
Performance Monitoring in a Myrinet-Connected Shrimp Cluster

Cheng Liao Margaret Martonosi Douglas W. Clark
cliao@cs.princeton.edu mrm@ee.princeton.edu doug@cs.princeton.edu

Depts. of Computer Science and Electrical Engineering
Princeton University
Princeton, NJ 08544

Abstract

Performance monitoring is a crucial aspect of parallel pro-
gramming. Extracting the best possible performance from
the system is the main goal of parallel programming, and
monitoring tools are often essential to achieving that goal.
A common tradeoff arises in determining at which system
level to monitor performance information and present re-
sults. High-level monitoring approaches can often gather
data directly tied to the software programming model, but
may abstract away crucial low-level hardware details. Low-
level monitoring approaches can gather fairly complete per-
formance information about the underlying system, but of-
ten at the expense of portability and flexibility.

In this paper we discuss a compromise approach be-
tween the portability and flexibility of high-level monitor-
ing and the detailed data awareness of low-level monitoring.
We present a firmware-based performance monitor we de-
signed for a Myrinet-connected Shrimp cluster. This mon-
itor combines the portability and flexibility typically found
in software-based monitors, with detailed, low-level infor-
mation traditionally available only to hardware monitors.
As with hardware approaches, ours results in little monitor-
ing perturbation. Since it includes a software-based global
clock, the monitor can track inter-node latencies accurately.
Our tool is flexible and can monitor applications with a wide
range of communication abstractions, though we focus here
on its usage on shared virtual memory applications. The
portability and flexibility of this firmware-based monitoring
strategy make it a very promising approach for gathering
low-level statistics about parallel program performance.

1 Introduction

Performance is the crucial driving factor in parallel pro-
gramming, and thus detailed performance monitoring plays
a key role. Initial performance studies on parallel program-
ming are often performed using simulations. However, many
deeper questions about the detailed behavior of the final
system cannot be answered through simulation, because it
is too slow to use on significant applications. Furthermore,

Pcnnission to make digital or hard copirs ofall or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SPDT 98 Welches OR USA
Copyright ACM 1998 l-581 13-OOl--5/98/ 8...$5.00

it is often impossible to collect simulation-based results that
fully reflect the effects of multiple processes and the operat-
ing system. Therefore, performance monitoring tools built
on the actual system are often essential to achieving the best
performance for the parallel programs.

A common tradeoff in parallel performance tools arises in
determining at which system level to monitor performance
information and to present results. High-level monitoring
approaches often measure quantities directly tied to the soft-
ware programming model, but unfortunately may abstract
away lower-level hardware details that can be important to
the programmer. Low-level approaches such as hardware
monitors, on the other hand, can gather fairly complete
performance information about the underlying system, but
often at the expense of portability or flexibility.

Thus, some compromise must be struck among the porta-
bility, flexibility, and “software awareness” of high-level mon-
itoring, and the monitoring detail of lower-level approaches.
This paper describes a monitoring approach that achieves
such a compromise. We have embedded extra performance
monitoring code into the message sending/receiving firm-
ware running on the LANai processor in the Myrinet Net-
work Interface [4]. Our system can make accurate measure-
ments of network latencies and I/O bus transfer times that
would be difficult and in some cases impossible to measure
directly in software. The monitoring system is also flexible:
the same monitoring firmware can work with any software
system running on the compute nodes. Finally, the monitor-
ing code is more portable than hardware monitors offering
similarly detailed statistics; it can be easily embedded into
other parallel systems using the Myrinet interface, regard-
less of operating system or CPU node architecture.

The contributions of this work are two-fold. First. we
discuss a monitoring strategy that is directly applicable t,o a
large number of current research and commercial machines
based on Myrinet networks, and that is conceptually appli-
cable to an even broader set of machines as well. Second, we
discuss concrete results of using the monitor on applications
with different communication abstractions.

The remainder of this paper is structured as follows. In
Section 2 we give an overview of the monitoring strategy and
design and implementation issues, as well as the background
of the Myrinet-based Shrimp system. We next discuss the
accuracy and perturbation of the performance monitor in
Section 3. Section 4 presents results from running applica-
tions on top of the performance monitor. Section 5 discusses
related work. Finally, Section 6 describes some possible fu-
ture work following on this research and Section 7 offers our
conclusions.

21

2 Monitor Design and Implementation

There are two main ideas behind this work. First, we explore
the utility of embedding performance monitoring code into
network interface firmware, as a way of compromising be-
tween the flexibility and portability of high-level tools and
the detail afforded by lower-level tools. The second main
idea lies in using that detailed information, particularly la-
tency performance signatures, to understand application be-
havior.

Programmable network interfaces have become increas-
ingly common. They allow flexibility in low-level communi-
cation implementation and they offload work from the main
processor. Monitoring at the firmware level on these network
interfaces gives us access to crucial determinants of applica-
tion performance not available in higher-level software. It
also allows one to build monitoring infrastructure that ap-
plies to a range of different types of higher-level software
programming models. For us, these have included:

l Science and engineering applications written using a
shared memory model and running on top of a shared
virtual memory (SVM) system [17].

l Message passing applications written using NX [I].

l A distributed filesystem written using sockets [8].

The monitor we describe here is primarily focused on
identifying communication bottlenecks in programs, and
does not include more comprehensive profiling analysis for
other computation or memory bottlenecks that may be in
the code. These could clearly be integrated to form a com-
plete tuning environment. Our focus, instead, has been on
the challenge of monitoring communication behavior diffi-
cult to observe at the software level. For this reason, Sec-
tion 4 focuses on the first application category: shared vir-
tual memory applications. We will also briefly discuss expe-
riences with other applications in Section 4.3.

Another issue on programmable network interface is
where to put which functionality, in the host or in the net-
work interface. Currently the data communication between
the host and the network interface, especially from the net-
work interface to the host, is more expensive compared to
the cost of data management inside the network interface.
For this reason, we put almost all functionality in the net-
work interface in order to reduce the perturbation. The host
retrieves the performance data off-line. We will talk more
about function-placement in Section 2.2.

2.1 Myrinet-based Shrimp and Monitor Overview

The Myrinet-based Shrimp cluster being monitored imple-
ments the virtual memory-mapped communication model
(VMMC) [3] on a Myrinet network of PCI-based PCs.
Myrinet is a high-speed local/system area network for com-
puter systems produced by Myricom [21]. A Myrinet net-
work is composed of point-to-point links that connect hosts
and switches. Figure 1 depicts a block diagram of the sys-
tem. At each node, an ordinary PC contains a network inter-
face card. A blow-up of the network interface is also shown.
The primary component of the network interface is a CPU
(called the “LANai” processor) that processes queued mes-
sage send/receive requests and manages data being sent to
(or from) the compute node’s memory. The functionality of
the network interface is determined by the firmware it runs;
the network interface is shipped with a default version of
this firmware called the Myrinet Control Program (MCP).

The VMMC implementation [9] we use has modified this
MCP. The tool discussed in this paper is built specifically
for Myrinet, but the general idea can also be applied to other
programmable network interfaces.

The Myrinet-based cluster used in this study consists of
8 PCI-PCs connected to a Myrinet switch though Myrinet
PC1 network interfaces. Each PC is a Gateway P5-166 run-
ning Linux 2.0.24 with a 166 MHz Pentium CPU, a 512 KB
L2 cache and 64 MB main memory. Each network interface
is controlled by a 33 MHz LANai processor and has 1 MB
SRAM.

Applications
Communication Layers

/Sockets 1 SVM 1 RPC 1 MPI 1 NX

Virtual Memorv-Maooed Communication (VMMC)

Node

Figure 1: Myrinet-based Shrimp Cluster block diagram

The core of our monitoring tool is implemented as addi-
tional MCP code run by the LANai processor. The network
interface adds timestamps to outgoing messages, measures
packet characteristics (and removes timestamps) as incom-
ing messages are received, records statistics, and maintains
a global clock. Our system maintains an array of statistics
that include packet size, sender and receiver node IDS, and
latencies in different parts of the system. These statistics are
maintained in several multi-dimensional histograms so that
the data can be post-processed to be presented in a number
of ways. Currently these arrays occupy about 180 KB mem-
ory on the network interface. This number can be reduced
if the histogram bins are widened. We also provide an inter-
face to application to start and stop recording performance
information on-the-fly. This makes it easier to pin down the
problematic part in the application.

Figure 2 is an example of some of the data collected by
the monitor. In this case, we have plotted the data as a mul-
tidimensional histogram showing the frequency of messages
of different sizes being sent versus SourceLatency. Briefly,
SourceLatency is the time to DMA the message from the
host to the network interface. These histograms have proven
useful in understanding performance issues in several types
of programs. We will discuss the monitor’s use further in
Section 4.

2.2 Clock Synchronization

Accurate latency measurements are key to understanding
program performance, and globally-synchronized clocks are
the main requirement for getting them. However, globally-
synchronized clocks are rarely available in loosely-coupled
distributed machines. Although clocks are available on each

22

Figure 2: Example of data generated by the monitoring tool.

of the Myrinet network interface boards, the clock on one
interface is not synchronized with (or even aware of) clocks
on other boards. Thus, we have implemented a mechanism
that synchronizes these board clocks periodically, in order
to have a basis for accurately measuring communication la-
tencies among nodes.

,MyriTime- ‘*’

MyriTimeAll-

. . . ---
MyriTimeAll-b

Figure 3: Basics of our clock synchronization algorithm.

Our clock synchronization algorithm extends Christian’s
algorithm [6]. In our system, Node 0 is always responsi-
ble for collecting and distributing global clock information.
Periodically, it queries other nodes for their current time.
When the answer is returned, Node 0 computes the time
difference between the pair. When Node 0 finishes the col-
lection, it broadcasts the time difference table to all the
other nodes, as shown in Figure 3. Other nodes then up-
date their clocks based on the table received from Node 0.
The centralized role of Node 0 reduces clock synchroniza-
tion messages dramatically, but if this were our sole means
of aligning clocks, we would need to perform a global re-
synchronization roughly once per second. This frequent
global re-synchronization, unfortunately, would impose a
rather heavy overhead on the system.

Instead, to decrease global clock synchronization commu-
nication, we re-synchronize globally much less frequently-
every 5 minutes in these experiments, rather than once per

second. To maintain acceptable accuracy, we note that clock
drifts are roughly constant within short time periods. With
this assumption, we allow each node to “re-synchronize”
without global communication by interpolating current time
differences based on measured drift rates and the time differ-
ence table from the most recent global re-synchronization.

Such global clock synchronization algorithms have previ-
ously appeared at the software level, but we put the globally-
synchronized clock code in the network interface for accu-
racy reasons. If we had put the synchronization code on
the host, we would have to poll for the arrival of the timing
packet or let the network interface to interrupt the host. The
polling approach would apparently be infeasible because it
wastes too many processing cycles on the host. And the in-
terrupt approach would not be suitable either because the
interrupt cost on our system is about tens of microseconds.
This overhead would be too high to keep the global clock
accurate at the microsecond level.

2.3 Latency Measurement

Obviously, an important issue in performance monitoring is
choosing what to monitor. From our previous experience
with the hardware performance monitor built on Shrimp-
II and from speaking with application developers, we know
that host-to-host latency of packets is a very important fac-
tor for understanding the performance of the system. As
we already have a globally-synchronized clock, getting this
latency is quite easy.

Figure 4: Latencies measured by the monitor.

In order to better understand bottlenecks in communica-
tion, we break the latency of sending a message into several
parts, as depicted in Figure 4. Each node’s monitor tracks
four different latencies for each packet. The f&t, SourceLa-
tency, is the time between the first appearance of the send-
ing request of this packet in the LANai’s request queue, and
the completion of the DMA into the LANai’s memory. The
second latency, LANaiLatency, measures the time between
the end of SourceLatency and the end of the LANai’s in-
sertion of the packet into the network. These two latencies
are measured entirely at the sending node. The third la-
tency, NetLatency, meaSures the the total transport latency
across the network: it begins as the sending LANai starts
the transport, and ends when the receiving LANai gets the
last word of the packet. NetLatency involves two nodes,
and thus requires the clock synchronization techniques dis-
cussed in Section 2.2. Finally the fourth latency, De&a-

23

tency, measures the time between the last word’s arrival at
the destination node, and the completion of the destination
LANai DMA into its host’s memory. DestLatency is local to
the receiving node. Breaking latency into these pieces lets us
isolate performance effects. For example, NetLatency would
be hurt by network contention, while SourceLatency would
be hurt by I/O contention.

We have found that the latency information is more use-
ful if we combine it with packet length data. For example,
if a one-word packet has the same latency as a one-page
packet, there is clearly something wrong, but with latency
information alone, we cannot notice it. That is the reason
we keep several multi-dimensional histograms featuring both
packet latencies and packet lengths.

Currently the histograms are kept in the memory of the
network interface, so we have to sacrifice some precision
due to the memory limitation. Currently, we count packet
lengths in bins of &word granularity. SourceLatency,
LANaiLatency and DestLatency are binned in multiples of
lps, while NetLatency uses multiples of 2~3. We chose these
parameters because we found that we could get fairly fine-
grained data while still allowing the histograms to fit in the
memory of the network interface. Memory limitations are
also one reason why we did not include tracing functionality
in our performance monitor.

An alternative that solves the memory limitation prob-
lem would be to keep the multi-dimensional histograms in
host memory. If we chose to save the performance data in
host memory, either the host would have to read the perfor-
mance data in the network interface from time to time, or
the network interface would have to DMA the data into host
memory. Either way would involve extra overhead to move
the performance data from network interface to host mem-
ory; thus it would certainly be contradictory to the goal of
minimizing monitoring intrusion. As the data in Section 3
show, the performance monitor we discuss in this paper has
a very small perturbation on the system

2.4 Performance Signatures

Figure 5: Baseline latencies for different message sizes.
(Note that the X-axis is logarithmic.)

Each of the latencies discussed in the preceding section has
a certain baseline value it can be expected to achieve, as
shown in Figure 5. A number of factors can degrade perfor-
mance from that ideal value. By examining the deviations
of these latencies from their baseline values, summarized in

a performance signature, users gain insight into which parts
of the system are bottlenecks.

Figure 6: Performance signature output for FFT.

Figure 6 shows an example performance signature out-
put. The output has two parts. On the right hand side is a
graph of the different latency categories versus packet size.
Each data point represents an average latency for all the
packets of a particular size. Because of the data structure
used for storing on-the-fly statistics, we can also create per-
formance signatures versus sending node ID, receiving node
ID, or packet type. Overall, this graph allows users to see
where their program deviates from expected latencies.

Since the data points are averages, one also would like
to know whether the average value was seen frequently, or
whether it was an anomaly. For this purpose, the graph
on the left hand side is included. This histogram plots the
frequency of different packet sizes. (Note the semi-log scale.)
We see here that the average latencies for a packet size of
128 are computed based on tens of thousands of packets. In
contrast, only several hundred packets of size 640 bytes were
sent out; that average latency may be less representative.

2.5 Monitoring Multiprogrammed Workloads

In many detailed performance studies, applications are stud-
ied in isolation, without considering the impact of other
running programs, process scheduling, and other real-world
effects. Real parallel programs rarely run in stand-alone
mode, however; performance monitors for real systems must
deal appropriately with multiprogramming effects. In Myri-
net systems, once the packet is sent over the network, in-
formation about which program it is associated with would
typically be lost. To avoid this problem, our monitor em-
beds a program tag in each packet, indicating which process
produced the current message. This allows communication
statistics on both the sending and receiving ends to be sep-
arated according to the program initiating the messages, so
the performance data from different applications will be kept
in different histograms.

3 Monitor Accuracy and Intrusiveness

Interesting challenges arise in checking the accuracy of a
monitor of this type. For example, since the firmware-based
monitor provides statistics that are otherwise impossible to

24

get without a custom hardware design, it can be difficult to
completely verify the accuracy of the statistics it produces
without building the custom hardware monitor our scheme
is intended to avoid. Program-level validations are insuffi-
cient because information on network latencies for individ-
ual packets is not available to software (which is why we
used a firmware-based implementation in the first place).
For this reason this section first shows that our monitor
only has a small impact on the final performance of the
applications. We then validate our monitor using a series
of carefully-structured microbenchmarks for which the ex-
pected message latencies and bandwidths can be reasoned
about or measured via other methods.

3.1 Execution Time Overhead

First, we give a feel for our performance monitoring’s im-
pact on the overall behavior of real programs. To address
this, we have run several full applications with and with-
out monitoring. These programs include SVM applications,
NX applications and some applications running on a socket-
based distributed file system. The overhead of monitoring,
as measured at the program level, is quite low-less than
3% for all the applications. The microbenchmark charac-
terizations of the following sections also validate the low-
level measurements being made. Overall these results are
extremely favorable compared to the previous alternative:
simulations or custom-designed hardware-based monitors.

3.2 Clock Accuracy

An important part of our performance monitor is the glob-
ally-synchronized clock. As the LANai process does not
use an interrupt mechanism, every event is handled in the
MCP’s main polling loop. This polling feature of the LANai
may cause inaccuracies. For example, when a DMA oper-
ation finishes, the LANai cannot know this until it returns
to main event loop, and then calculates the latency of this
DMA operation. If the LANai is busy executing a long ded-
icated operation, it will not notice the end of the DMA right
away, and will thus measure a latency larger than it should.

This problem is serious enough as it is, but when clock
synchronization is involved, it becomes even worse. The
global synchronization algorithm we discussed in Section 2.2
assumes that the latencies of the packet from Node 0 to other
node and the packet from the same node back to Node 0
are the same. It is a reasonable assumption in the Myrinet-
based network. However, when the scenario described in the
previous paragraph happens, the two latencies we measure
may differ significantly, even though the two actual latencies
are still the same. Thus the time difference we calculate
will not be correct, nor will NetLatency. Even if the two
measured latencies are the same, there is still slight chance
that they are measured incorrectly by the same amount, so
the time difference calculated by them will still be incorrect.

To solve this problem we use several methods. First we
try to keep each dedicated operation as short as possible.
Second, for long, dedicated operations, we insert code into
them to check if there are any events of interest, and to mark
the timestamp of these events. These two methods cannot
eliminate the polling delay completely, but they can ensure
that the error will be negligible. In addition, we also boost
the priority of clock synchronization packet arrival events in
order to keep the global clock as precise as possible.

To measure the accuracy of our global clock, we use a
program that alternatively sends same-length messages be-
tween all node pairs. The NetLatency of the messages on

each pair should be the same. Our results show that the
error of the global synchronized clock is less than 3~s.

3.3 Latency and Bandwidth Accuracy

Figure 7: Unidirectional microbenchmark: Bandwidth mea-
surements with varying degrees of monitoring.

To verify latency and bandwidth accuracy, we begin with
a program that simply sends a stream of messages from
one node to the other. We execute several runs of this
program, each with a different message size. At the soft-
ware level, the message sizes vary from just 4 bytes up to
4 MB, but for messages over 4 KB, the networking interface
packetizes the messages into several 4 KB packets. Fig-
ure 7 gives the resulting average bandwidths for communi-
cation of this type, with varying levels of monitoring. The
curve marked “No Performance Monitor” gives the band-
width that can be achieved when the MCP does no moni-
toring at all. “Performance Monitor” gives the bandwidth
that can be achieved when performance monitor is running.
“Performance Monitor (sending)/(receiving)/(synchronized
clock)” shows bandwidth when only the sending/receiving/
synchronized-clock part of the performance monitor is run-
ning, respectively. These numbers are computed simply by
taking the total bytes sent by the program and dividing it
by the total execution time. Since the microbenchmark does
nothing but send messages, this is a reasonably accurate
measurement of bandwidth. Overall, bandwidth measures
are within 4% of the unmonitored time for message sizes
over 128 bytes. For smaller messages, the effects on band-
width will be higher, because the monitoring overhead is
quite constant for messages of all sizes. Even so, the band-
width measured when performance monitor is running is still
within lo-15% of the unmonitored case.

A second microbenchmark we considered was a “bidi-
rectional ping pong” program, which performs a series of
alternating message sends and receives between two nodes.
Figure 8 shows it has similar accuracy as in the unidirec-
tional case.

From the bidirectional ping pong program we can also
compute one-way host-to-host latency, which is parameter RTT/2 in the Berkeley LogP model [7]. This measures the
time from when the sending node issues the send request
until all the data arrives in the receiving node’s memory.
From Figure 9 we deduce that the overhead due to adding
monitoring into MCP is constant at about 5~3. We mea-
sure the host overhead of sending a message: 0,, which is

25

Figure 8: Bidirectional Ping Pong microbenchmark: Band- Figure 10: LogP microbenchmark 0,: Host overhead of
width measurements with varying degrees of monitoring. sending a message with varying degrees of monitoring.

Figure 9: LogP microbenchmark RTT/Z: One-way host-to-
host latencies with varying degrees of monitoring.

also a LogP parameter, by running the program to get uni-
directional bandwidth. As shown in Figure 10, the extra
overhead introduced by performance monitoring is less than
1.5ps.

We also performed other microbenchmark studies, such
as measuring the bandwidth of both nodes sending messages
simultaneously, and others. All of these show little per-
turbation due to performance monitoring, and these small
degradations are quite tolerable since they give access to
measurements otherwise difficult to get.

4 Tool Usage on Applications

This section briefly describes our experiences using our tool
on parallel applications. Although we have used our tool on
applications of several different communication styles, we
focus here to shared virtual memory programs.

4.1 SVM Applications: Overview and Methodology

Shared virtual memory (SVM) systems provide a software
layer that presents programs with a global shared memory
abstraction even if the underlying hardware does not pro-
vide support for global shared memory or cache coherence.

*No Pedomwlce Moniior
-x- Peffonance Monhw (serdii)
-)- Petiomlance thllor (receiving)
o- Pertormance Monk01 (synchmnized clock)
* Pelfomlflnce Monitor ___.- ___.-_

In Shrimp, the SVM system runs on top of a basic message
passing API (application programmer interface). This inter-
acts with the Myrinet network cards to actually send and
receive the messages that enforce coherence of the shared
data.

The SVM system we use implements a home-based Iazy
release consistency (HLRC) protocol [29]. The HLRC proto-
col assigns each page to a home node. To alleviate the false-
sharing problem at page granularity, HLRC implements a
multiple-writer protocol based on using “twins” and “diffs”
[15]. After an acquire operation, each writer of a page is al-
lowed to write into its local copy once a clean version of the
page (twin) ha3 been created. Changes are detected by com-
paring the current (dirty) copy with the clean version (twin)
and recorded in a structure called a diff. At a release opera-
tion, diffs are propagated to the designated home of the page
and not to the other sharers. The home copy is thus kept
up to date. Upon a page fault following a causally-related
acquire operation, the entire page is fetched from the home.
We have examined several SPLASH-2 [27] applications, but
focus on two here: FFT and RADIX.

4.2 SVM Applications: Results

For FFT we use a 256K-point data size. The performance
signature in Figure 6 shows that there is significant net-
work contention. It is shown by “NetLatency - LANaiLa-
tency” , which increases from baseline values of 3-4~3 to
about 9p3. The large NetLatency indicates that there is
contention inside the network interface a3 well. SourceLa-
tency and DestLatency indicate I/O bus contention also.
We can see SourceLatency of packets less than 128 bytes
increases from less than 11~s in the baseline ca.ses shown
in Figure 5 to over 20~3 here, while DestLatency increases
from less than 5,~s to about 16~3. This is because FFT ha3
a bursty, all-to-all communication pattern that sometimes
swamps the bus and network.

We also find some serious I/O bus contention effects in
RADIX, a3 shown in Figure 11. The problem size we run is
2M keys. SourceLatency in this case is very high. This is
because RADIX’s access pattern is quite random, and many
pages are modified at each node. Thus, diff computation
puts a heavy load on the memory bus, because two whole
pages have to be read for each page diff’ed.

Finally, Figures 12 and 13 show performance signatures

26

Figure 11: Performance signature output of RADIX.

Figure 12: Performance signature output of FFT when run
with RADIX.

obtained when running FFT and RADIX simultaneously.
These indicate that network and network interface conten-
tion are alleviated in the multiprogrammed runs because
of scheduling effects and the time dilation of the multipro-
grammed execution. I/O bus contention for RADIX is also
slightly reduced. On the other hand, we do not have gang
scheduling or any coscheduling techniques implemented on
the system, so we also have the problem that one program
cannot be guaranteed to run at the same time on every node
in the system. This leads to significant increases in data
fetch and synchronization time. The slight improvement on
packet latencies cannot compensate for this increase. Thus,
the application execution time is much greater here than
when they are run alone.

4.3 Monitoring Other Applications

Besides SVM applications, we have also used the monitor
on a range of other applications, from message-passing pro-
grams using NX, to a full implementation of a distributed
filesystem running on top of Shrimp sockets [8, 251. Fig-
ure 14 shows the performance signature of an NX appli-

Figure 13: Performance signature output of RADIX when
run with FFT.

cation: Gaussian Elimination on a 1024x1024 matrix It
is clear that SourceLatencies and LANaiLatencies are very
high here. The reason is that in Gaussian Elimination, every
node needs to broadcast the pivot value and the rest of the
line it handles to other nodes. In the NX implementation
we use, the broadcast function is implemented by separate
VMMC sends to every other node in the system. In our 8-
node system, each broadcast call will actually result in seven
message sends observed by the network interface. Worse,
even though the contents of these messages are the same,
they have to be DMAed from the host to the network in-
terface and from the network interface to the network seven
times. Thus the send call in the end of the queue will wait
a long time to be served.

Figure 14: Performance signature output of Gaussian Elim-
ination on NX.

The most pleasing aspect of our experience with this
tool has been the inherent breadth of the monitoring ap-
proach. Because it is implemented below the programming
model layers, it is useful across a wide range of programming
models. Even in cases (such as SVM) where several lev-
els of software lie between the application program and the

27

LANai, the low-level communication statistics have aided
in performance-debugging the program. In many cases, the
base monitor implementation is sufficient on its own, but in
other cases, application-specific hooks can help gather addi-
tional information needed for a particular program. One of
the advantages of the firmware-based implementation is the
ease with which the monitor can be customized to include
such hooks. With a hardware monitor, such incremental
customizations would be infeasible. With a software moni-
tor, the flexibility is there, but one cannot gather low-level
latency statistics.

5 Related Work

This research builds on extensive prior work in parallel per-
formance monitoring and tools. Unlike DOSMOS [5], our
approach focuses on low-level data collection rather than
user interface and protocol issues. Because of our desire
to be portable across programming models, we do little
automated analysis of the performance information as in
other recent work more focused on particular software mod-
els [14, 221.

Our performance monitoring approach is somewhat sim-
ilar to techniques proposed in the FlashPoint system [20].
That performance monitoring system embedded extra mon-
itoring code into the cache coherence protocol handlers run-
ning on the FLASH multiprocessor’s MAGIC chip. Our ap-
proach differs from FlashPoint in that we are using it on a
machine without hardware cache coherence. Our Myrinet-
based Shrimp cluster is used with a wider variety of pro-
grams than FLASH. For this reason, a low-level perfor-
mance monitor that can be used for both shared-memory
and message-passing programs is essential.

This performance monitoring tool also derives some ideas
from our previous hardware-based performance monitor on
Shrimp-II [I9]. They both implement the functionality of
keeping packet-based length and latency data in multiple-
dimensional histograms. However, the hardware-based mon-
itor is a separate board from the network interface. It does
not consume the processing power of the network interface,
so it, has an even smaller perturbation on the system than
the firmware-based approach. It also has additional mem-
ory so t,hat tracing functionality can be implemented. On
the other hand, implementing the firmware-based monitor
takes far less time and effort than designing and building
the hardwarebased monitor. The firmware-based approach
is also more portable.

Currently, PC or workstation clusters connected by pro-
grammable network interfaces are becoming the subject of
considerable research. Several of them [lo, 21, 231 use Myri-
net net,work interface. While some of these projects have
stutlietl application performance on their clusters, we know
of no public.ations specifically describing performance tools
for t h(*m. nor any using our firmware-based approach. Other
work hrl:, used only microbenchmark and statistical meth-
ods [7] or high-level software measurements [28].

‘Thcrc arc some other research projects on other pro-
granml;il)le network interfaces [ll, 24, 261. They also study
the placcmcnt of funct,ionality between the host and the net-
work iuterface. However, the primary focus of these projects
is on reducing the software overhead of communication to
achievca maximum performance from the raw hardware, in-
stead of on collecting the performance data of the system.

6 Future Work

There is much further work to be done with this tool. For
example, in dealing with the performance data gathered, we
could use more statistical parameters, such as variance.

One very important design goal of this firmware-based
performance monitor approach is portability. Actually, we
are now porting the performance monitor into the Windows
NT platform. The port is going quite smoothly, and re-
quires us only to rewrite part of the device driver. This
demonstrates the portability of this style of monitoring.

Also, as we stated earlier in this paper, memory in the
Myrinet network interface is quite precious, so we have had
to sacrifice some precision in the multi-dimensional histo-
gram and omit the functionality of tracing to reduce the
memory requirements. As previous experience shows, the
tracing ability can sometimes be quite important for under-
standing application behavior and for debugging. We are
now studying an approach in which we move the main per-
formance data into host memory and use memory in the
Myrinet network interface as a cache. Certainly this ap-
proach will have more perturbation due to the performance
monitor, but we hope the added finer granularity in the
multi-dimensional histogram, and the extra trace data will
compensate for the extra overhead. In terms of how to move
the data from the network interface to host memory, we pre-
fer DMA transfers by the LANai rather than reading from
the network interface by the host. This is because DMA
outperforms reading one word at a time whenever the block
size is over 8 words. We have measured that to complete a
DMA transfer of less than 128 bytes from network interface
to host memory takes about 4~s. If we can do this transfer
when the LANai is idle, we may reduce this extra overhead
further.

In many cases, the base performance monitor is sufficient,
on its own, but in some cases interaction with the commu-
nication layer above it can be helpful. For example, in some
communication systems, a primitive is composed of several
messages. In this case, coordination between the perfor-
mance monitor and the upper-layer communication system
is necessary to better understand the primitives. We have
implemented an interface between the performance moni-
tor and SVM system to study the page fetch, lock acquire
and barrier operations in the SVM system [18]. We hope
to build a general interface of this kind so it can coordinat,e
with other communication systems easily and productively.

Moreover, in the future, we would like to explore the
possibility of integrating dynamically adaptive functionali-
ties into the performance monitor. Currently it can only
record the performance data, and relies on off-line tools to
analyze them. The ability to use data on-line to identify the
bottlenecks and then fix them is very appealing. For exam-
ple, migrating pages or even jobs based on the performance
data collected can improve performance. This kind of abil-
ity may be even more rewarding in multiprogrammed cases
because the performance monitor can get the whole picture.
while individual applications cannot.

7 Conclusions

We believe that our firmware-based monitoring strategy is
very attractive for gathering detailed statistics about paral-
lel program performance in a way that is somewhat portable
across both platforms and programming models. As also dis-
cussed in [ZO], parallel hardware is converging towards archi-
tectures in which compute nodes interconnected via network

28

interfaces like Myrinet are common. Our monitoring code
would work on any system currently using the Myrinet inter-
face [2, 13, 231; we also expect that porting to similar sys-
tems with other programmable interface processors would
be fairly straightforward. To gather low-level statistics, our
approach represents a significant improvement over previous
reliance on simulation techniques or custom-designed hard-
ware monitor boards [12, 16, 191.

Acknowledgments

This work was supported via DARPA contract N000014-95-
l-1144, NSF grant MIP-9420653, and Intel Corporation. In
addition, Margaret Martonosi is supported in part by an
NSF Career Award CCR-95-02516. We thank the referees
for their helpful suggestions.

References

PI

PI

131

[41

[Sl

PI

[71

PI

PI

[lOI

[Ill

PI

[I31

R.. D. Alpert, C. Dubnicki, E. Felten, and K. Li. The Design
and lmplemenation of NX Message Passing Using SHRIMP
Virtual Memory Mapped Communication. In Proc. of 25th
Intl. Conference on Parallel Processing, pages 111-119, Aug.
1996.

T. E. Anderson, D. E. Culler, D. A. Patterson, et al. A Case
for Networks of Workstations: NOW. IEEE Micro, Feb.
1995.

M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and
J. Sandberg. A virtual memory mapped network interface
for the SHRIMP multicomputer. In Proc. of the 21st Annual
Symposium on Computer Architecture, Apr. 1994.

N. J. Boden, D. Cohen, R. E. Felderman, et al. Myrinet: A
Gigabit-per-Second Local Area Network. IEEE Micro, Feb.
1995.

L. Brunie et al. Execution analysis of DSM applications:
A distributed and scalable approach. In Proc. of SIGMET-
HICS Symposium on Parallel and Distributed Tools, pages
51-60, May 1996.

F. Christian. Probabilistic Clock Synchronization. Dis-
tributed Computing, vol 3:146-158, 1989.

1). Culler, L. Liu, R. P. Martin, and C. Yoshikawa. Assessing
fast network interfaces. IEEE Micro, Feb. 1996.

S. N. Damianakis, C. Dubnicki, and E. W. Felten. Stream
Sockets on SHRIMP. In Proc. ojlst Intl. Workshop on Com-
munication and Architectural Support for Network-Based
Parallel Computing, Feb. 1997.

(:. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li.
VMMC-2: Efficient support for reliable, connection-oriented
communication. In Proceedings of Hot Interconnects, Aug.
1997.

‘I’. Eicken, D. Culler, S. Goldstein, and K. Schauser. Active
messages: A mechanism for integrated communication and
computation. In Proc. of the 19th Annual Intl. Symp. on
Computer Architecture, pages 256-266, May 1992.
M. E. Fiuczynski and B. N. Bershad. A safe programmable
and integrated network environment. In WOP session of
the 16th ACM Symposium on Operating Systems Principles,
Oct. 1997.

M. A. Heinrich. DASH Performance Monitor Hardware Doc-
umentation. Stanford University, Unpublished Memo, 1993.

M. Hill, J. R. Larus, and D. A. Wood. Tempest: A Substrate
for Portable Parallel Programs. In Proc. COMPCON, Mar
1995.

[I41

[I51

[I61

[I71

[I81

iI91

PO1

PI

P21

P31

P41

P51

WI

P71

PI

PI

J. K. Hollingsworth. An online computation of crltical path
profiling. In Proc. of SIGMETRICS Symposzum on Parallel
and Distributed Tools, pages 11-20. May 1996.

P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaeneporl
TreadMarks: Distributed shared memory on standard work-
stations and operating systems. In Proceedings of the Wmtrr
USENIX Conference, pages 115-132, Jan. 1994.

D. Lenoski, J. Laudon, K. Gharachorloo. A. Gupta, :III(I
J. Hennessy. The Directory-Based Protocol for the D.\SlI
Multiprocessor. In Proc. 17th Annual Int’l Symp. 011 ~‘ovr-
puter Architecture, May 1990.

K. Li and P. Hudak. Memory coherence in shared vlrlurd
memory systems. In Proc. of the 5th Annual ACM Syrtr-
posium on Principles of Distributed Computzng, I’“#“” 229
239, Aug. 1986.

C. Liao, D. Jiang, L. lftode, M. Martonosi. altti 1). W.
Clark. Monitoring shared virtual memory performatlc 6’ OLI
a Myrinet-based PC cluster. In Proc. of the f2th A(:M Intl.
Conj. on Supercomputing, 1998.

M. Martonosi, D. W. Clark, and M. Mesarina. Thea SIll~IMI’
Performance Monitor: Design and Applications. 111 ACM
Sigmetrics Symposium on Parallel and Distrzbuted ‘lbols.
May 1996.
M. Martonosi, D. Ofelt, and M. Heinrich. Integrating Per-
formance Monitoring and Communication in Parallel Con-
puters. In Proc. ACM SIGMETRICS Conj. on Mew. rind
Modeling of Computer Systems, May 1996.
Myricom, Inc. Myrinet on-line documentation.
http:// www.myri.com:80/scs/documentation, 1996.

R. H. B. Netzer, T. W. Brennan, and S. K. Damodararl-
Kamal. Debugging race conditions in message-passing pro-
grams. In Proc. of SIGMETRICS Symposium on Parallel
and Distributed Tools, pages 31-40, May 1996.

S. Pakin, M. Lauria, and A. Chien. High Performance Mes-
saging on Workstations: Illinois Fast Messages (FM) for
Myrinet. In Supercomputing ‘95, 1995.

M.-C. Rosu, K. Schwan, and R. Fujimoto. Supporting Par-
allel Applications on Clusters of Workstations: The Intelli-
gent Network Interface Approach. In Proc. of the 6th IEEE
International Symposium on High Performance Distributed
Computing, Aug. 1997.

R. A. Shillner and E. W. Felten. Simplifying distributed file
systems using a shared logical disk. Technical Report. TH-
524-96, Princeton University Computer Science Department,
Princeton NJ, 1996.

P. Steenkiste. A Systematic Approach to Host Interface De-
sign for High-Speed Networks. IEEE Computer, Mar. 1994.

S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
Methodological Considerations and Characterization of the
SPLASH-2 Parallel Application Suite. In Proc. of the 22st
Int’l Symp. on Computer Architecture, Santa Margherita
Ligure, Italy, June 1995.

K. Yocum, J. Chase, et al. Cut-through delivery in Trapeze:
An exercise in low-latency messaging. In Proc. 6th IEEE
Intl. Symposium on High Performance Distributed Comput-
ing, Aug. 1997.

Y. Zhou, L. Iftode, and K. Li. Performance evaluation of
two home-based lazy release consistency protocols for shared
virtual memory systems. In Proc. of the Operating Systems
Design and Implementation Symposium, Oct. 1996.

29

