
1190272-1732/06/$20.00 © 2006 IEEE Published by the IEEE computer Society

Energy and power have become pri-
mary issues in modern processor design.
Processor designers face increasingly vexing
power and thermal challenges, such as reduc-
ing average and maximum power consump-
tion, avoiding thermal hotspots, and
maintaining voltage regulation quality. In
addition to static design time power manage-
ment techniques, dynamic adaptive tech-
niques are becoming essential because of an
increasing gap between worst-case and aver-
age-case demand.

In recent years, researchers have proposed
and studied many low-level hardware tech-
niques to address fine-grained dynamic power
and performance control issues.1-3 At a high-
er level, the compiler and the application can
also take active roles in maximizing micro-
processor power control effectiveness and
actively managing power, performance, and
thermal goals. In this article, we explore power
control opportunities in a general dynamic-
compilation environment for microproces-
sors. In particular, we look at one control
mechanism: dynamic voltage and frequency
scaling (DVFS). We expect our methods to

apply to other control means as well.
A dynamic compiler is a runtime software

system that compiles, modifies, and optimizes
a program’s instruction sequence as it runs.
Examples of infrastructures based on dynam-
ic compilers include the HP Dynamo,4 the
IBM DAISY (Dynamically Architected
Instruction Set from Yorktown),5 Intel
IA32EL6 and the Intel PIN.7

Figure 1 shows the architecture of a gener-
al dynamic-compiler system. A dynamic-com-
pilation system serves as an extra execution
layer between the application binary and the
operating system and hardware. At runtime,
a dynamic-compilation system interacts with
application code execution and applies possi-
ble optimizations to it. Beyond regular per-
formance optimizations, a dynamic compiler
can also apply energy optimizations such as
DVFS because most DVFS implementations
allow direct software control through mode
set instructions (by accessing special mode set
registers). A dynamic compiler can simply
insert DVFS mode set instructions into appli-
cation binary code. If CPU execution slack
exists (that is, CPU idle cycles are waiting for

Qiang Wu
Margaret Martonosi

Douglas W. Clark
Princeton University

Vijay Janapa Reddi
Dan Connors

University of Colorado at

Boulder

Youfeng Wu
Jin Lee

Intel Corp.

David Brooks
Harvard University

A GENERAL DYNAMIC-COMPILATION ENVIRONMENT OFFERS POWER AND

PERFORMANCE CONTROL OPPORTUNITIES FOR MICROPROCESSORS. THE

AUTHORS PROPOSE A DYNAMIC-COMPILER-DRIVEN RUNTIME VOLTAGE AND

FREQUENCY OPTIMIZER. A PROTOTYPE OF THEIR DESIGN, IMPLEMENTED AND

DEPLOYED IN A REAL SYSTEM, ACHIEVES ENERGY SAVINGS OF UP TO 70 PERCENT.

DYNAMIC-COMPILER-DRIVEN
CONTROL FOR MICROPROCESSOR

ENERGY AND PERFORMANCE

memory), these instructions can scale down
the CPU voltage and frequency to save ener-
gy with little or no performance impact.

Because a dynamic compiler has access to
high-level information on program code struc-
ture as well as runtime system information, a
dynamic-compiler-driven DVFS scheme offers
some unique features and advantages not pre-
sent in existing hardware-based or static-
compiler-based DVFS approaches. (See the
“Why dynamic-compiler-driven DVFS?” side-
bar for detail.)

Our work is one of the first efforts to devel-
op dynamic-compiler techniques for micro-
processor voltage and frequency control.8 We

120

MICRO TOP PICKS

IEEE MICRO

Applicaton binary

OS and hardware

Dynamic-
compilation

system

DVFS
optimization

Performance
optimization

Figure 1. General dynamic-compiler system
architecture, serving as an extra execution
layer between application binary and OS
and hardware.

Most existing research efforts on fine-grained DVFS control fall into
one of two categories: hardware or OS interrupt-based approaches or
static-compiler-based approaches.

Hardware or OS time-interrupt-based DVFS techniques typically mon-
itor particular system statistics, such as issue queue occupancy,1 in fixed
time intervals and choose DVFS settings for future time intervals.1-3

Because the time intervals are predetermined and independent of pro-
gram structure, DVFS control by these methods might not be efficient in
adapting to program phase changes. One reason is that program phase
changes are generally caused by the invocation of different code regions.4

Thus, hardware or OS techniques might not be able to infer enough about
application code attributes and find the most effective adaptation points.
Another reason is that program phase changes are often recurrent (that
is, loops). In this case, the hardware or OS schemes would need to detect
and adapt to the recurring phase changes repeatedly. A compiler-driven
DVFS scheme can apply DVFS to fine-grained code regions, adapting nat-
urally to program phase changes. Hardware- or OS-based DVFS schemes
with fixed intervals lack this code-aware adaptation.

Existing compiler DVFS work focuses mainly on static-compiler tech-
niques.5,6 Typically, these techniques use profiling to learn about program
behavior. Then, offline analysis techniques, such as linear programming,5

decide on DVFS settings for some code regions. A limitation is that the
DVFS setting obtained at static-compile time might not be appropriate
for the program at runtime because the profiler and the actual program
have different runtime environments. The reasoning behind the above
statement is that DVFS decisions depend on the program’s memory-bound-
edness. In turn, the program’s behavior in terms of memory-boundedness
depends on runtime system characteristics such as machine or architec-
ture configuration or program input size and patterns. For example,
machine or architecture settings such as cache configuration or memory
bus speed can affect how much CPU slack or idle time exists. Also, dif-
ferent program input sizes or patterns can affect how much memory must
be used and how it must be used. It is thus inherently difficult for a stat-
ic compiler to make DVFS decisions that adapt to these factors. In con-

trast, dynamic-compiler DVFS can use runtime system information to make
input-adaptive and architecture-adaptive decisions.

We must also point out that dynamic-compiler DVFS has disadvan-
tages. The most significant is that, just as for any dynamic-optimization
technique, every cycle spent for optimization is a cycle lost to execution.
Therefore, our challenge is to design simple and inexpensive analysis and
decision algorithms that minimize runtime optimization cost.

References
1. G. Semeraro et al., “Dynamic Frequency and Voltage Control

for a Multiple Clock Domain Microarchitecture,” Proc. 35th
Ann. Symp. Microarchitecture (Micro-35), IEEE Press, 2002,
pp. 356-367.

2. D. Marculescu, “On the Use of Microarchitecture-Driven
Dynamic Voltage Scaling,” Proc. Workshop on Complexity-
Effective Design (WCED 00), 2000, http://www.ece.
rochester.edu/~albonesi/wced00/.

3. A. Weissel and F. Bellosa, “Process Cruise Control: Event-
Driven Clock Scaling for Dynamic Power Management,” Proc.
Int’l Conf. Compilers, Architecture and Synthesis for Embedded
Systems (CASES 02), ACM Press, 2002, pp. 238-246.

4. M.C. Huang, J. Renau, and J. Torrellas, “Positional Adaptation
of Processors: Application to energy reduction,” Proc. 30th
Ann. Int’l Symp. Computer Architecture (ISCA 03), IEEE Press,
2003, pp. 157-168.

5. C.-H. Hsu and U. Kremer, “The Design, Implementation, and
Evaluation of a Compiler Algorithm for CPU Energy
Reduction,” Proc. Conf. Programming Language Design and
Implementation (PLDI 03), ACM Press, 2003, pp. 38-48.

6. F. Xie, M. Martonosi, and S. Malik, “Compile-Time Dynamic
Voltage Scaling Settings: Opportunities and Limits,” Proc.
Conf. Programming Language Design and Implementation
(PLDI 03), ACM Press, 2003, pp. 49-62.

Why dynamic-compiler-driven DVFS?

have developed a design framework for a run-
time DVFS optimizer (RDO) in a dynamic-
compilation environment. We have
implemented a prototype RDO and integrat-
ed it in an industrial-strength dynamic opti-
mization system. We deployed the optimization
system in a real hardware platform that allows
us to directly measure CPU current and volt-
age for accurate power and energy readings. To
evaluate the system, we experimented with
physical measurements for more than 40 SPEC
or Olden benchmarks. Evaluation results show
that the optimizer achieves significant energy
efficiency—for example, up to 70 percent ener-
gy savings (with 0.5 percent performance loss)
for the SPEC benchmarks.

Design framework
There are several key design issues to con-

sider for the RDO in a dynamic-compilation
and optimization environment.

Candidate code region selection
For cost effectiveness, we want to optimize

only frequently executed code regions (so-
called hot code regions). In addition, because
DVFS is a relatively slow process (with a volt-
age transition rate typically around 1 mv per
1 μs), we want to optimize only long-running
code regions. Therefore, in our design, we
chose functions and loops as candidate code
regions. Most dynamic optimization systems
are already equipped with a lightweight pro-
filing mechanism to identify hot code regions
(for example, DynamoRio profiles every pos-
sible loop target9). We extended the existing
profiling infrastructure to monitor and iden-
tify hot functions or loops.

DVFS decisions
For each candidate code region, an impor-

tant step is to decide whether applying DVFS
is beneficial (that is, whether the region can
operate at a lower voltage and frequency to
save energy without significant impact on
overall performance) and to determine the
appropriate DVFS setting. For a dynamic
optimization system, the analysis or decision
algorithm must be simple and fast to mini-
mize overhead. The offline analysis techniques
used by static-compiler DVFS10 are typically
too time consuming and are not appropriate
here. For our work, we followed an analytical

decision model to design a fast DVFS deci-
sion algorithm that uses hardware feedback
information.

DVFS code insertion and transformation
If the decision algorithm finds DVFS bene-

ficial for a candidate code region, we insert
DVFS mode set instructions at every code
region entry point to start DVFS and at every
exit point to restore the voltage level. One design
question is how many adjusted regions we want
to have in a program. Some existing static-com-
piler algorithms choose only a single DVFS
code region for a program (to avoid an exces-
sively long analysis time).10 In our design, we
identify multiple DVFS regions to provide more
energy-saving opportunities. In addition to code
insertion, the dynamic compiler can perform
code transformation to create energy-saving
opportunities—for example, merging two sep-
arate (small) memory-bound code regions into
one big one. The DVFS optimizer and the con-
ventional performance optimizer interact to
check that this code merging doesn’t harm the
program’s performance or correctness.

Operation block diagram
Figure 2 shows a block diagram of a dynam-

ic-compiler DVFS optimization system’s over-
all operation and the interactions between its
components. At the start, the dynamic opti-
mizer dispatches or patches original binary code
and delivers it to the hardware for execution.
The system is now in cold-code execution
mode. While the cold code executes, the
dynamic optimization system monitors and
identifies the hot code regions. Then, the RDO
applies optimization to the hot code regions,
either before or after conventional performance
optimizations have occurred. The system is
now in hot-code execution mode, in which the
now-optimized code is executed. Finally, if a
code transformation is desirable, the RDO
queries the regular performance optimizer to
check the code transformation’s feasibility.

DVFS decision algorithms
To make DVFS decisions, the RDO first

inserts testing and decision code at a candi-
date code region’s entry and exit points. The
code collects runtime information such as the
number of cache misses or memory bus trans-
actions for this code region. When sufficient

121JANUARY–FEBRUARY 2006

information has been collected, the RDO tests
whether the code region is long-running.
Then it decides whether applying DVFS is
beneficial (saving energy with little or no per-
formance cost) and what the appropriate
DVFS setting is for the candidate region.

The key observation supporting beneficial
DVFS is the existence of an asynchronous
memory system independent of the CPU
clock and many times slower than the CPU.
Therefore, if we can identify CPU execution
slack (CPU stall or idle cycles waiting for the
completion of memory operations), we can
scale down CPU voltage and frequency to save
energy without much performance impact.

Figure 3 shows our analytical decision
model for DVFS based on this rationale; it is
an extension of the analytical model proposed
by Xie, Martonosi, and Malik.11 It categorizes
processor operations into memory operations
and CPU operations. Because memory is
asynchronous with respect to CPU frequency
f, we denote memory operation time as
tasyn_mem. CPU operation time can be further
divided: Part 1 is CPU operations that can run
concurrently with memory operations; part 2
is CPU operations dependent on the final
results of pending memory operations.
Because CPU operation time depends on
CPU frequency f, we denote concurrent CPU
operation time Nconcurrent/f, where Nconcurrent is
the number of clock cycles for concurrent
CPU operations. Similarly, we denote depen-
dent CPU operation time Ndependent/f.

Figure 3 shows that if the overlap period is
memory-bound—that is, tasyn_mem > Nconcurrent/f—
there is a CPU slack time defined as

CPU slack time = tasyn_mem – Nconcurrent/f

Ideally, the concurrent CPU operation can be
slowed down to consume CPU slack time.

Following this model, we want to compute
frequency-scaling factor β for a candidate code
region. (Thus, if the original clock frequency
is f, the new clock frequency will be ‚ β f; and
the voltage will be scaled accordingly.) We
introduce a new concept called relative CPU
slack time, which we define as CPU slack time
over total execution time. For a memory-
bound case, total_time = tasyn_mem + Ndependent/f.
From Figure 3, we see that the larger the rela-
tive CPU slack, the more frequency reduction
the system can have without affecting overall
performance. So frequency reduction (1 – β)
is proportional to relative CPU slack time.

A derivation we have detailed elsewhere8

gives the following equation for β:

where Ploss is the maximum allowed perfor-
mance loss expressed in percentage, and k0 is
a constant coefficient depending on machine

β = −

+

1 0

0

P k
t

total time

P k
N

loss

asyn_mem

loss
conc

_

uurrent /

_

f

total time

122

MICRO TOP PICKS

IEEE MICRO

Start

Dispatcher Monitor Dynamic
optimizer

Run-time
DVFS

optimizer
(RDO)

Cold code
execution

Hot code
execution

OS and hardware

Figure 2. Operation and interaction block diagram of
dynamic-compiler DVFS optimization system.

Memory
operation

CPU
operation

tasyn_mem

Nconcurrent

ƒ

Ndependent

ƒ
Execution

time

Figure 3. Analytical decision model for DVFS (tasyn_mem is
asynchronous memory access time, Nconcurrent is the number
of execution cycles for concurrent CPU operation, Ndependent

is the number of cycles for dependent CPU operation, and f
is CPU clock frequency).

configurations. Intuitively, this equation
means that the scaling factor is negatively pro-
portional to the memory intensity level (the
term including tasyn_mem) and positively pro-
portional to the CPU intensity level (the term
including Nconcurrent).

We can estimate the time ratios in this equa-
tion by using hardware feedback information
such as hardware performance counter (HPC)
events. For example, for an x86 processor, we
can estimate the first time ratio in the equa-
tion by using the ratio of two HPC events: the
number of memory-busy transactions and the
number of micro-operations retired.8

Implementation and deployment methods
and experience

We have implemented a prototype of the
proposed RDO and integrated it into a real
dynamic-compilation system. To evaluate it,
we conducted live-system physical power
measurements.

Implementation
To implement our DVFS algorithm and

develop the RDO, we used the Intel Pin sys-
tem as the basic software platform. Pin is a
dynamic instrumentation and compilation sys-
tem and is publicly available (http://rogue.
colorado.edu/Pin/index.html). We modified
the regular Pin system to make it more suitable
and more convenient for dynamic optimiza-
tions. We refer to the modified system as O-
Pin (Optimization Pin). Compared with the
standard Pin package, O-Pin has more features
supporting dynamic optimizations, such as
adaptive code replacement (the instrumented

code can update and replace itself at runtime)
and customized trace or code region selection.
In addition, unlike the standard Pin, which is
JIT (just-in-time compiler) based and executes
generated code only, O-Pin takes a partial-JIT
approach and executes a mix of original and
generated code. For example, we can configure
O-Pin to first patch, instrument, and profile
the original code at a coarse granularity (such
as function calls only). Then, at runtime, it
selectively generates JIT code and performs
more fine-grained profiling and optimization
of the dynamically compiled code (such as all
loops inside a function). Therefore, O-Pin has
less operation overhead than regular Pin.

We outline the prototype RDO system’s
operation as follows:

1. The RDO instruments all function calls
in the program and all loops in the main
function to monitor and identify fre-
quently executed code regions.

2. If the RDO finds that a candidate code
region is hot (that is, the execution count
is greater than a certain threshold), the
DVFS testing and decision code starts to
collect runtime information and decide
how memory-bound the code region is.

3. If the code region is memory-bound, the
RDO removes the instrumentation code,
inserts DVFS mode set instructions, and
resumes program execution. On the other
hand, if a code region is CPU-bound, no
DVFS instructions are inserted.

4. For the medium case, in which the can-
didate code region exhibits mixed mem-
ory behavior (probably because it

123JANUARY–FEBRUARY 2006

(a) (b) (c) (d)

Figure 4. Processor power measurement setup: running system (a); signal-conditioning unit (b); data acquisition unit (c); data-
logging unit (d).

contains both memory-bound and CPU-
bound subregions). the RDO checks
whether it is a long-running function
containing loops. If it is, the RDO
dynamically generates a copy of this
function and identifies and instruments
all loops inside the function.

5. The process repeats.8

Deployment in a real system
We deployed our RDO system in a real

running system. Figure 4a shows the hardware
platform, an Intel development board con-
taining a Pentium M processor. The Pentium
M we used has a maximum clock frequency of
1.6 GHz, two 32-Kbyte L1 caches, and one
unified 1-Mbyte L2 cache. The board has a
400-MHz front-side bus and a 512-Mbyte
double-data-rate RAM.

The Pentium M has six DVFS settings, or
“SpeedSteps” (expressed in frequency/voltage
pairs): 1.6 GHz/1.48 V, 1.4 GHz/1.42 V, 1.2
GHz/1.27 V, 1.0 GHz/1.16 V, 800 MHz/1.04
V, and 600 MHz/0.96 V. The DVFS voltage
transition rate is about 1 mv per 1 μs (accord-
ing to our own measurements).

The OS is Linux kernel 2.4.18 (with GCC
updated to 3.3.2). We implemented two load-
able kernel modules to provide user-level sup-
port for DVFS control and HPC reading in
the form of system calls.

The running system allows accurate power
measurements. Figure 4 shows the entire
processor power measurement setup, which
includes the following four components.

• Running system. This unit (Figure 4a) iso-
lates and measures CPU voltage and cur-
rent signals. We isolate and measure CPU
power rather than the entire board’s power
because we want more deterministic and
accurate results, unaffected by random fac-
tors on the board. We use the main voltage
regulator’s output sense resistors to mea-
sure current going to the CPU, and the
bulk capacitor to measure CPU voltage.

• Signal-conditioning unit. This unit (Fig-
ure 4b) reduces measurement noise for
more accurate readings. Measurement
noise from sources such as the CPU
board is inevitable. Because noise typi-
cally has far higher frequency than mea-
sured signals, we use a two-layer low-pass

filter to reduce measurement noise.
• Data acquisition (DAQ) unit. This unit

(Figure 4c) samples and reads voltage and
current signals. Capturing program behav-
ior variations (especially with DVFS)
requires a fast sampling rate. We use
National Instruments’ data acquisition sys-
tem DAQPad-6070E, which has a maxi-
mum aggregate sampling rate of 1.2M/s
(http://www.ni.com/dataacquisition). We
set a sampling rate of 200,000 per second
for each channel (5-μs sample length),
which is more than adequate for our reads.

• Data-logging and -processing unit. This
unit (Figure 4d) is the host logging
machine, which processes sampling data.
Every 0.1 seconds, the DAQ unit sends
collected data to the host logging
machine via a high-speed fire-wire cable.
The logging machine then processes the
received data. We use a regular laptop
running National Instruments’ Labview
DAQ software to process the data. We
configured Labview for various tasks:
monitoring, raw data recording, and
power and energy computation.

Experimental results
For all experiments, we chose a performance

loss target Ploss of 5 percent. (With a larger Ploss,
the resulting frequency settings would be
lower, allowing more aggressive energy savings.
Conversely, a smaller Ploss would lead to high-
er and more conservative DVFS settings.)
Because the voltage transition time between
SpeedSteps is about 100 μs to 500 μs for our
machine,12 we set the long-running threshold
for a code region to 1.5 ms (or 2.4 million
cycles for a 1.6-GHz processor) to make it at
least three times the voltage transition time.

For evaluation, we used all the SPECfp2000
and SPECint2000 benchmarks. Because pre-
vious static-compiler DVFS work10 used
SPECfp95 benchmarks, we also included them
in our benchmark suites. In addition, we
included several Olden benchmarks,13 which
are popular integer benchmarks for studying
program memory behavior. For each bench-
mark, we used the Intel C++/Fortran compil-
er V8.1 to obtain the application binary
(compiled with optimization level 2). We test-
ed each benchmark with the largest reference
input set running to completion. The power

124

MICRO TOP PICKS

IEEE MICRO

and performance results reported here are aver-
age results obtained from three separate runs.

Table 1 shows program information and
results obtained by the RDO system for SPEC
benchmark 173.applu, a program for elliptic
partial differential equations. The table lists
the total number of hot code regions in the
program and the total number of DVFS
regions identified. For each DVFS code
region, it shows total number of micro-oper-
ations retired for the code region (in a single
invocation), average number of L2 cache miss-
es, average number of memory bus transac-
tions, average number of instructions retired,
and obtained DVFS settings.

Figure 5 shows part of the CPU voltage and
power traces for 173.applu running with
RDO. By inserting DVFS instructions direct-
ly into the five code regions indicated in the
table, RDO adjusts the CPU voltage and fre-
quency to adapt to program phase changes.
Specifically, as program execution enters code
region jacld(), RDO scales CPU clock fre-
quency (and voltage) from the default 1.6 GHz
to the selected DVFS setting 0.8 GHz. When
the program enters the next code region, blts(),
the clock frequency switches to 1.2 GHz; and
so on. The power trace is also interesting. Ini-
tially it fluctuates around the value of 11 W
(because of various system-switching activities).
After program execution enters the DVFS code
regions, power drops dramatically to a level as
low as 2.5 W. As experimental results will show,
DVFS optimization applied to the code regions
in 173.applu led to considerable energy savings
(~35 percent) with little performance loss
(~5 percent).

Energy and performance results
As Figure 2 shows, we view the RDO as an

addition to the regular dynamic (perfor-
mance) optimization system. So, to isolate the
contribution of the DVFS optimization, we
report energy and performance results relative
to the O-Pin system without DVFS (we don’t
want to mix the effect of our DVFS opti-
mization and that of the underlying dynam-
ic compilation and optimization system being
developed by researchers at Intel and the Uni-
versity of Colorado). In addition, as a com-
parison, we report the energy results obtained
from static voltage scaling, which scales sup-
ply voltage and frequency statically for all

125JANUARY–FEBRUARY 2006

Table 1. Information and DVFS settings obtained by RDO for SPEC benchmark 173.applu. Average numbers

are per million micro-operations retired.

Total Average Average Average
Total micro- L2 cache memory instructions DVFS

Total hot DVFS Region operations misses transactions retired setting
regions regions name (millions) (thousands) (thousands) (millions) (GHz)

72 5 jacld() 208 12.4 24.8 0.99 0.8
blts() 286 5.9 11.5 0.99 1.2
jacu() 156 12.7 25.6 0.99 0.8
buts() 254 7.0 12.9 0.99 1.2
rhs() 188 4.2 8.2 1.0 1.4

0 2 4 6
0.8

1

1.2

1.4

1.6
V

ol
ta

ge
 (

V
)

1.6GHz
1.4GHz

0 2 4 6
0

5

10

P
ow

er
 (

W
)

Time (seconds)

800MHz

1.2GHz

Figure 5. Partial traces of CPU voltage and power for SPEC
benchmark 173.applu running with RDO.

benchmarks to get roughly the same amount
of average performance loss as that in our
results. (We chose f = 1.4 GHz for static volt-
age scaling, which is the only voltage setting
point in our system that produces an average
performance loss close to 5 percent.)

Figure 6 shows energy delay product (EDP)
improvement results obtained for all our
benchmarks from RDO and static voltage
scaling (StaticScale). These results take into
account all DVFS optimization overhead,
such as time required for checking a code
region’s memory-boundedness.

These results lead to several interesting obser-
vations. First, in terms of EDP improvement,
RDO outperforms StaticScale by a wide mar-

gin for nearly all benchmarks. Second, energy
and performance results for individual bench-
marks in each benchmark suite vary signifi-
cantly (from -1 percent to 70 percent for RDO;
from -14 percent to 20 percent for StaticScale).
This is because individual applications vary
widely in their proportion of memory-bound-
edness. In particular, the SPECint2000 pro-
grams are almost all CPU-bound (except for
181.mcf) and hence are nearly immune to our
attempted optimizations.

Table 2 summarizes the average results for
each benchmark suite. It shows the results
from our techniques and the StaticScale
results. The EDP improvement results for
RDO represent a three- to fivefold better

126

MICRO TOP PICKS

IEEE MICRO

60

50

40

30

20

10

0

−10 −14

69

E
D

P
 im

pr
ov

em
en

t (
pe

rc
en

t)

60

50

40

30

20

10

0

−10

E
D

P
 im

pr
ov

em
en

t (
pe

rc
en

t)

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

A
ve

ra
ge B
H

B
is

of
t

E
m

3D

H
ea

lth M
st

P
er

im
et

er

P
ow

er

A
ve

ra
ge

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

u2
co

r

10
4.

hy
dr

o2
d

10
7.

m
gr

ld

11
0.

ap
pl

u

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

pp
pp

14
6.

w
av

e5

16
8.

w
up

w
is

e

A
ve

ra
ge

17
1.

sw
im

17
2.

m
gr

ld

17
3.

ap
pl

u

17
7.

m
es

a

17
9.

ar
t

18
3.

eq
ua

ke

18
7.

fa
ce

re
c

17
8.

ga
lg

el

18
8.

am
m

p

18
9.

lu
ca

s

19
1.

fm
a3

d

20
0.

si
xt

ra
ck

30
1.

ap
si

A
ve

ra
ge

(a) (b)

(c) (d)

StaticScale
RDO

Figure 6. Energy delay product (EDP) improvement for SPECint2000 (a), Olden (b), SPECfp95 (c), and SPECfp2000 (d) bench-
marks, obtained from RDO and static voltage scaling (StaticScale).

improvement than the StaticScale results. (We
present additional experimental results,
including those for basic O-Pin overhead, in
another publication.8)

Overall, the results in Figures 6 and Table
2 show that the proposed technique address-
es the microprocessor energy and performance
control problem well. We attribute these
promising results to our design’s efficiency and
to the advantages of the dynamic-compiler-
driven approach.

Microarchitectural suggestions
The experimental results are promising, but

we could improve them if more microarchi-
tectural support were available. For example,
logic to identify and predict CPU execution
slack, such as proposed by Fields, Bodik, and
Hill,14 would make DVFS computation easi-
er and more accurate. Another supporting
mechanism would be power-aware hardware-
monitoring counters and events to keep track
of a processor unit’s power consumption and
voltage variations. In addition, additional fine-
grained DVFS settings would make the
intratask DVFS design more effective. In our
experiments, RDO was forced to select an
unnecessarily high voltage or frequency set-
ting for many code regions in the benchmarks
because the Pentium M processors lack inter-
mediate steps between the six SpeedSteps.

The proposed technique’s orthogonal
approach and advantages make it an effec-

tive complement to existing techniques and
will help us work toward a multilayer (software
and hardware), collaborative power manage-
ment scheme. In addition, the design frame-
work and methodology described here are
applicable to other emerging microprocessor
problems, such as di/dt and thermal control.
Such techniques and framework offer great

promise for adaptive power and performance
management in future microprocessors. MICRO

Acknowledgments
We thank Gilberto Contreras, Ulrich Kre-

mer, Chung-Hsing Hsu, C.-K. Luk, Robert
Cohn, and Kim Hazelwood for their helpful
discussions during the development of our
design framework and methodology. We also
thank the anonymous reviewers for their use-
ful comments and suggestions about this arti-
cle. Qiang Wu was supported by an Intel
Foundation Graduate Fellowship. Our work
was also supported in part by NSF grants
CCR-0086031 (ITR), CNS-0410937, CCF-
0429782, Intel, IBM, and SRC.

References
1. D. Marculescu, “On the Use of

Microarchitecture-Driven Dynamic Voltage
Scaling,” Proc. Workshop on Complexity-
Effective Design (WCED 00), 2000, http://
www.ece.rochester.edu/~albonesi/wced00/.

2. G. Semeraro et al., “Dynamic Frequency and
Voltage Control for a Multiple Clock Domain
Microarchitecture,” Proc. 35th Ann. Symp.
Microarchitecture (Micro-35), IEEE Press,
2002, pp, 356-367.

3. A. Weissel and F. Bellosa, “Process Cruise
Control: Event-Driven Clock Scaling for
Dynamic Power Management,” Proc. Int’l
Conf. Compilers, Architecture and Synthesis
for Embedded Systems (CASES 02), ACM
Press, 2002, pp. 238-246.

4. V. Bala, E. Duesterwald, and S. Banerjia,
“Dynamo: A Transparent Dynamic
Optimization System,” Proc. Conf.
Programming Language Design and
Implementation (PLDI 00), ACM Press,
2000, pp. 1-12.

5. K. Ebcioglu and E.R. Altman, “DAISY:
Dynamic Compilation for 100% Architectural

127JANUARY–FEBRUARY 2006

Table 2. Average results for each benchmark suite: RDO versus StaticScale.

Performance Energy Energy delay product
Benchmark degradation (%) savings (%) improvement (%)
suite RDO StaticScale RDO StaticScale RDO StaticScale
SPECfp95 2.1 7.9 24.1 13.0 22.4 5.6
SPECfp2000 3.3 7.0 24.0 13.5 21.5 6.8
SPECint2000 0.7 11.6 6.5 11.5 6.0 –0.3
Olden 3.7 7.8 25.3 13.7 22.7 6.3

Compatibility,” Proc. 24th Ann. Int’l Symp.
Computer Architecture (ISCA 97), IEEE
Press, pp. 26-37.

6. L. Baraz et al., “IA-32 Execution Layer: A
Two-Phase Dynamic Translator Designed to
Support IA-32 Applications on Itanium-Based
Systems,” Proc. 36th Ann. Symp. Micro-
architecture (Micro-36), ACM Press, 2003,
pp. 191-204.

7. C.-K. Luk et al., “Pin: Building Customized
Program Analysis Tools with Dynamic
Instrumentation,” Proc. Conf. Programming
Language Design and Implementation (PLDI
05), ACM Press, 2005, pp. 190-200.

8. Q. Wu, et al., “A Dynamic Compilation
Framework for Controlling Microprocessor
Energy and Performance,” Proc. 38th Ann.
Symp. Microarchitecture (Micro-38), ACM
Press, 2005, pp. 271-282.

9. D. Bruening, T. Garnett, and S. Amarasinghe,
“An Infrastructure for Adaptive Dynamic
Optimization,” Proc. Int’l Symp. Code
Generation and Optimization (CGO 03), ACM
Press, 2003, pp. 265-275.

10. C.-H. Hsu and U. Kremer, “The Design,
Implementation, and Evaluation of a
Compiler Algorithm for CPU Energy
Reduction,” Proc. Conf. Programming
Language Design and Implementation (PLDI
03), ACM Press, 2003, pp. 38-48.

11. F. Xie, M. Martonosi, and S. Malik,
“Compile-Time Dynamic Voltage Scaling
Settings: Opportunities and Limits,” Proc.
Conf. Programming Language Design and
Implementation (PLDI 03), ACM Press,
2003, pp. 49-62.

12. S. R. Gochman et al., “The Intel Pentium M
Processor: Microarchitecture and
Performance,” Intel Technology J., vol. 7,
no. 2, May 2003, pp. 21-36.

13. M.C. Carlisle et al., “Early Experiences with
Olden,” Proc. 6th Int’l Workshop on
Languages and Compilers for Parallel
Computing (LCPC 93), 1993, http://www.cs.
princeton.edu/~mcc/olden.html.

14. B. Fields, R. Bodik, and M.D. Hill, “Slack:
Maximizing Performance under Tech-
nological Constraints,” Proc. 29th Int’l Symp.
Computer Architecture (ISCA 02), IEEE
Press, 2002, pp. 47-58.

Qiang Wu is a PhD candidate in Princeton
University’s Computer Science Department.

His research interests include power-aware
microprocessor design and control. Wu has
an MSc in electrical engineering from the
University of Sydney. He is a student mem-
ber of the IEEE and the ACM.

Margaret Martonosi is a professor of electri-
cal engineering at Princeton University. Her
research interests include computer architec-
ture and hardware-software interfaces, with a
focus on power-efficient systems and mobile
computing. Martonosi has a BS from Cornell
University and an MS and a PhD from Stan-
ford University, all in electrical engineering.
She is a senior member of the IEEE and a
member of the ACM.

Douglas W. Clark is a professor of computer
science at Princeton University. His research
interests include computer architecture, low-
power techniques, and clocking and timing
in digital systems. Clark has a BS in engi-
neering and applied science from Yale Uni-
versity and a PhD in computer science from
Carnegie-Mellon University.

Vijay Janapa Reddi is pursuing a PhD in the
Department of Electrical and Computer
Engineering at the University of Colorado at
Boulder. His research interests include the
design of dynamic code transformation sys-
tems for deployment in everyday computing
environments. Reddi has a BSc in computer
engineering from Santa Clara University.

Dan Connors is an assistant professor in the
Department of Electrical and Computer Engi-
neering and the Department of Computer Sci-
ence at the University of Colorado at Boulder
and the leader of the DRACO research group
on runtime code transformation. His research
interests include modern compiler optimiza-
tion and multithreaded multicore architecture
design. Connors has an MS and PhD in elec-
trical engineering from the University of Illi-
nois at Urbana-Champaign.

Youfeng Wu is a principal engineer in Intel’s
Corporate Technology Group and leads a
research team on multiprocessor compilation
and dynamic binary optimizations. His
research interests include codesigned power-
efficient computer systems, binary and

128

MICRO TOP PICKS

IEEE MICRO

dynamic optimizations, and security and safe-
ty enhancement via compiler and binary tools.
Wu has an MS and PhD in computer science
from Oregon State University. He is a mem-
ber of the ACM and the IEEE.

Jin Lee is the president and CEO of Amicus
Wireless Technology. He previously worked at
Intel, where he participated in the work
described in this article. His research interests
include compiler technology, network proces-
sors, and semiconductor fabrication technolo-
gies. Lee has an MS and PhD in mechanical
engineering from Stanford University.

David Brooks is an assistant professor of com-
puter science at Harvard University. His

research interests include architectural-level
power modeling and power-efficient design
of hardware and software for embedded and
high-performance computer systems. Brooks
has a BS from the University of Southern Cal-
ifornia and an MA and PhD from Princeton
University, all in electrical engineering. He is
a member of the IEEE.

Direct questions and comments about this
article to Qiang Wu, Dept. of Computer Sci-
ence, Princeton University, Princeton, NJ
08544; jqwu@princeton.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

129JANUARY–FEBRUARY 2006

