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Abstract 

Performance monitoring is a crucial aspect of parallel pro- 
gramming. Extracting the best possible performance from 
the system is the main goal of parallel programming, and 
monitoring tools are often essential to achieving that goal. 
A common tradeoff arises in determining at which system 
level to monitor performance information and present re- 
sults. High-level monitoring approaches can often gather 
data directly tied to the software programming model, but 
may abstract away crucial low-level hardware details. Low- 
level monitoring approaches can gather fairly complete per- 
formance information about the underlying system, but of- 
ten at the expense of portability and flexibility. 

In this paper we discuss a compromise approach be- 
tween the portability and flexibility of high-level monitor- 
ing and the detailed data awareness of low-level monitoring. 
We present a firmware-based performance monitor we de- 
signed for a Myrinet-connected Shrimp cluster. This mon- 
itor combines the portability and flexibility typically found 
in software-based monitors, with detailed, low-level infor- 
mation traditionally available only to hardware monitors. 
As with hardware approaches, ours results in little monitor- 
ing perturbation. Since it includes a software-based global 
clock, the monitor can track inter-node latencies accurately. 
Our tool is flexible and can monitor applications with a wide 
range of communication abstractions, though we focus here 
on its usage on shared virtual memory applications. The 
portability and flexibility of this firmware-based monitoring 
strategy make it a very promising approach for gathering 
low-level statistics about parallel program performance. 

1 Introduction 

Performance is the crucial driving factor in parallel pro- 
gramming, and thus detailed performance monitoring plays 
a key role. Initial performance studies on parallel program- 
ming are often performed using simulations. However, many 
deeper questions about the detailed behavior of the final 
system cannot be answered through simulation, because it 
is too slow to use on significant applications. Furthermore, 
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it is often impossible to collect simulation-based results that 
fully reflect the effects of multiple processes and the operat- 
ing system. Therefore, performance monitoring tools built 
on the actual system are often essential to achieving the best 
performance for the parallel programs. 

A common tradeoff in parallel performance tools arises in 
determining at which system level to monitor performance 
information and to present results. High-level monitoring 
approaches often measure quantities directly tied to the soft- 
ware programming model, but unfortunately may abstract 
away lower-level hardware details that can be important to 
the programmer. Low-level approaches such as hardware 
monitors, on the other hand, can gather fairly complete 
performance information about the underlying system, but 
often at the expense of portability or flexibility. 

Thus, some compromise must be struck among the porta- 
bility, flexibility, and “software awareness” of high-level mon- 
itoring, and the monitoring detail of lower-level approaches. 
This paper describes a monitoring approach that achieves 
such a compromise. We have embedded extra performance 
monitoring code into the message sending/receiving firm- 
ware running on the LANai processor in the Myrinet Net- 
work Interface [4]. Our system can make accurate measure- 
ments of network latencies and I/O bus transfer times that 
would be difficult and in some cases impossible to measure 
directly in software. The monitoring system is also flexible: 
the same monitoring firmware can work with any software 
system running on the compute nodes. Finally, the monitor- 
ing code is more portable than hardware monitors offering 
similarly detailed statistics; it can be easily embedded into 
other parallel systems using the Myrinet interface, regard- 
less of operating system or CPU node architecture. 

The contributions of this work are two-fold. First. we 
discuss a monitoring strategy that is directly applicable t,o a 
large number of current research and commercial machines 
based on Myrinet networks, and that is conceptually appli- 
cable to an even broader set of machines as well. Second, we 
discuss concrete results of using the monitor on applications 
with different communication abstractions. 

The remainder of this paper is structured as follows. In 
Section 2 we give an overview of the monitoring strategy and 
design and implementation issues, as well as the background 
of the Myrinet-based Shrimp system. We next discuss the 
accuracy and perturbation of the performance monitor in 
Section 3. Section 4 presents results from running applica- 
tions on top of the performance monitor. Section 5 discusses 
related work. Finally, Section 6 describes some possible fu- 
ture work following on this research and Section 7 offers our 
conclusions. 
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2 Monitor Design and Implementation 

There are two main ideas behind this work. First, we explore 
the utility of embedding performance monitoring code into 
network interface firmware, as a way of compromising be- 
tween the flexibility and portability of high-level tools and 
the detail afforded by lower-level tools. The second main 
idea lies in using that detailed information, particularly la- 
tency performance signatures, to understand application be- 
havior. 

Programmable network interfaces have become increas- 
ingly common. They allow flexibility in low-level communi- 
cation implementation and they offload work from the main 
processor. Monitoring at the firmware level on these network 
interfaces gives us access to crucial determinants of applica- 
tion performance not available in higher-level software. It 
also allows one to build monitoring infrastructure that ap- 
plies to a range of different types of higher-level software 
programming models. For us, these have included: 

l Science and engineering applications written using a 
shared memory model and running on top of a shared 
virtual memory (SVM) system [17]. 

l Message passing applications written using NX [I]. 

l A distributed filesystem written using sockets [8]. 

The monitor we describe here is primarily focused on 
identifying communication bottlenecks in programs, and 
does not include more comprehensive profiling analysis for 
other computation or memory bottlenecks that may be in 
the code. These could clearly be integrated to form a com- 
plete tuning environment. Our focus, instead, has been on 
the challenge of monitoring communication behavior diffi- 
cult to observe at the software level. For this reason, Sec- 
tion 4 focuses on the first application category: shared vir- 
tual memory applications. We will also briefly discuss expe- 
riences with other applications in Section 4.3. 

Another issue on programmable network interface is 
where to put which functionality, in the host or in the net- 
work interface. Currently the data communication between 
the host and the network interface, especially from the net- 
work interface to the host, is more expensive compared to 
the cost of data management inside the network interface. 
For this reason, we put almost all functionality in the net- 
work interface in order to reduce the perturbation. The host 
retrieves the performance data off-line. We will talk more 
about function-placement in Section 2.2. 

2.1 Myrinet-based Shrimp and Monitor Overview 

The Myrinet-based Shrimp cluster being monitored imple- 
ments the virtual memory-mapped communication model 
(VMMC) [3] on a Myrinet network of PCI-based PCs. 
Myrinet is a high-speed local/system area network for com- 
puter systems produced by Myricom [21]. A Myrinet net- 
work is composed of point-to-point links that connect hosts 
and switches. Figure 1 depicts a block diagram of the sys- 
tem. At each node, an ordinary PC contains a network inter- 
face card. A blow-up of the network interface is also shown. 
The primary component of the network interface is a CPU 
(called the “LANai” processor) that processes queued mes- 
sage send/receive requests and manages data being sent to 
(or from) the compute node’s memory. The functionality of 
the network interface is determined by the firmware it runs; 
the network interface is shipped with a default version of 
this firmware called the Myrinet Control Program (MCP). 

The VMMC implementation [9] we use has modified this 
MCP. The tool discussed in this paper is built specifically 
for Myrinet, but the general idea can also be applied to other 
programmable network interfaces. 

The Myrinet-based cluster used in this study consists of 
8 PCI-PCs connected to a Myrinet switch though Myrinet 
PC1 network interfaces. Each PC is a Gateway P5-166 run- 
ning Linux 2.0.24 with a 166 MHz Pentium CPU, a 512 KB 
L2 cache and 64 MB main memory. Each network interface 
is controlled by a 33 MHz LANai processor and has 1 MB 
SRAM. 

Applications 
Communication Layers 

/Sockets 1 SVM 1 RPC 1 MPI 1 NX 

Virtual Memorv-Maooed Communication (VMMC) 

Node 

Figure 1: Myrinet-based Shrimp Cluster block diagram 

The core of our monitoring tool is implemented as addi- 
tional MCP code run by the LANai processor. The network 
interface adds timestamps to outgoing messages, measures 
packet characteristics (and removes timestamps) as incom- 
ing messages are received, records statistics, and maintains 
a global clock. Our system maintains an array of statistics 
that include packet size, sender and receiver node IDS, and 
latencies in different parts of the system. These statistics are 
maintained in several multi-dimensional histograms so that 
the data can be post-processed to be presented in a number 
of ways. Currently these arrays occupy about 180 KB mem- 
ory on the network interface. This number can be reduced 
if the histogram bins are widened. We also provide an inter- 
face to application to start and stop recording performance 
information on-the-fly. This makes it easier to pin down the 
problematic part in the application. 

Figure 2 is an example of some of the data collected by 
the monitor. In this case, we have plotted the data as a mul- 
tidimensional histogram showing the frequency of messages 
of different sizes being sent versus SourceLatency. Briefly, 
SourceLatency is the time to DMA the message from the 
host to the network interface. These histograms have proven 
useful in understanding performance issues in several types 
of programs. We will discuss the monitor’s use further in 
Section 4. 

2.2 Clock Synchronization 

Accurate latency measurements are key to understanding 
program performance, and globally-synchronized clocks are 
the main requirement for getting them. However, globally- 
synchronized clocks are rarely available in loosely-coupled 
distributed machines. Although clocks are available on each 
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Figure 2: Example of data generated by the monitoring tool. 

of the Myrinet network interface boards, the clock on one 
interface is not synchronized with (or even aware of) clocks 
on other boards. Thus, we have implemented a mechanism 
that synchronizes these board clocks periodically, in order 
to have a basis for accurately measuring communication la- 
tencies among nodes. 

,MyriTime- ‘*’ 

MyriTimeAll- 

. . . --- 
MyriTimeAll-b 

Figure 3: Basics of our clock synchronization algorithm. 

Our clock synchronization algorithm extends Christian’s 
algorithm [6]. In our system, Node 0 is always responsi- 
ble for collecting and distributing global clock information. 
Periodically, it queries other nodes for their current time. 
When the answer is returned, Node 0 computes the time 
difference between the pair. When Node 0 finishes the col- 
lection, it broadcasts the time difference table to all the 
other nodes, as shown in Figure 3. Other nodes then up- 
date their clocks based on the table received from Node 0. 
The centralized role of Node 0 reduces clock synchroniza- 
tion messages dramatically, but if this were our sole means 
of aligning clocks, we would need to perform a global re- 
synchronization roughly once per second. This frequent 
global re-synchronization, unfortunately, would impose a 
rather heavy overhead on the system. 

Instead, to decrease global clock synchronization commu- 
nication, we re-synchronize globally much less frequently- 
every 5 minutes in these experiments, rather than once per 

second. To maintain acceptable accuracy, we note that clock 
drifts are roughly constant within short time periods. With 
this assumption, we allow each node to “re-synchronize” 
without global communication by interpolating current time 
differences based on measured drift rates and the time differ- 
ence table from the most recent global re-synchronization. 

Such global clock synchronization algorithms have previ- 
ously appeared at the software level, but we put the globally- 
synchronized clock code in the network interface for accu- 
racy reasons. If we had put the synchronization code on 
the host, we would have to poll for the arrival of the timing 
packet or let the network interface to interrupt the host. The 
polling approach would apparently be infeasible because it 
wastes too many processing cycles on the host. And the in- 
terrupt approach would not be suitable either because the 
interrupt cost on our system is about tens of microseconds. 
This overhead would be too high to keep the global clock 
accurate at the microsecond level. 

2.3 Latency Measurement 

Obviously, an important issue in performance monitoring is 
choosing what to monitor. From our previous experience 
with the hardware performance monitor built on Shrimp- 
II and from speaking with application developers, we know 
that host-to-host latency of packets is a very important fac- 
tor for understanding the performance of the system. As 
we already have a globally-synchronized clock, getting this 
latency is quite easy. 

Figure 4: Latencies measured by the monitor. 

In order to better understand bottlenecks in communica- 
tion, we break the latency of sending a message into several 
parts, as depicted in Figure 4. Each node’s monitor tracks 
four different latencies for each packet. The f&t, SourceLa- 
tency, is the time between the first appearance of the send- 
ing request of this packet in the LANai’s request queue, and 
the completion of the DMA into the LANai’s memory. The 
second latency, LANaiLatency, measures the time between 
the end of SourceLatency and the end of the LANai’s in- 
sertion of the packet into the network. These two latencies 
are measured entirely at the sending node. The third la- 
tency, NetLatency, meaSures the the total transport latency 
across the network: it begins as the sending LANai starts 
the transport, and ends when the receiving LANai gets the 
last word of the packet. NetLatency involves two nodes, 
and thus requires the clock synchronization techniques dis- 
cussed in Section 2.2. Finally the fourth latency, De&a- 
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tency, measures the time between the last word’s arrival at 
the destination node, and the completion of the destination 
LANai DMA into its host’s memory. DestLatency is local to 
the receiving node. Breaking latency into these pieces lets us 
isolate performance effects. For example, NetLatency would 
be hurt by network contention, while SourceLatency would 
be hurt by I/O contention. 

We have found that the latency information is more use- 
ful if we combine it with packet length data. For example, 
if a one-word packet has the same latency as a one-page 
packet, there is clearly something wrong, but with latency 
information alone, we cannot notice it. That is the reason 
we keep several multi-dimensional histograms featuring both 
packet latencies and packet lengths. 

Currently the histograms are kept in the memory of the 
network interface, so we have to sacrifice some precision 
due to the memory limitation. Currently, we count packet 
lengths in bins of &word granularity. SourceLatency, 
LANaiLatency and DestLatency are binned in multiples of 
lps, while NetLatency uses multiples of 2~3. We chose these 
parameters because we found that we could get fairly fine- 
grained data while still allowing the histograms to fit in the 
memory of the network interface. Memory limitations are 
also one reason why we did not include tracing functionality 
in our performance monitor. 

An alternative that solves the memory limitation prob- 
lem would be to keep the multi-dimensional histograms in 
host memory. If we chose to save the performance data in 
host memory, either the host would have to read the perfor- 
mance data in the network interface from time to time, or 
the network interface would have to DMA the data into host 
memory. Either way would involve extra overhead to move 
the performance data from network interface to host mem- 
ory; thus it would certainly be contradictory to the goal of 
minimizing monitoring intrusion. As the data in Section 3 
show, the performance monitor we discuss in this paper has 
a very small perturbation on the system 

2.4 Performance Signatures 

Figure 5: Baseline latencies for different message sizes. 
(Note that the X-axis is logarithmic.) 

Each of the latencies discussed in the preceding section has 
a certain baseline value it can be expected to achieve, as 
shown in Figure 5. A number of factors can degrade perfor- 
mance from that ideal value. By examining the deviations 
of these latencies from their baseline values, summarized in 

a performance signature, users gain insight into which parts 
of the system are bottlenecks. 

Figure 6: Performance signature output for FFT. 

Figure 6 shows an example performance signature out- 
put. The output has two parts. On the right hand side is a 
graph of the different latency categories versus packet size. 
Each data point represents an average latency for all the 
packets of a particular size. Because of the data structure 
used for storing on-the-fly statistics, we can also create per- 
formance signatures versus sending node ID, receiving node 
ID, or packet type. Overall, this graph allows users to see 
where their program deviates from expected latencies. 

Since the data points are averages, one also would like 
to know whether the average value was seen frequently, or 
whether it was an anomaly. For this purpose, the graph 
on the left hand side is included. This histogram plots the 
frequency of different packet sizes. (Note the semi-log scale.) 
We see here that the average latencies for a packet size of 
128 are computed based on tens of thousands of packets. In 
contrast, only several hundred packets of size 640 bytes were 
sent out; that average latency may be less representative. 

2.5 Monitoring Multiprogrammed Workloads 

In many detailed performance studies, applications are stud- 
ied in isolation, without considering the impact of other 
running programs, process scheduling, and other real-world 
effects. Real parallel programs rarely run in stand-alone 
mode, however; performance monitors for real systems must 
deal appropriately with multiprogramming effects. In Myri- 
net systems, once the packet is sent over the network, in- 
formation about which program it is associated with would 
typically be lost. To avoid this problem, our monitor em- 
beds a program tag in each packet, indicating which process 
produced the current message. This allows communication 
statistics on both the sending and receiving ends to be sep- 
arated according to the program initiating the messages, so 
the performance data from different applications will be kept 
in different histograms. 

3 Monitor Accuracy and Intrusiveness 

Interesting challenges arise in checking the accuracy of a 
monitor of this type. For example, since the firmware-based 
monitor provides statistics that are otherwise impossible to 
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get without a custom hardware design, it can be difficult to 
completely verify the accuracy of the statistics it produces 
without building the custom hardware monitor our scheme 
is intended to avoid. Program-level validations are insuffi- 
cient because information on network latencies for individ- 
ual packets is not available to software (which is why we 
used a firmware-based implementation in the first place). 
For this reason this section first shows that our monitor 
only has a small impact on the final performance of the 
applications. We then validate our monitor using a series 
of carefully-structured microbenchmarks for which the ex- 
pected message latencies and bandwidths can be reasoned 
about or measured via other methods. 

3.1 Execution Time Overhead 

First, we give a feel for our performance monitoring’s im- 
pact on the overall behavior of real programs. To address 
this, we have run several full applications with and with- 
out monitoring. These programs include SVM applications, 
NX applications and some applications running on a socket- 
based distributed file system. The overhead of monitoring, 
as measured at the program level, is quite low-less than 
3% for all the applications. The microbenchmark charac- 
terizations of the following sections also validate the low- 
level measurements being made. Overall these results are 
extremely favorable compared to the previous alternative: 
simulations or custom-designed hardware-based monitors. 

3.2 Clock Accuracy 

An important part of our performance monitor is the glob- 
ally-synchronized clock. As the LANai process does not 
use an interrupt mechanism, every event is handled in the 
MCP’s main polling loop. This polling feature of the LANai 
may cause inaccuracies. For example, when a DMA oper- 
ation finishes, the LANai cannot know this until it returns 
to main event loop, and then calculates the latency of this 
DMA operation. If the LANai is busy executing a long ded- 
icated operation, it will not notice the end of the DMA right 
away, and will thus measure a latency larger than it should. 

This problem is serious enough as it is, but when clock 
synchronization is involved, it becomes even worse. The 
global synchronization algorithm we discussed in Section 2.2 
assumes that the latencies of the packet from Node 0 to other 
node and the packet from the same node back to Node 0 
are the same. It is a reasonable assumption in the Myrinet- 
based network. However, when the scenario described in the 
previous paragraph happens, the two latencies we measure 
may differ significantly, even though the two actual latencies 
are still the same. Thus the time difference we calculate 
will not be correct, nor will NetLatency. Even if the two 
measured latencies are the same, there is still slight chance 
that they are measured incorrectly by the same amount, so 
the time difference calculated by them will still be incorrect. 

To solve this problem we use several methods. First we 
try to keep each dedicated operation as short as possible. 
Second, for long, dedicated operations, we insert code into 
them to check if there are any events of interest, and to mark 
the timestamp of these events. These two methods cannot 
eliminate the polling delay completely, but they can ensure 
that the error will be negligible. In addition, we also boost 
the priority of clock synchronization packet arrival events in 
order to keep the global clock as precise as possible. 

To measure the accuracy of our global clock, we use a 
program that alternatively sends same-length messages be- 
tween all node pairs. The NetLatency of the messages on 

each pair should be the same. Our results show that the 
error of the global synchronized clock is less than 3~s. 

3.3 Latency and Bandwidth Accuracy 

Figure 7: Unidirectional microbenchmark: Bandwidth mea- 
surements with varying degrees of monitoring. 

To verify latency and bandwidth accuracy, we begin with 
a program that simply sends a stream of messages from 
one node to the other. We execute several runs of this 
program, each with a different message size. At the soft- 
ware level, the message sizes vary from just 4 bytes up to 
4 MB, but for messages over 4 KB, the networking interface 
packetizes the messages into several 4 KB packets. Fig- 
ure 7 gives the resulting average bandwidths for communi- 
cation of this type, with varying levels of monitoring. The 
curve marked “No Performance Monitor” gives the band- 
width that can be achieved when the MCP does no moni- 
toring at all. “Performance Monitor” gives the bandwidth 
that can be achieved when performance monitor is running. 
“Performance Monitor (sending)/(receiving)/(synchronized 
clock)” shows bandwidth when only the sending/receiving/ 
synchronized-clock part of the performance monitor is run- 
ning, respectively. These numbers are computed simply by 
taking the total bytes sent by the program and dividing it 
by the total execution time. Since the microbenchmark does 
nothing but send messages, this is a reasonably accurate 
measurement of bandwidth. Overall, bandwidth measures 
are within 4% of the unmonitored time for message sizes 
over 128 bytes. For smaller messages, the effects on band- 
width will be higher, because the monitoring overhead is 
quite constant for messages of all sizes. Even so, the band- 
width measured when performance monitor is running is still 
within lo-15% of the unmonitored case. 

A second microbenchmark we considered was a “bidi- 
rectional ping pong” program, which performs a series of 
alternating message sends and receives between two nodes. 
Figure 8 shows it has similar accuracy as in the unidirec- 
tional case. 

From the bidirectional ping pong program we can also 
compute one-way host-to-host latency, which is parameter RTT/2 in the Berkeley LogP model [7]. This measures the 
time from when the sending node issues the send request 
until all the data arrives in the receiving node’s memory. 
From Figure 9 we deduce that the overhead due to adding 
monitoring into MCP is constant at about 5~3. We mea- 
sure the host overhead of sending a message: 0,, which is 
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Figure 8: Bidirectional Ping Pong microbenchmark: Band- Figure 10: LogP microbenchmark 0,: Host overhead of 
width measurements with varying degrees of monitoring. sending a message with varying degrees of monitoring. 

Figure 9: LogP microbenchmark RTT/Z: One-way host-to- 
host latencies with varying degrees of monitoring. 

also a LogP parameter, by running the program to get uni- 
directional bandwidth. As shown in Figure 10, the extra 
overhead introduced by performance monitoring is less than 
1.5ps. 

We also performed other microbenchmark studies, such 
as measuring the bandwidth of both nodes sending messages 
simultaneously, and others. All of these show little per- 
turbation due to performance monitoring, and these small 
degradations are quite tolerable since they give access to 
measurements otherwise difficult to get. 

4 Tool Usage on Applications 

This section briefly describes our experiences using our tool 
on parallel applications. Although we have used our tool on 
applications of several different communication styles, we 
focus here to shared virtual memory programs. 

4.1 SVM Applications: Overview and Methodology 

Shared virtual memory (SVM) systems provide a software 
layer that presents programs with a global shared memory 
abstraction even if the underlying hardware does not pro- 
vide support for global shared memory or cache coherence. 

*No Pedomwlce Moniior 
-x- Peffonance Monhw (serdii) 
-)- Petiomlance thllor (receiving) 
o- Pertormance Monk01 (synchmnized clock) 
* Pelfomlflnce Monitor ___.- ___.-_ 

In Shrimp, the SVM system runs on top of a basic message 
passing API (application programmer interface). This inter- 
acts with the Myrinet network cards to actually send and 
receive the messages that enforce coherence of the shared 
data. 

The SVM system we use implements a home-based Iazy 
release consistency (HLRC) protocol [29]. The HLRC proto- 
col assigns each page to a home node. To alleviate the false- 
sharing problem at page granularity, HLRC implements a 
multiple-writer protocol based on using “twins” and “diffs” 
[15]. After an acquire operation, each writer of a page is al- 
lowed to write into its local copy once a clean version of the 
page (twin) ha3 been created. Changes are detected by com- 
paring the current (dirty) copy with the clean version (twin) 
and recorded in a structure called a diff. At a release opera- 
tion, diffs are propagated to the designated home of the page 
and not to the other sharers. The home copy is thus kept 
up to date. Upon a page fault following a causally-related 
acquire operation, the entire page is fetched from the home. 
We have examined several SPLASH-2 [27] applications, but 
focus on two here: FFT and RADIX. 

4.2 SVM Applications: Results 

For FFT we use a 256K-point data size. The performance 
signature in Figure 6 shows that there is significant net- 
work contention. It is shown by “NetLatency - LANaiLa- 
tency” , which increases from baseline values of 3-4~3 to 
about 9p3. The large NetLatency indicates that there is 
contention inside the network interface a3 well. SourceLa- 
tency and DestLatency indicate I/O bus contention also. 
We can see SourceLatency of packets less than 128 bytes 
increases from less than 11~s in the baseline ca.ses shown 
in Figure 5 to over 20~3 here, while DestLatency increases 
from less than 5,~s to about 16~3. This is because FFT ha3 
a bursty, all-to-all communication pattern that sometimes 
swamps the bus and network. 

We also find some serious I/O bus contention effects in 
RADIX, a3 shown in Figure 11. The problem size we run is 
2M keys. SourceLatency in this case is very high. This is 
because RADIX’s access pattern is quite random, and many 
pages are modified at each node. Thus, diff computation 
puts a heavy load on the memory bus, because two whole 
pages have to be read for each page diff’ed. 

Finally, Figures 12 and 13 show performance signatures 
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Figure 11: Performance signature output of RADIX. 

Figure 12: Performance signature output of FFT when run 
with RADIX. 

obtained when running FFT and RADIX simultaneously. 
These indicate that network and network interface conten- 
tion are alleviated in the multiprogrammed runs because 
of scheduling effects and the time dilation of the multipro- 
grammed execution. I/O bus contention for RADIX is also 
slightly reduced. On the other hand, we do not have gang 
scheduling or any coscheduling techniques implemented on 
the system, so we also have the problem that one program 
cannot be guaranteed to run at the same time on every node 
in the system. This leads to significant increases in data 
fetch and synchronization time. The slight improvement on 
packet latencies cannot compensate for this increase. Thus, 
the application execution time is much greater here than 
when they are run alone. 

4.3 Monitoring Other Applications 

Besides SVM applications, we have also used the monitor 
on a range of other applications, from message-passing pro- 
grams using NX, to a full implementation of a distributed 
filesystem running on top of Shrimp sockets [8, 251. Fig- 
ure 14 shows the performance signature of an NX appli- 

Figure 13: Performance signature output of RADIX when 
run with FFT. 

cation: Gaussian Elimination on a 1024x1024 matrix It 
is clear that SourceLatencies and LANaiLatencies are very 
high here. The reason is that in Gaussian Elimination, every 
node needs to broadcast the pivot value and the rest of the 
line it handles to other nodes. In the NX implementation 
we use, the broadcast function is implemented by separate 
VMMC sends to every other node in the system. In our 8- 
node system, each broadcast call will actually result in seven 
message sends observed by the network interface. Worse, 
even though the contents of these messages are the same, 
they have to be DMAed from the host to the network in- 
terface and from the network interface to the network seven 
times. Thus the send call in the end of the queue will wait 
a long time to be served. 

Figure 14: Performance signature output of Gaussian Elim- 
ination on NX. 

The most pleasing aspect of our experience with this 
tool has been the inherent breadth of the monitoring ap- 
proach. Because it is implemented below the programming 
model layers, it is useful across a wide range of programming 
models. Even in cases (such as SVM) where several lev- 
els of software lie between the application program and the 
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LANai, the low-level communication statistics have aided 
in performance-debugging the program. In many cases, the 
base monitor implementation is sufficient on its own, but in 
other cases, application-specific hooks can help gather addi- 
tional information needed for a particular program. One of 
the advantages of the firmware-based implementation is the 
ease with which the monitor can be customized to include 
such hooks. With a hardware monitor, such incremental 
customizations would be infeasible. With a software moni- 
tor, the flexibility is there, but one cannot gather low-level 
latency statistics. 

5 Related Work 

This research builds on extensive prior work in parallel per- 
formance monitoring and tools. Unlike DOSMOS [5], our 
approach focuses on low-level data collection rather than 
user interface and protocol issues. Because of our desire 
to be portable across programming models, we do little 
automated analysis of the performance information as in 
other recent work more focused on particular software mod- 
els [14, 221. 

Our performance monitoring approach is somewhat sim- 
ilar to techniques proposed in the FlashPoint system [20]. 
That performance monitoring system embedded extra mon- 
itoring code into the cache coherence protocol handlers run- 
ning on the FLASH multiprocessor’s MAGIC chip. Our ap- 
proach differs from FlashPoint in that we are using it on a 
machine without hardware cache coherence. Our Myrinet- 
based Shrimp cluster is used with a wider variety of pro- 
grams than FLASH. For this reason, a low-level perfor- 
mance monitor that can be used for both shared-memory 
and message-passing programs is essential. 

This performance monitoring tool also derives some ideas 
from our previous hardware-based performance monitor on 
Shrimp-II [I9]. They both implement the functionality of 
keeping packet-based length and latency data in multiple- 
dimensional histograms. However, the hardware-based mon- 
itor is a separate board from the network interface. It does 
not consume the processing power of the network interface, 
so it, has an even smaller perturbation on the system than 
the firmware-based approach. It also has additional mem- 
ory so t,hat tracing functionality can be implemented. On 
the other hand, implementing the firmware-based monitor 
takes far less time and effort than designing and building 
the hardwarebased monitor. The firmware-based approach 
is also more portable. 

Currently, PC or workstation clusters connected by pro- 
grammable network interfaces are becoming the subject of 
considerable research. Several of them [lo, 21, 231 use Myri- 
net net,work interface. While some of these projects have 
stutlietl application performance on their clusters, we know 
of no public.ations specifically describing performance tools 
for t h(*m. nor any using our firmware-based approach. Other 
work hrl:, used only microbenchmark and statistical meth- 
ods [7] or high-level software measurements [28]. 

‘Thcrc arc some other research projects on other pro- 
granml;il)le network interfaces [ll, 24, 261. They also study 
the placcmcnt of funct,ionality between the host and the net- 
work iuterface. However, the primary focus of these projects 
is on reducing the software overhead of communication to 
achievca maximum performance from the raw hardware, in- 
stead of on collecting the performance data of the system. 

6 Future Work 

There is much further work to be done with this tool. For 
example, in dealing with the performance data gathered, we 
could use more statistical parameters, such as variance. 

One very important design goal of this firmware-based 
performance monitor approach is portability. Actually, we 
are now porting the performance monitor into the Windows 
NT platform. The port is going quite smoothly, and re- 
quires us only to rewrite part of the device driver. This 
demonstrates the portability of this style of monitoring. 

Also, as we stated earlier in this paper, memory in the 
Myrinet network interface is quite precious, so we have had 
to sacrifice some precision in the multi-dimensional histo- 
gram and omit the functionality of tracing to reduce the 
memory requirements. As previous experience shows, the 
tracing ability can sometimes be quite important for under- 
standing application behavior and for debugging. We are 
now studying an approach in which we move the main per- 
formance data into host memory and use memory in the 
Myrinet network interface as a cache. Certainly this ap- 
proach will have more perturbation due to the performance 
monitor, but we hope the added finer granularity in the 
multi-dimensional histogram, and the extra trace data will 
compensate for the extra overhead. In terms of how to move 
the data from the network interface to host memory, we pre- 
fer DMA transfers by the LANai rather than reading from 
the network interface by the host. This is because DMA 
outperforms reading one word at a time whenever the block 
size is over 8 words. We have measured that to complete a 
DMA transfer of less than 128 bytes from network interface 
to host memory takes about 4~s. If we can do this transfer 
when the LANai is idle, we may reduce this extra overhead 
further. 

In many cases, the base performance monitor is sufficient, 
on its own, but in some cases interaction with the commu- 
nication layer above it can be helpful. For example, in some 
communication systems, a primitive is composed of several 
messages. In this case, coordination between the perfor- 
mance monitor and the upper-layer communication system 
is necessary to better understand the primitives. We have 
implemented an interface between the performance moni- 
tor and SVM system to study the page fetch, lock acquire 
and barrier operations in the SVM system [18]. We hope 
to build a general interface of this kind so it can coordinat,e 
with other communication systems easily and productively. 

Moreover, in the future, we would like to explore the 
possibility of integrating dynamically adaptive functionali- 
ties into the performance monitor. Currently it can only 
record the performance data, and relies on off-line tools to 
analyze them. The ability to use data on-line to identify the 
bottlenecks and then fix them is very appealing. For exam- 
ple, migrating pages or even jobs based on the performance 
data collected can improve performance. This kind of abil- 
ity may be even more rewarding in multiprogrammed cases 
because the performance monitor can get the whole picture. 
while individual applications cannot. 

7 Conclusions 

We believe that our firmware-based monitoring strategy is 
very attractive for gathering detailed statistics about paral- 
lel program performance in a way that is somewhat portable 
across both platforms and programming models. As also dis- 
cussed in [ZO], parallel hardware is converging towards archi- 
tectures in which compute nodes interconnected via network 
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interfaces like Myrinet are common. Our monitoring code 
would work on any system currently using the Myrinet inter- 
face [2, 13, 231; we also expect that porting to similar sys- 
tems with other programmable interface processors would 
be fairly straightforward. To gather low-level statistics, our 
approach represents a significant improvement over previous 
reliance on simulation techniques or custom-designed hard- 
ware monitor boards [12, 16, 191. 
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