the PR’ dual-issue behavior of the unmonitored program run.
pipeline allows some of the extra performance monitoring code to ) ) )
be embedded into unused instruction slots. Beyond that, FIASH’ To determine the accuracy impact of FlashPoint, we compare the
default protocol already maintains state information about eachcache statistics collected by a run with the FlashPoint protocol (in
cache line in the system. By adding performance information towhich the timing and perturbation of FlashPoint are included)
the coherence state, we can easily access the information, and c@gainst the statistics collected by a control run of the simulator
amortize directory table lookup overhead that is already needed fofhe idealized control run, treemulator collects the same statistics
the coherence protocoL The main point is that a|th0ugh somé_hat FlashPoint WOUld., bUt uses the default_protocol SO tI’_le_program
implementation details are machine-specific, the notion of inte-is not chaged for the timing décts of gathering these statistics.
grating coherence and performance monitoring is a much more .
generally applicable idea. Section 4.0 discusses extensions to oth&e@Che Miss Counts

protocols and machines. Tablel shows the application cache miss counts for local and

. remote reads and writes, for threefeliént protocol configura-
3.2 FlashPoint Performance tions. DP refers to the dynamic pointer allocation protocol that is
the default on FLASH. FP-NoProc is the FlashPoint protocol with
perdata-structure statistics, but without jpeocedure statistics.
EP-Proc is the full FlashPoint protocol, which keeps statistics both
perdata-structure and perocedure.

In order to present results on FlashPgimgerformance, we first
describe the methodology used to collect the datathéh present
results comparing the performance overhead and accuracy of th
FlashPoint protocol to the default dynamic pointer allocation pro-
tocol. We conclude with a discussion of some implementation For all four applications the cache miss counts gathered by Flash-

tradeofs in the FlashPoint design. Many of the ideas in that sec-pgint are quite close to the true statistics. In most cases, miss
tion can be used to reduce FlashPsint’erhead even further than  counts for reads and writes faif by less than 3% from ideal. The

the numbers presented here. 9-13% diference in remote read misses for RADIX is caused by
. an artifact of our simulatpmesulting in diferent placement of
3.2.1 Experimental Methodology static data between the DP and the FlashPoint runs. Notice though

that for total read misses in RADIX, FlashPoint barelfedsf from
the default protocol. Clearlyfor gathering statistics of this sort,
FlashPoint is quite accurate.

We gathered these results using the FlashLite simuRshLite
is a multithreaded system simulator that interfaces to &mgd

2. If the size of the bin array is a power of two, then the procedure adjustment is just
two instructions—a shift and an add.



Table 1: Cache Miss Counts (>§])0

Read Miss Counts ffal / Local / Remote)
Application DP FP NoProc Error FP Proc Error
FFT 215/122 /93 214 /121/93 -1% /-1% /0% 215/121/93 0%/-1% / 0%
LU 225/26.9 /198 | 224 /26.2 198 0% / -2% /0% 225/27.8 198 | 0%/ 3%/ 0%
OCEAN 452 /216 /236 | 457 /221 /235 1% /2% /0% 456 /221 /235 1%/ 2%/ 0%
RADIX 71.7/169.2/2.48 71.8/69.0/2.79] 0% /0% / 13% 71.7169.0/2.69 0%/0%/ 9%
Write Miss Counts
FFT 105/105/.016 | 105/105/.019 | -1% /0% /19% | 105/105/.018 | 0%/ 0%/ 13%
LU 425/26.1/16.5 41.8/25.3/26.5 -2%/-3% /0% | 43/26.5/16.5 | 1%/ 2%/ 0%
OCEAN 630/630/.293 | 629/628/.284 | 0% /0% / -3% 629/629/.307 | 0% /0% /5%
RADIX 149/40.5/108 | 149/40.6/108 | 0% /0% / -1% 149/40.6 /108 | -1% / 0%/ -1%
Table 2: Cache Miss Latencies (10 ns system cycles)
Read Latency (verage / Local / Remote)

Application DP FP NoProc Error FP Proc Error

FFT 84/22/165 | 95/23/189 | 13% /3% /14% | 95/23/189 | 13% /2% / 14%

LU 141/23/157 | 163/24/181 | 16% /5% /16% | 152/22 /171 | 8% /-1% /9%

OCEAN 94/24/158 | 102/28/172 | 9%/ 15% /9% 103/28/172 | 9% /15% /9%

RADIX 104 /101/190 109/104/226| 4%/ 3% /19% | 109/104/225 4%/ 3% /19%

Write Latency

FFT 771771297 | 118/ 118/283 | 52% /52% / -5% | 119/ 119 /282 | 54% / 54% / -5%

LU 62/31/ 10 67/32/120 8% /2% / 9% 65/30/122 | 5% /-5%/10%

OCEAN 42142 /286 57/57/301 | 34% / 34% /5% 571571294 | 35% /35% /3%

RADIX 170/31/222 | 192/33/252 | 13% /4% /14% | 192/32/253 | 13% /3% / 14%

CacheMissLatencies Per-Bin Statistics

Beyond counts, FlashPoint also collects information about the ! N€ above paragraphs have examined FlashBaiggregate mea-
latencies of memory eventsafle2 shows information about Surement accuracyur goal, howevers to use FlashPoint as a
FlashPoint latency estimates. For each application, latency esti-mechanism for collecting fine-grained statistics. On one hand, it
mates are given for the same three protocol configurations adh@y Seem even more fidult to collect fine-grained data accu-
before. For each, we display the average, average local, and avef@t€ly as compared to aggregated data. When reference statistics
age remote read and write miss latencies. Although not as succes&€ Very finely categorized, the number of data points collected per
ful as the count values, the results for latency measurements argin may be quite small and the potential for measurement error
also acceptable. For all four applications, read latencies are estindy therefore be greateks a performance tuning tool, however
mated to within 20% of their true values. RADIX and LU have the FlashPoint main objective is to indicate to programmers the main
best behavior of the fouwith latency estimates remaining within ~Pottlenecks in the code and the degree to which they are bottle-
20% of the true values for both reads and writes. For OCEAN and?€cks. The proportional representation of key data and code struc-
FFT, read estimates are fairly accurate, but write estimates deviatd/féS may be more important than absolutely precise
by roughly 35% and roughly 55% respectiveljhis occurs ~ measurements of event latencies.

because these programs perform bursty writes, so the added occyzple3 summarizes some of the FlashPointqt@sa structure sta-
pancy of the FlashPoint handlers exacerbates the queueing delaygics output for a 16 processor run of FAe two top-ranking
@nherent under the base DP configuratitrmay be pos_sibl_e 0 hins are shown, and they make up 84% of the read and write
improve the accuracy of latency measurements by adjusting themyisses for this run of the code. For each data structure (there are
by a fixed amount corresponding to FlashPsingdditional  two shown) and each statistics metric (there are ten shown), the
instruction overhead in a particular handler table presents the proportion of that metric caused by this data bin.
For example, the top-ranking data structure (a pointer to doubles,
called trans) is responsible for 29% of the local read misses, 33%
of the remote read misses, and 65% of the total write misses. W



I Default
Table 3: Pedata-structure Statistics for FFT S FP NoProc
2 FP Proc
Metric DP run| FP run| Error é 15}
Top Ranking Data Bin;doubl e*) . trans §
Read Miss Local 29% 32% 7% S w} 08 Lo
Read Latency Local | 28% | 30% | 6% g 74 28 18
Read Miss Remote | 33% | 33% | 0% - 22
4 35 3.6
Read Latency Remote 35% 34% -2% = 18 19 Lo
Write Miss Local 65% 68% 4% 0 “
Write Latency Local | 62% 64% 2% FET LU OCEAN RADIX
Write Miss Remote 0% 0% 0% Figure 5. Application Parallel Executioinfe
Write Latency Remote 0% 0% 0% . .
- y ° ° ° For comparison, MemSpy would require greater than 10X over-
Cold Misses 33% 33% 0% head to gather similar statistics, and its simulation-based approach
Invalidation Misses 59% 59% 0% does not scale well with the number of procesgdes93].
2nd Ranking Data Bir(. doubl e*) . x Impact on Handler Latency
Read Miss Local 29% 27% 1% Figure6 shows the average latencies of the five instrumented han-
Read Latency Local | 31% 29% -6% dlers with the greatest impact on performance. These five handlers
- are: (i) PlLocalGetX (gets exclusive access for a local write), (ii)
Read Miss Remote | 66% 66% 0% PlLocalUpgrade (a local upgrade from shared to exclusive mode),
Read Latency Remote 61% 60% 1% (i) NILocalGet (a remote read request), (iv) PlLocalGet (a local
- - read) and (v) NIRemotePut (a remote read reply). Latency is mea-
Write Miss Local 34% 31% -1% sured as the time from when the PP executes the first instruction of
Write Latency Local | 38% 36% -4% the handler to the time when the PP sends the response. Although
- - the additional instrumentation in the FlashPoint protocol leads to
Write Miss Remote 0% 0% 0% different program execution, with slightly féifent handler laten-
Write Latency Remote 0% 0% 0% cies, Figures shows that none of the handler latencies increase sig-
- nificantly. For completeness,able4 reports the handler latency
Cold Misses 33% 33% 0% and occupancy perturbations for all four of our applications for two
Invalidation Misses | 41% 40% 1% of the most common handlers: PlLocalGet and NILocalGet. Since

these perturbations are nearly identical for FP-NoProc and FP-

show these proportions for both FlashPoint and the base protocof, "0C: We report results only for FP-Proc in the table.
We also show the relative errors between the base, unperturbe
results and the FlashPoint results. The results here are extremel
romising. All FlashPoint measurements are within 7% of their
ﬁnperturged values. Even in cases (such assHkfite latencies) PlLocalGet NiLocalGet
where FlashPoird’ absolute measurements deviate due to pertur- Ep
bation, the relative proportion of latencies by data structures can b
reported quite accuratelffor programmers assessing which vari-

Table 4: Handler Latency/Occupancy Perturbations (10 ns system ¢

Over FP Over
App DP | Proc| head | DP | Proc| head

ables make the most tlifence in their program’performance, FFT 9/11 | 9/21 | 0%/91%| 15/29| 17/37| 15%/30%
this metric is aguably more important than the absolute latency TG A0
measurements. LU 9/11 | 9/21 | 0%/91%| 15/49| 22/56| 41%/15%

OCEAN| 9/11 | 9/21 | 0%/91%]| 16/38| 18/47| 9%/25%
RADIX | 11/13|11/18| 0%/36%| 16/37| 20/44| 23%/20%

3.2.3 Performance I mpact of FlashPoint

Having established that FlashPoint can accurately measure several
aspects of fine-grained memory behaviee now present data on

its performance overhead. Figieplots execution time for the ImpaCt on Handler Occupancy

four applications using our three feifent protocol configurations.  Figure7 shows a graph similar to the previous one, this time for
The execution time presented here is the time the program spendge handleoccupancies in FFT. Occupancy is defined as the time

in the parallel section of its code; initialization is not included. In from when the PP executes the first instruction of the handler until
all cases, the execution time required for the FP-NoProc protocothe time the PP reaches the next “switch” which is the PP instruc-
is less than 10% greater than the default unmonitored run. Whetion to load in the next handleBccupancy is a measure of how
users wish to have statistics categorized both by data bin and bpusy the PP is being kept, while handler latency is a measure of
procedure, the overhead increases somewhat for some of the appliow long a particular access (or portion of an access) will take.
cations. For OCEAN and RADIX, even the FP-Proc protocol costsThe figure shows that although handler latencies wegeliar
only an extra 5% in execution time. For FFT and LU, the over- ynchanged under FlashPoint, handler occupancies do increase.
heads are highebut are still much lower than the only previous Particularly for NIRemotePut (a small pass-through handler) the
alternative (simulation) for gathering statistics at this granularity occupancy increases significantBeferring back to Figur®, the
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g pRra o Table 5: Scaling FFT to 64 Processors
3 3B FP Proc
8 o} FP
% 51 No FP
g L0l Metric DP | Proc | Error | Proc | Error
§ 16 15 15 ! 16 16 15 -
15| FFT 16P
10 + 9.0 9.0 9.0 R
Read Misses () | 215 | 214 | -1% | 215 | 0%
5|
. 1.0 10 10 Read Latency 84 95 13% 95 13%
PlLocalGetX PlLocalUpgrade NiLocalGet PlLocalGet  NIRemotePut Write MiSSGS (lé) 105 105 -1% 105 0%
Figure 6. Handler Latencies for FFT Write Latency 77 | 118 | 52% | 119 | 54%
cor. FFT 64P
n Default
é zz i . FP NoProc Read Misses (f@ 203 | 203 0% 203 0%
g st Read Latency 188 | 231 | 23% | 218 | 16%
: “°r 32 37 Write Misses (18) | 102 | 102 | 0% | 102 | 0%
5 T Write Latency 81 | 126 | 55% | 127 | 56%
% 20 21 21
15 15 Parallel FP
= Execution Tme No | Over | FP | Over
20 (106 cycles) DP | Proc| head | Proc | head
PlLocalGetX PlLocalUpgrade NliLocalGet PlLocalGet NIRemotePut FFT 16P 3.45 | 3.62 5% 5.19 51%
Figure 7. Handler Occupancies for FFT
9 p FET 64P 11 | 117 | 5% 1.55 | 40%

reason for this becomes apparentthalt FlashPoint, the handler
merely passes bfthe request to the processor interfacathW
FlashPoint, additional instructions are inserted. The handler3-2-4 Summary
latency is measured only up until the send, so it isfeciad. The
handler occupancy includes all the PP instructions after the sen
so it is here that the monitoring has an impact. Agaahlert
shows occupancy perturbations for all four of the applications for
two of the most common protocol handlers.

0‘“ summary FlashPoint is quite accurate in collecting statistics on
miss counts with only minimal performance impact on the applica-
tion. Furthermore, the pelata-structure miss counts and miss
latencies (as a percentage of the total) are nearly identical between
the unmonitored DP protocol and the monitored FlashPoint sys-
Scaling Number of Processors tem. The overhead and the accuracy of FlashPoint also scale well
with the number of processors.

One of the primary drawbacks to using simulation-based tools for,
performance monitoring parallel programs is that simulation time
scales poorly with increased number of parallel processors to sim

FlashPoing implementation has a number of interesting design
tradeofs that afect both monitoring overhead and accurdegr
ulate. The result is that the runtime overhead of using a simulation-exa.mple’ if _the user does not want to collect latency information,
based tool can become prohibitive when one is interested in moniPut instead is only interested in miss counts, the overhead of Flash-
toring even a moderate number of processors. FlashPoint, in conFoint would be much smallén the current installation, users can

trast, shows quite good scaling behavior with the number ofChOOS‘? betwe_en NoProc an(_j Proc versions c.’f the protoc_ql. In
ProCessors. future installations, more versions could be available. In addition,

since the FLASH multiprocessor uses an aggressive, out-of-order
As an example, dble5 compares read and write miss counts and execution main compute processblashPoint must be conserva-
latencies generated for 16 and 64 processor runs of TFETmiss tive in notifying MAGIC about procedure entry and exit points and
count error remains negligible in the 64 processor case. The erroflata binning information. In particulawe use memory fence

in the miss latencies remains significant, but does not increasénstructions to prevent newer loads and stores from bypassing the
much with the number of processorable5 also compares the 16 uncached write that changes the pointer to the current set of bins
and 64 processor parallel execution times for each of our three prowhich could potentially assign miss information to the wrong sta-
tocol configurations. Surprisinglyhe FlashPoint execution time tistical bin). It is likely that the error introduced by not inserting
overhead for FFHecreases as the number of processors increase, the fence instructions is small, and that they can therefore be
though handler occupancies aregtar for the 64 processor case removed without adverselyfatting the accuracy of FlashPoint.
than for the 16 processor case. Overall as the number of processofince the fence stall time is the major source of execution time
increases, the performance trends depend on the applicationverhead in the peprocedure (FP-Proc) version of FlashPoint,
behavior For example, if increasing the number of processors on aremoving the fence instructions will decrease the overall execution
fixed problem size reduces capacity misses, then Flastiilat: time dramaticallyand may reduce the total amount of system per-
tive performance may actually improve with the number of proces-turbation as well.

sors, since the number of misses decreases.



4 Other Coherence M echanisms structure performance information a primary goal. While space-
constraints limit our discussion, this belief is based on work such

The preceding example has taken an in-depth look at an impleas SHMAP[DBK *90], MemSpy [MGA95], and CPROF \194];
mentation of a performance monitoring tool integrated into in these tools, the authorsgaed strongly that the ability to get
FLASH's flexible coherence protocol. This section discusses othewisualizations or performance data on individual data structures is
common classes of coherence protocols, and the support feey of instrumental to understanding program behavdther higher

for performance monitoring. level approaches like MibI [GH93] also exist; we gue however
that particularly in parallel code, additional statistics detail can be
instrumental in understanding application memory referencing
patterns.

Machines that implement uskavel shared memory schemes, such
as Typhoon[RLW94], also provide an excellent environment for
performance-coherence integratiogpfioon is similar to FLASH

in the sense that both architectures include a network interfacéVe have also touched only briefly on hardware monitoring support
device with a fully-programmable processdhis allows perfor- in current machines. In fact, over the past five to ten years, moni-
mance tools to be implemented relatively simply via changes intoring support has become increasingly available both on research
the protocol code running in the network interface processor and commercial machines. On-chip hardware counters are a class
Among systems with programmable protocol processors, varia-of monitoring support found on several current-generation proces-
tions in block sizes may fakct tool performance. FlashPoint bene- sor chips, including the DEC Alpha P44, MIPS R10000, and

fits slightly from longer cache lines for two reasons. First, the datalntel Pentium processors. These counters—collecting information
bin mapping of a new page is done by mapping each of the cachen data accesses, cache misses, pipeline stalls, and instruction
blocks within it, so lager lines require fewer individual mapping mix—can be invaluable in collecting fine-grained information
operations per new page. Second, FlashRoowerhead is fixed, about program and system behavibinfortunately their main
regardless of the amount of data being transferrath Whger drawback, as discussed in [HMM+96], is that they are primarily
cache lines, one amortizes this overhead over more bytes of datintended to der aggregate counts on hardware performance.
and the handler overhead is more likely to be hidden in parallelSince the counters are often memory-mapped, the overhead to read
with the data transfer the counter values can be quite high, so it ificdit to implement

tools that can attribute individual cache misses to particular refer-
ence points in the code. In addition, the counters on current proces-
sors ofer no mechanism by which software can observe and react
to individual cache misses as in FlashPoint.

Fully hardwired implementations of directory-based protocols also
offer some of the same advantages as FLASttbgrammable
directory protocol. Whether implemented using a hardwired or
programmable controlledirectory protocols keep peache-line
state information. For performance monitoring tools, thisliper Several multiprocessors [Hei93, NAB+94, ABC+95] provide sys-
information can be extended by only a few bits to store a unique idkem-level monitoring hardware as well. For example, the DASH
(bin number) indicating which data structure this cache line is amultiprocessor includes a monitoring board connected to each
part of. The main diérence is that the decision to support perfor- shared cluster bus, and the Alewife project includes monitoring
mance monitoring must be made at hardware design-time. Inhardware on the CMMU. Some such approaches have enough flex-
FlashPoint, data structures for yeepcedure and petata statistics  ibility that they can gather statistics similar to those gathered by
are built up in software by the protohandler code.drbuild a FlashPoint. The advantage of these approaches over FlashPoint is
similar tool in a directory-based machine with a hardwired control- that by dedicating hardware for monitoring, they can design the
ler, additional hardware would be required to record counts andmonitor to be able to observe communication behavior without
latencies of read and write events. Because of the hardwired impleperturbation. The clear disadvantage, howegetheir reliance on
mentation, users would have less flexibility in selecting levels of special-purpose hardware which tools like FlashPoint can circum-
performance monitoring detail. vent.

Over time, scalable parallel machine designs are cgimggras are Finally, by integrating the performance monitorimgp the coher-

the communication mechanisms in both “message-passing” anance protocol itself, one can also develop systems where the on-
“shared-memory” machines. Although not hardware cache-coherdine performance information can be used by the protocol to cus-
ent, machines like the Mtonsin COW [HM/95] or upcoming tomize handler actions according to the observed program data
SHRIMP [BLA+94] implementations may also be amenable to usage patterns. For example if the protocol notes that a processor is
integrating communication and performance monitoring. In thesemaking frequent remote accesses to lines on a particular page, it
machines, the network interface is (or is likely to be) implementedcould use this information to suggest to the operating system that it
using Myricom switches [BCF+95]. The core of these switches is might be useful to migrate the page to this procéssocal mem-

a programmable controller implemented using the LANai proces-ory. (This is similar to the approach described in [qu, which

sor. Thus, performance monitoring code could be inserted directlyused dedicated monitoring hardware.) More elaborate protocols
into the LANai handlers that support communication. Unfortu- might also use similar information to guide decisions of whether to
nately the 33MHz LANai processor is not nearly as high-perfor- use updates or invalidations to maintain the coherence of each line.
mance as FLASH' protocol processoFurthermore, LANai is a  For these types of applications, the integration of performance and
single-issue processmo there are fewer unused instruction slots coherence monitoring is especially useful; less integrated
where performance code could be inserted “for free”. On the otherapproaches (for example using profile data from a hardware trace
hand, LANai provides hardware support for two full contexts, and buffer) do not work well because of extra overhead in detecting
has a mechanism for switching between contexts in a single cycleand responding to particular conditions.

The freedom to place the performance instrumentation code in a .

separate context may allow for better register usage in the commu® Conclusions

nications code itself. .
This paper has explored the natural parallels between coherence

5 Rdated Work and performance monitoring in cache-coherent, shared-memory
multiprocessors. By taking advantage of existing coherence sup-

Implicit in the work described here were several assumptionsport on such machines, performance monitoring can often be inte-

based on related work. First, our implementation madelgter grated into a multiprocessor system with little desidorebr cost.



The extent to which performance monitoring can be implemented[DBK+90] J. Dongarra, O. Brewer, J. A. Kohl and S.Fineberg.A Tool to Aid
out of existing hardware and software depends on the coherencia the Design, Implementation, and Understanding of Matrix Algorithms for
mechanism being used. In machines with programmable protocoParallel Processordournal of Parallel and Disibuted Computingpages
controllers, it becomes especially easy to take advantage of thes&85-202. Jun, 1990.

parallels. Changes required to implement even fairly detailed mon{pEC92]DEC. DECChip 21064 RISC Microprocessor Preliminary Data
itoring can be done entirely by modifying protocol code. Sheet. Technical report, 1992.

We have demonstrated the usefulness of this approach by implefGH93] A.J. Goldberg and L. Hennessy. Mtool: An Integrated System
menting the FlashPoint memory performance monitoring tool asfor Performance Debugging Shared Memory Multiprocessor Applications.

part of a software coherence protocol for the FLASH Multiproces- IEEE Trans. on Parallel and Distributed Systeipages 28—40, Jan.1993.
sor. FlashPoint obtains detailed memory performance statistics afGol93] S. R. GoldschmidtSimulation of Multippcessors, Speed and

low overheads with good accuraBpth perbin cache miss counts

Accuracy Ph.D. Thesis, Stanford University, June, 1993.

as well as counts aggregated over the whole program run agregHeigs]J. Heinrich. MIPS R10000 Microprocessor User's Manual. 1995.

well with an unperturbed execution. Absolute measurements 0f[Hei93]

cache miss latencies are more epame than cache miss counts,
but relative comparisons of latencies attributed téedbht data
structures remain quite accurate.

M. Heinrich. DASH Performance Monitor Hardware
Documentation. Stanford University, Unpublished Memo. 1993.
[HGD+94] J. Heinlein, K. Gharachorloo, S. Dresser, et al. Integration of
Message Passing and Shared Memory in the Stanford FLASH

For a collection of programs from the SPLASH-2 benchmark Multiprocessor. InProc. 6th Int'l Conf. on Architectural Support for
suite, FlashPoint runtime overhead was less than 10% for gatherProgramming Languages and Operating Systqrages 38-50, Oct. 1994.

ing perdata structure program statistics. When one uses Flash[HKO

Point to gather peprocedure and pefata structure statistics, the

overheads increase somewhat, but are still generally less than 2%

*94] M. Heinrich, J. Kuskin, D. Ofelt, et al. The Performance Impact
of Flexibility in the Stanford FLASH Multiprocessor. Proc. 6th Int'l
onf. on Architectural Support for Programming Languages and Operating

This compares favorably with previous approaches with overheads:.’ystemspalges 274-285. Oct. 1994,

of 10X or more. In addition, FlashPoistbverheads scale well
with the number of processors.

Although the paper describes a case study based on a particulfﬁ['MM
multiprocessor implementation, the observation of similarities
between coherence and monitoring is both important and genera

In light of a lage and still-increasing processaemory perfor-

mance gap, memory performance monitoring is an essential part
application development
Using the techniques described heréicieint, useful support can

in shared-memory multiprocessors.

[HLW9O5] M. D. Hill, J. R. Larus, and D. A. Wood. Tempest: A Substrate
for Portable Parallel Progranfaroc. CompconMarch, 1995.

*96] M.Horowitz, M. Martonosi, T. Mowry, M. D. Smith. Informing
emory Operations: Providing Memory Performance Feedback in Modern
rocessordroc. 23d Int'l. Symp. on Computer éhitectue., May, 1996.
P90] J. Hennessy and D. Patterso@omputer Architecture: A
uantitative ApproachMorgan Kaufmann, 1990.

[KOH*94]J. Kuskin, D. Ofelt, M. Heinrich, etl. The Stanford FLASH

be integrated into cache-coherent designs with relative ease anmllultiprocessor. Proc. 21st Intl. Symp. on Computer Architecture

low cost.
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