
Situation-Aware Caching Strategies in Highly Varying Mobile Networks

Yong Wang, Margaret Martonosi, and Li-Shiuan Peh
Princeton University, Princeton, NJ 08544

{yongwang, mrm, peh}@princeton.edu

Abstract

Some emerging applications in mobile ad hoc networks
(MANETs) and mobile sensor networks (MSNs) have vary-
ing mobility patterns that entails different routing strate-
gies at different times to maintain high performance. This
requires the routing protocol to adapt to different situa-
tions for better overall routing performance. We propose a
model-based approach to enable such situation-awareness
for the Dynamic Source Routing (DSR) protocol in such
challenging environments. Our model captures the access
behavior of route cache (hit, miss, and false hit) and is
simple enough to be used in real-world settings. We also
present a feedback-based architecture that uses the model
outputs to cope with mobility changes by adjusting caching
strategy on-the-fly. We validate our model against ns-2 sim-
ulations for a variety of scenarios, including a real-world
mobility. Our results show that the model can aptly drive
adaptive routing that leads to consistent performance im-
provement over DSR for the scenarios considered.

1. Introduction

The dynamics of mobile networks make efficient pro-
tocol design extremely challenging as mobility causes net-
work topology to constantly change in unpredictable ways.
In some emerging real-world applications [1, 2], atypical
mobility patterns such as one that alternates between highly
mobile and very static movements are prevalent. Since rout-
ing is governed by complex interactions between node mo-
bility and protocol behavior, small changes in either of them
may have significant impact on the overall routing perfor-
mance. To maintain routing performance under such vary-
ing mobility, a routing protocol needs to adjust its behavior
on-the-fly to adapt to mobility dynamics. However, previ-
ous studies mainly focus on typical mobilities [3], with key
routing components hand-tuned for expected mobility pat-
terns.

In this paper, we explore situation-aware routing strate-
gies in highly varying mobile networks. In particular, we
study DSR-like protocols where the effectiveness of route

caching is of critical importance [4, 5]. In this context, the
problem narrows down to understanding how node mobility
impacts route cache access behavior and how to adjust the
caching strategy to cope with mobility phase shifts.

Understanding mobility and adapting to it is difficult af-
ter a protocol is deployed because some metrics are difficult
to capture at run-time. Simulation can be used to collect
such metrics. However, simulation speed becomes a sig-
nificant problem when applied to such scenarios. We per-
formed several simulations of a 50-node mobile network for
1000 seconds on a machine with 2.2GHz Pentium 4 proces-
sor and 512MB RAM under different mobility scenarios;
they took from 15 minutes to 1 hour. Further, to explore the
design space, we may need many such simulation runs.

To overcome such shortcomings, we take a more ana-
lytical approach and develop a route cache model that we
use dynamically to facilitate timely decision-making. Our
model is a Discrete Time Markov Chain model that de-
scribes the access behavior of a route cache structure de-
rived from DSR. The model accepts as input metrics col-
lected from online measurement and outputs various cache
access rates. As node mobility and protocol behavior are
both incorporated into the model, the overall routing per-
formance is projected as a function of both of them. A
route cache access has three states: hit, miss, and false hit
(wherein the route stored in the cache no longer exists due
to node mobility). A false hit leads to extra processing time,
network bandwidth waste and even packet drops.

Our approach is best understood in the context of a
specific example. Consider a mobile sensor network for
wildlife tracking across large regions with no communi-
cations infrastructure [6]. Since ZebraNet is in essence
a MANET with resource-constrained sensor nodes, we do
not make any distinctions between MSNs and MANETs for
the following discussion. In such a network, nodes move
throughout an environment to gather information about
their surroundings. Periodically, logged data is aggregated
to the base station, which is also constantly moving to in-
crease the probability of data homing success. In this sce-
nario, node movements are unpredictable and highly vary-
ing. By feeding collected mobility metrics at the base sta-

Fixed
 mobility Design Fixed

 protocol

(a) Previous approach.

Mobility_1

Model

Mobility_2

Mobility_3

...

Mobility_n

Protocol_a

Protocol_b

Protocol_c

Sense
 and

 update

(b) Our model-driven approach.

Figure 1. A model-driven adaptive routing archi-
tecture. Our approach can be applied to different
protocols with every protocol customized on-the-fly
to mobility changes.

tion into our model, however, one can predict routing per-
formance and dynamically adjust protocol configurations
when necessary.

Previously, as shown in Figure 1(a), once a network is
deployed, the protocol remains fixed and can not signifi-
cantly change when mobility varies. Our approach, shown
in Figure 1(b), introduces a dynamic feedback loop. Period-
ically, mobility data is collected through the data collection
process and sent to the base station. Metrics, such as route
lifetime, are extracted from the data and fed into our model
which then outputs the current route cache access behav-
ior. Based on model outputs, proper protocol adjustment
decisions are then disseminated to each participating node
in the system via an updating mechanism such as that pro-
posed in [7]. This process continues as new mobility data
is collected. The result is a robust system that can run au-
tonomously for a long period of time.

The major contributions of this work are summarized
as follows: First, we present a realistic route cache model
to assess the impact of mobility on overall routing per-
formance in a protocol based on route caching. Second,
our model can be used across a range of mobilities, and
has error rates less than 5% even for real-world mobility
models, validated against the ns-2 simulator, with order of
magnitude savings in running time. Third, we demonstrate
through a case study how a feedback-driven architecture
(Figure 1(b)) can be realized using our model to drive adap-
tive routing under highly varying mobility. This serves as a
proof of concept of how analytical models can be leveraged
to drive adaptive routing in realistic applications.

The rest of the paper is organized as follows. Section 2
reviews related work. In Section 3, we give an overview

of our model. In Section 4, we present the mathematical
construction and validation results of our model. We then
present a case study using a wildlife tracking application
in Section 5. Finally, we conclude the paper with future
directions.

2. Related Work

MANETs have become a significant research focus in
recent years, with emerging application studies including
wildlife tracking, vehicular ad hoc networks [8] and oth-
ers. Many mobility datasets from such real-world applica-
tions have been collected and archived at CRAWDAD (the
Community Resource for Archiving Wireless Data At Dart-
mouth) [9] and are publicly available to the research com-
munity. In addition, we also consider a real-world zebra
mobility model from our own research group [10]. Next, we
divide our discussion of related work into two categories,
those related to analytical techniques and those related to
mobility characterization.

Analytic techniques. In terms of prior work with ana-
lytic techniques, the bulk of modeling has concentrated on
the analysis of MAC protocols, for either single-hop [11] or
multi-hop networks [12]. These works provide solid under-
standing of behavior in the MAC layer. However, overall
routing behavior cannot be explained without reference to
higher layer protocols. A model beyond the MAC layer
is critical for understanding end-to-end routing behavior.
Several related analytical work in higher networking layers
have been proposed. Zhou et al.[13] developed performance
models of reactive routing in the network layer for an unreli-
able static sensor network. Their main analytical results are
with regard to control overhead, while ours are with regard
to overall performance metrics. Viennot et al. [14] also pro-
posed a model for analyzing protocol control overhead, but
as the aim is to be general, many important details are miss-
ing and it becomes difficult to isolate the impact of node
mobility, not to mention leveraging the model for protocol
optimizations.

Research by Shah et al. [15] has modeled data deliv-
ery rates in a mobile sensor network. Their model uses
an asynchronous store-and-forward communication pattern
suitable for Delay Tolerant Networks [1]. Therefore, no
end-to-end route semantics are considered. Samar et al. [16]
develop an analytical framework to investigate the timing
behavior of the communication links, while our study is
based on route lifetime. They evaluate their framework in
a synthetic random environment, while we use realistic mo-
bility traces.

Mobility Characterization. There is a large body of
literature in this direction and we only discuss the most rel-
evant work here. Work by Bai et al. [17] studies various
mobility statistics in a mobile network, while we focus on
mobility metrics that have a direct impact on routing per-

R
o
u
te

ca

ch
e

b
eh

av
io

r

M
o
b
ili

t y
 a

n
d
 t

ra
ce

co

lle
ct

ed

route cache model

avg. data
delivery latency

{E[Tdata]}

avg. route
discovery latency

{E[Tctrl]}

Sec. 4

Sec. 3

steady-state
state probabilities

{πm,πh,πf}

packet delivery
rate

average data
latency

O
ve

ra
ll

ro
u
ti
n
g

p
er

fo
r m

an
ce

avg.
route lifetime

{E[R]}

avg. route
hop length

{E[H]}

trace log
M

o
d
el

in

p
u
ts

Sec. 5

Figure 2. Modeling framework and data flow.

formance. Follow-up work by the same authors provides a
detailed study of how mobility impacts path duration statis-
tics in MANETs [18]. None of the above work, however,
ties mobility to protocol behavior as ours does.

3. Model Overview
In this section, we present an overview of the route cache

model in the context of DSR routing. A more detailed math-
ematical construction is presented in Section 4. Figure 2
sketches all quantities of interest and their relationships.

3.1. Routing Overview

DSR is a source routing protocol consisting of two major
components: route discovery and route maintenance, both
of which operate entirely on-demand. During route dis-
covery, a node actively scouts through the network to find
routes to an intended destination. Route maintenance is the
process by which the sending node determines if the route
used is broken and takes repair actions when necessary.

When a data packet arrives, a request is made to the route
cache for its intended destination. If a route is found (a
cache hit), the packet is forwarded to the next node along
the route. We call the selected route the candidate route. All
other routes with the same destination are auxiliary routes.
If the request misses (a cache miss), a route discovery is
initiated, with the packet forwarded along the newly discov-
ered route if found. If the request has a hit but the candidate
route is stale, which is called a “false hit” in our case, delays
may be introduced at intermediate hops to fix the broken
route. Even worse, the packet may be dropped if the error
cannot be fixed en route.

3.2. Model Outputs

Our route cache model essentially outputs three steady-
state probabilities, the probability of cache hit (πh), miss

Table 1. Model input.
Notation Description

E[R] Average route lifetime
E[Tctrl] Average route discovery latency
E[Tdata] Average data delivery latency

E[L] Average route hop length

(πm), and false hit (πf). Since route cache access is on the
critical path of routing, its access behavior is tightly con-
nected to and reflective of the overall routing performance.
This is illustrated in the upper dashed frame in Figure 2.
In this study, we consider two performance metrics: packet
delivery rate, defined as the fraction of successfully deliv-
ered data packets and average data latency, defined as data
latency averaged among all data packets delivered.

Intuitively, πh has a positive effect on both packet deliv-
ery rate and data latency. The higher the πh, the higher the
two performance metrics since packets are delivered along
good routes and do not need to wait for re-discoveries and
error recoveries. πm, on the contrary, has a negative ef-
fect on data latency because a route discovery has to be fol-
lowed that adds to the total latency. For packet delivery
rate, πm’s impact depends on the current traffic conditions
and the queueing behavior of the protocol. If no packets
are dropped due to these factors, the packet can be suc-
cessfully delivered after a route discovery with valid replies.
πf , however, always has a negative impact on routing per-
formance because following a stale route will always incur
more processing overhead to repair such errors. Very likely,
packets will be dropped by failing to fix such errors en route.
πf can happen during packet forwarding, route reply, and
packet salvaging by providing a stale route, causing poor
packet delivery rate and increased data latency.

However, πf is hard, if not impossible, to collect in prac-
tice after a protocol is deployed. Since our model exposes
the probability of being in the false hit state, it can be used
as an indicator of such non-sensical protocol behaviors. By
factoring such knowledge into a system, these otherwise un-
achievable metrics can be leveraged at system runtime.

3.3. Model Inputs

Table 1 lists the input parameters for our route cache
model. The parameter E[R] denotes the average lifetime
of routes in a network and its inverse denotes the rate at
which valid routes become stale. The shorter the average
route lifetime, the more frequently a route breaks. Since a
route breakage triggers route maintenance in a reactive pro-
tocol1, E[R] is used to characterize node mobility. Previous
work [19] has shown that route lifetime is useful in captur-
ing mobility properties. We choose to use an average here

1There are other factors, such as having multiple paths in the route
cache, that influence the triggering rate of route maintenance operations.
They are further discussed in Section 4.

Table 2. Model parameters.
Notation Description

κ Rate of a route becoming stale. Also the transition
rate out of state H.

µ1 Stale route detection and invalidation rate. Also the
transition rate out of state F.

µ2 Route recovery service rate. Also the transition rate
out of state M.

The transition probability from state x to state y. Both
x and y can be one of the following: h, m, or f .

pxy

for its simplicity and amenability to analysis. The use of
route lifetime distributions will improve model accuracy, as
further discussed in Section 4.3.

The parameters E[Tctrl] and E[Tdata] are used to capture
the timing behavior of two critical protocol-related opera-
tions. E[Tctrl] denotes the average latency of a broadcast-
based route discovery process and E[Tdata] denotes the av-
erage data packet delivery latency. The route discovery pro-
cess populates the route cache and provides routes for data
packets. Because data packets are used implicitly for sig-
naling routing errors in DSR, the data delivery latency de-
termines how quickly a stale route in cache is detected.

The parameter E[L] denotes the average route length in
terms of hop count. It depends on node mobility and traffic
pattern and is useful in determining the delay for detecting
a route error, as discussed in Section 4.2.4.

We estimate E[R] by bookkeeping route creation and
dead events in the route cache. We only track routes that
have existed at least once in the cache for the following rea-
sons: First, only routes stored in the cache can influence the
route cache behavior. Second, naively bookkeeping all po-
tential routes is computationally expensive. For a network
with n nodes, the number of potential routes is on the order
of n!, which grows exponentially as n becomes larger.

E[Tdata] can be measured by timestamping data packet
departure and arrival events. E[Tctrl] can be collected in
a similar way as E[Tdata]. However, since it measures the
latency from when a route request is sent out until a valid
reply is received in our model, we need to check the validity
of discovered routes. This is possible with off-line trace
processing wherein omniscient knowledge of route validity
is available. E[L] can be measured by recording the number
of hops traversed for each packet successfully delivered.

4. Route Cache Model
In this section, we describe the construction of our route

cache model. Model parameters are listed in Table 2.

4.1. Assumptions

A1. (Cold start miss) We assume no cold start misses
once the route cache reaches steady state.

A2. (Capacity miss) We assume no capacity misses. This
is reasonable because capacity misses are independent of

M H F

pmh µ2

phm κ

phf κ

pfm µ1

pfh µ1

pmf µ2

pff µ1
pmm µ2

phh κ

Figure 3. The Discrete Time Markov Chain model
for a single node.

mobility-induced misses and can be eliminated easily by in-
creasing cache size.

A3. (Channel models) A noisy channel may reduce the
actual route lifetime due to transmission failures. We do not
consider route breakage related to this factor and leave it as
a future research direction.

A4. (Traffic pattern) We only consider saturated traffic
workload with all nodes continuously pumping data to the
base station. This assumption matches a large range of real-
world traffic patterns, such as the one used in ZebraNet. For
on-demand protocols whose operations depend on traffic
distribution, the correlation between route cache behavior
and traffic is lowered.

A1-3 allow us to assume that the average route breakage
rate κ depends only on node mobility, which is abstracted
as route lifetime timers. We will show later in this section
that even with such simplifications, our model still produces
accurate results.

4.2. Model Mechanics

4.2.1. Virtual Detection State (F)

Figure 3 illustrates the three-state Discrete Time Markov
Chain model for a route cache. In state M, the node has
no candidate path for an initiating packet and a cache miss
occurs. In state H, the node has a valid candidate path for
an initiating packet and a normal hit occurs. In state F, the
node has a candidate route that is stale due to mobility and
a false hit occurs.

One major contribution of our model is that state F , the
false hit state, actually does not exist in a realistic protocol,
hence the name virtual detection state. For many reactive
ad hoc routing protocols, including DSR, it is impossible to
detect route failures instantaneously and they will inevitably
enter this artificial. Having such a virtual detection state ex-
pose valuable information that is essential to routing per-
formance. Such information is not possible with traditional
approaches.

4.2.2. Rate of Cache Staleness (κ)

The rate of cache staleness, or the rate transiting out of state
H , is κ. Intuitively, for some period proportional to E[R],
the current candidate route will break which leads the node
to state F or M, depending on factors such as the route

discovery and maintenance mechanism used, node mobil-
ity and traffic workload. The average actual route lifetime
should be smaller than E[R] because it only represents the
average lifetime in the route cache. Therefore, we need
some adjustment to calculate κ using E[R]. In our model,
we estimate κ as 1

γE[R]− 1
µ1

with γ a constant denoting the

ratio between the actual lifetime to E[R]. We use a γ of 0.5
in our study, assuming that when a route is selected for rout-
ing, its residual lifetime is uniformly distributed between
(0, E[R]). We subtract 1/µ1 from E[R] because during
route recovery, the elapsed route lifetime cannot be used
for routing.

4.2.3. Route Discovery (µ2)

The average route discovery rate is denoted as µ2, which
is also the transition rate out of state M . We estimate µ2

simply as 1
E[Tctrl]

.

4.2.4. Stale Route Detection and Recovery (µ1)

With the introduced virtual detection state F, we denote the
rate that a node detects an invalid route as µ1, which is also
the transition rate out of state F .

Route error detection in a reactive routing protocol is di-
vided into two phases: a negative detection phase and an
active error notification phase. In the negative detection
phase, data traffic is used implicitly to detect a link error
when the packet reaches the broken link. In the active er-
ror notification phase, a control packet is sent to notify the
source of this error.

Therefore, the negative detection latency E[Tnegd] de-
pends on the number of hops to traverse along the broken
route until the packet reaches the broken link. If we as-
sume that the probability of route breakage is distributed
uniformly over all hops from the source to the destina-
tion, we can estimate the average hop count traversed be-
fore a route breakage as

∑E[L]
i=1 i = 1

2 (E[L] + 1). There-
fore, the negative detection latency can be estimated as
E[Tdata] × E[L]+1

2E[L] . We can calculate the active error no-
tification latency E[Tactn] in a similar way. The only differ-
ence is that E[Tctrl] is a two-way delay that spans 2E[L]
hops in total. Therefore, E[Tactn] should be calculated
as 1

2E[Tctrl] × E[L]+1
2E[L] . These two latencies add up to

the average route recovery latency and µ1 is estimated as
1

E[Tnegd]+E[Tactn] .

4.2.5. Influence of Protocol Designs

In this section, we discuss the influence of protocol designs
on state transition probabilities.

In our model a transition out of state M only happens
after a route is discovered, so pmm should be 0. For discus-
sion convenience, we directly denote the probability from
state M to state H as pm and the probability from state M
to state F as 1 − pm. Thus, pm represents the probability

that a route reply is valid and 1 − pm the probability that a
route reply is stale. Since we estimate µ2 using only valid
route replies (i.e., only a valid route reply finishes a route
request), pm is 1 in our case.

Since a route will always enter the virtual detection state
due to the reactive maintenance mechanism, phh and phm

are 0 and we denote the probability from state H to state F
as ph. Thus, ph · κ represents the rate of a broken route not
being detected immediately. In our model, ph is approxi-
mated as 1 because DSR mainly depends on data traffic for
route error detection.

The parameters pfm, pfh and pff denote the three tran-
sition probabilities out of the false hit state. They all de-
pend on the number of backup routes available when the
candidate route breaks because only when there is no route
to the destination does the node enter state M . Otherwise,
the breakage of the candidate route will not incur a new
route request and the state may transit to either H or F ,
depending on the validity of the new candidate route se-
lected. Therefore, pfm represents the probability of having
no backup routes when the route being used is invalidated.
Hence, pfm = 1 is the case where there is only one route
for each destination. Whenever this route is broken, it en-
ters state M . On the other hand, pfm = 0 is the case where
there are always valid auxiliary routes when the route being
used is invalidated.

4.2.6. State Probabilities

In this section, we calculate the equilibrium state probabili-
ties of the model, denoted as π = [πm,πh,πf].

We simplify the mathematical calculation by pre-
determining parameters that can directly be estimated from
the protocol behavior, which are ph and pm. From earlier
discussions, both of them should be equal to 1 for DSR.
Therefore, we have the following global balancing equa-
tions for the steady state of our Markov chain model, which
can be solved to produce the limiting state probabilities:

πhκ = πf (1 − pff)µ1

πfpfmµ1 = πmµ2

πm + πh + πf = 1

4.3. Route Cache Model Validation

In this section, we present model validation results
against ns-2 simulations using the Random WayPoint
(RWP) model. Our approach can also be used with other
mobility models since only high-level mobility metrics are
used in our model. In Section 5, we will validate our model
on a real-world mobility. We seek to study (i) how close our
analytical model results are to simulated outcomes of DSR,
under different mobility scenarios, and (ii) how our model
parameters affect its accuracy.

We simulate a network of 50 nodes in a 1100m×1100m
grid. Each node has a radio range of 250m. Initially, nodes

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2000 4000 6000 8000 10000 12000 14000

R
ou

te
 li

fe
tim

e
(s

ec
on

ds
)

Samples

rwp-pt0-ms20

(a) rwp-pt0-ms20

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1000 2000 3000 4000 5000 6000

R
ou

te
 li

fe
tim

e
(s

ec
on

ds
)

Samples

rwp-pt20-ms1

(b) rwp-pt20-ms1

Figure 4. Route lifetime distributions for different
mobility scenarios.

are randomly distributed across the defined area. We gen-
erate 30 communication pairs randomly and use a packet
rate fixed at 2pkt/s. We do not adopt a higher injection rate
because we need a network sufficiently provisioned such
that the effects of mobility are isolated from effects of con-
gestion [20]. We use UDP traffic in packets of 512 bytes.
Traffic is injected from 900s to populate the route cache and
all metrics are measured starting from 1000s. The first 900s
is used for the mobility model to reach its steady state, a
method proposed in [21] to fix one deficiency in RWP. Other
simulation setups, including the radio propagation model,
the MAC protocol used, and link bandwidth are the same as
those used in [22].

4.3.1. Validation Results

Table 3 compares the analytical results against simulation
results for four mobility scenarios. Each scenario is repre-
sented as rwp-ptx-msy with x its pause time and y its max-
imum speed. For a moderately- to highly-mobile network,
our model is reasonably accurate with error rates less than
10%. This indicates that in steady-state, our model suc-
cessfully captures the state of the route cache in a mobile
environment. For static scenarios such as rwp-pt20-ms1,
however, our model has a much higher error rate.

This could be explained by looking at the model inputs.
Figure 4 illustrates the distribution of route lifetimes ob-
served by a randomly selected node (14) for both rwp-pt0-
ms20 and rwp-pt20-ms1. The observations for other nodes

are similar. The samples are collected by post-processing
the simulation trace. For a moderately- to highly-mobile
network, route lifetimes tend to be in the same order of
magnitude, as shown in Figure 4(a). For a less mobile net-
work, however, route lifetimes have very high variability,
as shown in Figure 4(b).2 In such a network, skew will
be introduced by representing route lifetimes as an average.
This problem can be solved by using separate estimations
for short and long lifetimes. More generally, one could in-
clude distributions of route lifetimes in the model.

Table 3 also illustrates the savings in running time to de-
rive the same quantities of interest. Model computation
time is negligible, while input gathering time dominates.
It should be noted that when the model is dynamically de-
ployed, input gathering time is spent on running scripts on
trace files, which normally takes less than 1 minute. There-
fore, the total elapsed time using our model is less than 1
minute. On the contrary, it usually takes more than 15 min-
utes to finish one simulation run.

4.3.2. Future Refinements of the Model

Overall, the model’s accuracy is already quite good.
Nonetheless, there is still room for improvement. The mod-
est disagreements between analytical and simulated results
can be explained by certain simplifying assumptions regard-
ing state transition probabilities. We discuss these below.

The first source of error has to do with the transition
probability from state H to M. For the implementation of
DSR in ns-2, this probability is greater than 0, due to various
protocol optimizations not considered in the model. One
such optimization is route error propagating, which spreads
route error messages aggressively to suppress their propaga-
tion. Thus, a route recovery process can be finished without
incurring the two-phase operation. Another optimization is
cache purging that times out a route after some duration.
This also may lead a node in state H directly to M.

The second source of error arises in the presence of a
false route reply. In our model, we only account for valid
route replies when calculating E[Tctrl]. This approach may
under-estimate the probability entering state F. In other
words, we assume there is no state transition from M to
F. In contrast, such effects are present in our simulations.
This explains why for most scenarios, πf calculated by our
model is smaller than that from simulation.

It would be interesting to study whether our model still
works under those cases. We are also working on extending
the model such that it will not be limited by a specific cache
policy.

2While there appears to be a correlation between simulation time and
route lifetimes, this is an artifact of our statistics gathering method: routes
that last longer than the simulation time can not be tracked.

Table 3. Route cache model validation.

Scenario
πm πh πf Running Time

Sim Model %diff Sim Model %diff Sim Model %diff Sim Model sim/model

rwp-pt0-ms20 0.124 0.136 9.6% 0.526 0.538 2.3% 0.349 0.326 6.6% 22:14m 49s 27
rwp-pt10-ms20 0.243 0.238 2.1% 0.354 0.358 1.1% 0.403 0.404 0.2% 13:22m 54s 15
rwp-pt20-ms20 0.166 0.154 7.2% 0.456 0.475 4.2% 0.378 0.371 1.9% 24:37m 57s 26
rwp-pt20-ms1 0.075 0.053 29.3% 0.884 0.906 2.5% 0.042 0.41 2.4% 17:47m 39s 27

Table 4. Validation results for a real-world mobility.

Category Sim Model %diff

πm 0.130 0.133 2.3%
πh 0.509 0.486 4.7%
πf 0.361 0.376 4.0%

5. Case Study
In this section, we validate our model using a real-world

mobility. We also evaluate its effectiveness in a wildlife
tracking application.

5.1. Validation Using Real-world Mobility Data

Our mobility trace is collected from a mobile sensor net-
work deployed in January 2004 by the ZebraNet group. A
number of collars (sensor nodes) are attached to the body of
zebras. Each collar recorded its GPS data every 8 minutes
for a total of 32 hours. Due to extreme weather and wa-
terproofing issues, as well as antenna problems, only one
tracking collar returned uninterrupted movement data for
the whole 32-hour duration. Due to such limitations, we
extended the collected data to create a semi-synthetic mo-
bility model as follows. We collect node speed and turn
angle distributions from the observed data. Then we cre-
ate other node movements by uniformly selecting from the
node speed and turn angle distribution collected in the first
step. Next, we cast the trace data into a RWP model that can
fit into the ns-2 simulator. Although this approach may miss
some temporal correlation information between zebras, it is
one step closer to reality.3

Originally, the nodes move in an area of 6km×6km. We
scale the area size to 1km×1km and randomly distribute
the nodes in the defined area. In order to calculate metrics
like cache false hit rate, we also incorporate other needed
information about connectivity and shortest route length at
any instance between all communicating pairs, so that the
trace file can be directly used in ns-2 simulations. The rest
of the simulation configuration is the same as that described
in the previous section.

Table 4 shows that all three probabilities of interest have
error rates below 5%.

3From extended data collection in a second, June 2005 deployment,
we found that there is little node correlation in movements, and thus our
assumption here is valid.

5.2. A Case for a Model-Driven Dynamic Protocol

In this section, we present a case study demonstrating
how to leverage our model to drive adaptive routing deci-
sions on-the-fly.

DSR uses route caching extensively in both route discov-
ery and route reply. It adopts a passive route maintenance
mechanism for fixing stale routes. The problem with such
a scheme is its slow response to mobility changes. Given
that all routing decisions are based on route cache state, the
performance may suffer from using stale information. By
exposing the route cache states, our model helps to predict
route caching performance in a timely fashion and guide
protocol adjustment when necessary.

Specifically, we show how route cache reply options can
be switched on and off dynamically to improve routing per-
formance by leveraging πf . This idea can be used for other
optimizations, such as route discovery backoff, given proper
models for those components. The mobility used is derived
from the zebra trace with node speeds varied. We divide
the mobility trace into three phases, with 1000s to 1300s
phase 1, 1300s to 1600s phase 2, and 1600s to 1900s phase
3. Traffic starts at 900s to populate route cache. We re-
duce the node speed to 1

10 th of the original speed for phase
1, increase the node speed by 3 times for phase 2, and in-
crease the node speed by 6 times for phase 3. The trace
produced this way demonstrates a significant variation from
one phase to another and is fairly realistic as zebras nor-
mally move in walk-run-walk phases [6]. Moreover, we ex-
pect such phases of varying mobility to typify many other
mobile network scenarios as well.

The set of experiments we performed uses a similar con-
figuration as described in the last section, with a total of 50
nodes and 30 CBR flows. We use a radio range of 150m
here because a 250m radio range for this mobility trace re-
sults in severe radio interferences in our simulation. We
study the instantaneous packet delivery rate and normalized
routing overhead for three configurations listed in Table 5
and compare their performance with the original DSR. By
instantaneous, we mean that results shown in the y-axis
are not aggregated from the start of the simulation. They
demonstrate instant behavior for that period. This allows
for a better observation of the adaptation behavior.

The three configurations differ from DSR in their deci-
sions as to when to switch route cache reply on/off for the

Table 5. Configuration options studied.
1st phase 2nd phase 3rd phase

DSR (always-on) on on on
Strategy 1 (off-low) off on on

Strategy 2 (always-off) off off off
Strategy 3 (off-high) on off off

Table 6. Data latency comparison.
Traffic rates DSR Strategy 3 %improvement

2pkts/s 6.2s 5.2s 16%
4pkts/s 4.1s 3.0s 27%
8pkts/s 2.7s 2.1s 22%

three phases. Intuitively, for a highly-mobile scenario, route
cache replies should be disabled because the information
stored in the cache is prone to be invalid; using a route cache
for answering route requests can lead to inaccurate routing
decisions. For a less mobile scenario, as route cache knowl-
edge is normally accurate, enabling route cache replies will
increase locality, reduce latency and save resources. The
decision is based on πf .

Since phase 1 is very static and phases 2 and 3 are both
highly mobile, the strategy that disables route cache replies
for phases 2 and 3 and enables route cache replies for phase
1, i.e., Strategy 3, should have the best performance, the
highest packet delivery rate and the lowest routing overhead
and energy consumption. Strategy 1, which has the opposite
configuration options to Strategy 3, should have the worst
performance. Strategy 2 should stay in the middle because
most of the time, it has the right option (for phases 2 and
phase 3). The original DSR just switches on route cache
replies all the time.

For such an adaptive scheme to work, a node needs to
be able to detect the mobility phase changes. For this sec-
tion, we pre-program such information into the simulation
for them to make decisions in a distributed manner. We will
discuss a practical phase detection method in Section 5.3.

Table 6 compares the average data latency between DSR
and Strategy 3 using the common set of packets they suc-
cessfully delivered. Intuitively, Strategy 3 saves route repair
time by not following stale routes. However, by switching
off route cache replies, it needs more time to get a route be-
cause it only accepts replies from the intended destination.
On the contrary, DSR saves time by getting a route from
other nodes’ route cache. However, if the route obtained is
stale, it incurs additional delays fixing errors at intermediate
hops. Table 6 shows that Strategy 3 has a smaller average
data latency for all traffic rates. This indicates that for the
mobility trace we studied, the utility of switching off route
cache replies is higher than keeping it on.

The latency improvement for 4pkts/s and 8pkts/s are
both higher than that for 2pkts/s. When more packets are
injected into the network, the penalties of using stale routes

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

P
ac

ke
t d

el
iv

er
y

ra
te

Simulation time (s)

DSR
Strategy 1
Strategy 2
Strategy 3

(a) Packet delivery rate comparison.

 0

 10

 20

 30

 40

 50

 60

 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

C
on

tr
ol

 p
ac

ke
ts

 p
er

 d
at

a
pa

ck
et

 d
el

iv
er

ed

Simulation time (s)

DSR
Strategy 1
Strategy 2
Strategy 3

(b) Normalized routing overhead comparison.

Figure 5. Performance comparison of different
strategies. Results are collected from simulation and
the packet injection rate is 2pkts/s.

become higher because the contention for the medium is
more severe than at lower packet rates. As a result, the ben-
efits of using dynamic configurations become more salient.

Figure 5(a) shows the instantaneous packet delivery rate
at an interval of 50s. Figure 5(b) shows the routing over-
head averaged among all data packets delivered. Routing
overhead refers to control packets sent for route discovery
and route maintenance. The normalized routing overhead
is used as a measure of routing efficiency, including energy
efficiency.

For the first 300s from 1000s to 1300s, Strategies 1 and
2 have the lowest packet delivery rates and the highest av-
erage overhead. This is because phase 1 is very static with
all the nodes moving very slowly. For such an environment,
stale information is very rare and route cache replies should
be enabled to maximize locality. For phases 2 and 3, as
nodes move really fast, stale information begins to flood
the network. In this case, a route cache reply should be
avoided because there is a higher probability that the bene-
fits of employing route caching can be overwhelmed by the
disadvantages it brings. Strategies 2 and 3, which switch off
route cache replies for phases 2 and 3, have a higher packet
delivery rates and lower routing overhead than Strategy 1.
Because Strategy 3 adapts to varying mobility correctly, it
achieves the best of both worlds and has the best perfor-
mance compared to all other options, including DSR. The

0.00

0.05

0.10

0.15

0.20

0.25

0.30

8pkts/s4pkts/s2pkts/s

P
ac

ke
t d

el
iv

er
y

ra
te

Packets arrival rate (pkts/s)

DSR
Strategy 3

(a) Packet delivery rate comparison.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

8pkts/s4pkts/s2pkts/s

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

(J
ou

le
)

Packets arrival rate (pkts/s)

DSR
Strategy 3

(b) Normalized routing overhead comparison.

Figure 6. Impact of traffic rate.

improvement in packet delivery rate is consistently higher
than 40% and the maximum improvement is up to 120%.
The reducton in routing overhead is consistently higher than
40% and the maximum reduction is up to 66%.

Figure 6 illustrates the impact of packet arrival rate on
the performance of our dynamic optimization. As the in-
jection rate increases, the demand for bandwidth increases
too and we believe that our approach should still outperform
a scheme that is unaware of mobility changes. Simulation
results shown in Figure 6 affirm this.

5.3. Detection of Mobility Changes Using πf

In this section, we propose a practical phase detection
method using πf . It uses a feedback loop as introduced
in Section 1. When enough mobility data are collected at
the sink, we extract mobility metrics as input to the route
cache model. Since all input parameters can be obtained by
running awk and python scripts on the collected mobility
trace, this process takes only tens of seconds on a modern
PC. We then use our model to output πf , which takes only
a couple of seconds at most. This obtained information is
disseminated to all nodes in the network through a data dis-
semination protocol. Decision is then made at each node
regarding its caching strategy.

Figure 7 shows instantaneous πf in our simulation, with
different sampling intervals (epochs). Each point represents
the πf re-evaluated at the end of each epoch. Figure 7(a)
shows πf with a sampling interval of 20s. There are two
jumps with the first one starting at 1300s and the second
starting at 1600s. They conform to the mobility changes
in 1300s and 1600s, respectively and are emphasized using

0.00

0.05

0.10

0.15

0.20

 1300 1400 1500 1600 1700 1800 1900

R
ou

te
 c

ac
he

 fa
ls

e
hi

t r
at

e

Simulation time (s)

Simulation
Model

Figure 8. Comparison of πf changes detection
(simulation vs. model). The epoch length is 300s
and the packet injection rate is 2pkts/s.

two dotted lines. Because the sampling rate is very high, the
variation is pretty high compared to variations using longer
sampling intervals. Figure 7(b) shows the results for a sam-
pling interval of 100s. The variation is much smaller and the
changes in πf are consistent with changes in mobility. Fig-
ure 7(c) shows the results for a sampling interval of 300s,
which exactly matches the three mobility phases. This in
turn indicates that there is a salient change in πf in response
to mobility changes. The results demonstrate that πf can be
used for predicting changes in mobility with reasonable ac-
curacy.

Figure 8 compares the estimation of instantaneous πf us-
ing our model to that using simulation for a sampling in-
terval of 300s. As the figure shows, the estimation from
our model matches that from simulation very well. This
demonstrates that our model can aptly capture the changes
in mobility at runtime with high accuracy.

Finally, we compare the running time to derive πf by
model to that by simulation using the semi-synthetic mobil-
ity trace as described in Section 5.1. The simulation took
13:05 minutes on a machine with 2.2GHz Pentium 4 pro-
cessor and 512MB RAM. However, it took only 25 sec-
onds to output πf using our model. Simulation time be-
comes even longer when dynamically trading off between
different parameter configurations because several simula-
tion runs are then necessary.

5.4. Discussions

While our model and its use already demonstrate sig-
nificant and useful performance improvements, there is still
room for future refinements. We discuss some of them here.

First, our current approach requires the sink to collect
mobility traces from all nodes in the network. This is a chal-
lenging task for a MSN, even a modest-size one. Second,
our current model only derives steady-state probabilities,
which requires a certain mobility phase to be long enough
to be observed. We do not view this as a significant weak-
ness, since short-lived mobility changes are not likely to be
worth optimizing for. Third, our model tries to use a sin-

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

R
ou

te
 c

ac
he

 fa
ls

e
hi

t r
at

e

Simulation time (s)
(a) Sample interval is 20s.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

R
ou

te
 c

ac
he

 fa
ls

e
hi

t r
at

e

Simulation time (s)
(b) Sample interval is 100s.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

R
ou

te
 c

ac
he

 fa
ls

e
hi

t r
at

e

Simulation time (s)
(c) Sample interval is 300s.

Figure 7. πf changes for DSR in response to mobility changes.

gle metric (the false hit) to capture the route cache behavior
for nodes distributed across the network, which works for
a homogeneous network wherein nodes experience similar
mobility patterns. However, for other realistic mobility pat-
terns, a distributed algorithm may perform better. Again,
we see this as a topic for future work.

Although our approach has such limitations, it offers new
opportunities for using analytical models in real-world set-
ting and further work is anticipated to improve on this.

6. Conclusions and Future Work
In this paper, we presented an analytical model of route

cache for DSR-like reactive protocols. We also illustrated
how to leverage the model for dynamic protocol configura-
tion to adapt to varying mobility, using a real-world mobil-
ity. When validated against detailed network simulations,
our model produces fairly accurate results with typical er-
rors less than 5% for a real-world mobility and less than
10% for synthetic RWP-based mobilities. To the best of our
knowledge, our work is the first to model the behavior of a
route cache in MANETs. Model-driven adaptation can im-
prove instantaneous packet delivery rate by up to 120% and
data latencies by 16-27%.

As part of our on-going work, we are investigating ways
to estimate model parameters such as route discovery la-
tency using analytical models too. This allows an adaptive
model-driven scheme that depends purely on node mobil-
ity and is thus easy to deploy in real systems. We are also
looking at ways for adaptively selecting the sampling inter-
val used in mobility changes detection, trying to capture all
potential optimization opportunities.

References
[1] Delay Tolerant Networking Research Group Webpage, http://www.

dtnrg.org/.
[2] J. J. Blum, A. Eskandarian, and L. J. Hoffman, “Challenges of inter-

vehicle ad hoc networks,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 5, no. 4, 2004.

[3] M. Ilyas, Ed., The Handbook of Ad hoc Wireless Networks. CRC
Press, 2002.

[4] Y.-C. Hu and D. B. Johnsoan, “Caching strategies in on-demand rout-
ing protocols for wireless ad hoc networks,” in Proc. ACM MobiCom,
2000.

[5] M. Marina and S. Das, “Performance of route caching strategies in
dynamic source routing,” in Proc. IEEE WNMC, 2001.

[6] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Ruben-
stein, “Energy-efficient computing for wildlife tracking: Design
tradeoffs and early experiences with ZebraNet,” in Proc. ACM AS-
PLOS, 2002.

[7] T. Liu and M. Martonosi, “A middleware system for managing auto-
nomic, parallel sensor systems.” in Proc. ACM PPOPP, 2003.

[8] H. Wu, R. Fujimoto, R. Guensler, and M. Hunter, “MDDV: a
mobility-centric data dissemination algorithm for vehicular net-
works,” in Proc. ACM VANET, 2004.

[9] D. Kotz and T. Henderson, “CRAWDAD: A community resource for
archiving wireless data at dartmouth,” IEEE Pervasive Computing,
vol. 4, no. 4, 2005.

[10] P. Zhang, C. M. Sadler, S. Lyon, and M. Martonosi, “Hardware de-
sign experiences in ZebraNet,” in Proc. ACM SenSys, 2004.

[11] M. Carvalho and J. Garcia-Luna-Aceves, “Delay analysis of IEEE
802.11 in single-hop networks,” in Proc. IEEE ICNP, 2003.

[12] M. M. Carvalho and J. Garcia-Luna-Aceves, “A scalable model for
channel access protocols in multihop ad hoc networks,” in Proc.
ACM MobiCom, 2004.

[13] N. Zhou, H. Wu, and A. A. Abouzeid, “Reactive routing overhead in
networks with unreliable nodes,” in Proc. ACM MobiCom, 2003.

[14] L. Viennot, P. Jacquet, and T. H. Clausen, “Analyzing control traffic
overhead versus mobility and data traffic activity in mobile ad hoc
network protocols,” ACM WINET Journal, vol. 10, no. 4, 2004.

[15] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data mules: Modeling
a three-tier architecture for sparse sensor networks,” in Proc. IEEE
SNPA, 2003.

[16] P. Samar and S. B. Wicker, “On the behavior of communication links
of a node in a multi-hop mobile environment,” in Proc. ACM Mobi-
Hoc, 2004.

[17] F. Bai, N. Sadagopan, and A. Helmy, “IMPORTANT: A framework
to systematically analyze the Impact of Mobility on Performance of
RouTing protocols for Adhoc NeTworks,” in Proc. IEEE Infocom,
2003.

[18] N. Sadagopan, F. Bai, B. Krishnamachari, and A. Helmy, “PATHS:
analysis of path duration statistics and their impact on reactive
MANET routing protocols,” in Proc. ACM MobiHoc, 2003.

[19] Y. Wang, M. Martonosi, and L.-S. Peh, “MARio: Mobility-adaptive
routing using route lifetime abstractions in mobile ad hoc networks,”
ACM MC2R, vol. 8, no. 4, 2004.

[20] Y.-C. Hu and D. B. Johnson, “Exploiting MAC layer information
in higher layer protocols in multihop wireless ad hoc networks,” in
Proc. IEEE ICDCS, 2004.

[21] J. Yoon, M. Liu, and B. Noble, “Random waypoint considered harm-
ful,” in Proc. IEEE Infocom, 2003.

[22] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva,
“A performance comparison of multi-hop wireless ad hoc network
routing protocols,” in Mobile Computing and Networking, 1998.

