
52

Recently, microprocessors have
increasingly faced vexing power and thermal
challenges, such as adhering to maximum and
average power dissipation limits, avoiding
thermal hotspots, and providing effective volt-
age regulation on the chip. Researchers have
proposed numerous techniques to address
these problems, which will intensify with new
processor generations.

Much research focuses on static, design
time techniques for power management, but
dynamic techniques are also appealing because
they let the computer system make adjust-
ments on the fly, according to the current
power situation. Indeed, part of the difficul-
ty with static, design time decisions is the
impossibility of knowing the true worst case.
With dynamic techniques, performance is no
longer tied to static worst-case estimates.
Instead of forcing designers to choose a clock
frequency and voltage combination that
accommodates the worst-case application
without a power emergency, dynamic voltage
and frequency scaling (DVFS) invokes restric-
tive frequency and voltage only when the
DVFS controller deems the worst case is

imminent. But while dynamic techniques
have strong advantages, their behavior is hard
to predict with enough accuracy to guarantee
that they will adhere to the worst-case limits
in all situations. Even if designers could bound
and reason about a single on-chip dynamic-
control response, analysis becomes much
more complex when the response must com-
pose the effects of several control mechanisms
that operate simultaneously.

Formal control-theoretic techniques have
proved useful in many dynamic control sce-
narios—from aerospace systems to manufac-
turing—because their formal underpinnings
let designers analyze and bound worst case
behavior. In microprocessor power control,
such techniques let designers reason about
individual control responses and enable them
to predict response behavior when individual
responses are composed into an overarching
complex control response.

For the past two years, we have studied the
application of formal control analysis and
implementation techniques to power prob-
lems in high-end microprocessors, with a
focus on managing DVFS adjustments. In

Qiang Wu
Philo Juang

Margaret Martonosi
Li-Shiuan Peh

Douglas W. Clark
Princeton University

THESE TECHNIQUES DETERMINE WHEN TO SPEED UP A PROCESSOR TO REACH

PERFORMANCE TARGETS AND WHEN TO SLOW IT DOWN TO SAVE ENERGY.

THEY USE DYNAMIC VOLTAGE AND FREQUENCY SCALING TO BALANCE SPEED

AND AVOID WORST CASE FREQUENCY LIMITATIONS FOR BOTH MULTIPLE-

CLOCK-DOMAIN AND CHIP MULTIPROCESSORS.

FORMAL CONTROL TECHNIQUES
FOR POWER-PERFORMANCE

MANAGEMENT

Published by the IEEE Computer Society 0272-1732/05/$20.00 © 2005 IEEE

multiple-clock-domain (MCD) processors,
we have studied methods for speed balancing
among voltage-frequency islands by using for-
mal control on the occupancies of the syn-
chronizing queues that link these islands. This
work extends naturally to chip multiproces-
sors (CMPs). For these, we assume that each
multiprocessor has several on-chip cores and
that each core has its own voltage-frequency
island. Together the cores run a multithread-
ed program. As with MCD multiprocessors,
queues serve as a proxy for the processing load
on each core, except that for CMPs they are
each CMP’s local task queues.

Our work1-3 contributes to high-performance
multiprocessing in three significant ways:

• Our rigorous modeling and stability
analysis techniques provide designers
with insight and guidance, and make the
design more efficient and resilient.

• Our control algorithms are straightfor-
ward and hardware-efficient.

• Our DVFS controllers outperformed
existing online DVFS schemes, offering
a two- to eightfold savings in energy-
delay product over a wide range of appli-
cations in both MCD processors and
CMPs.

Modeling the problem
As Figure 1 illustrates, the goal of DVFS is

to scale the frequency to match varying per-
formance demand, or workload changes.
Because changing clock frequency will alter
the execution speed, a perfect DVFS scheme
will lead to a perfect match between the
demand and domain execution capability, with
no performance degradation or energy waste
because of a mismatch between the two, Eslack.
Thus, for a perfect DVFS, as in Figure 1b, Eslack

essentially also represents energy savings.
Queue occupancy is our DVFS controller’s

main input. An MCD processor typically
uses interface queues between clock domains
to reduce the risk of metastability, which
might occur when data moves from one
domain to another. These queues can also
give clues about the speed balance between
the sender and receiver domains. An empty-
ing queue, for example, might mean the
receiver is too fast relative to the sender, while
a filling queue might mean it is too slow. A

stationary queue is a perfect match of receiv-
er and sender speeds. In a CMP, our model’s
queues correspond to each core’s task queues,
which contain the threads scheduled to run
on that core. Again, an emptying task queue
indicates that the core is running fast and
able to absorb its assigned workload; a fill-
ing task queue indicates that the core is not
handling the workload fast enough. A feed-
back control scheme for DVFS that uses the
queue occupancy as a feedback signal to con-
trol the domain frequency can adapt execu-
tion speed to varying demand. If the
adaptations are fast enough, the DVFS
scheme should yield results close to the per-
fect matching in Figure 1b.

Queue and clock domain dynamics
Figure 2 is a single-queue model for a clock

domain with an input queue. For a clock
domain, the frequency and corresponding
voltage cannot change instantaneously, and
the minimum time requirement is one possi-
ble frequency change. Our model thus has a
control interval that fixes the frequency inside.
Using T as the length of a single control inter-
val, the kth control interval is just the time
period [kT, (k + 1)T], where N is the total
number of sampling periods in a control inter-
val. The length of each sampling period is Δt,
so T = NΔt.

As a first step, we modeled performance
demand λ(t) and service rate μ(t) inside each
control interval as an independent and sta-

53SEPTEMBER–OCTOBER 2005

(a) (b)

Capability

Performance demand

t

Eslack

Capability

Performance demand

t

Figure 1. For a processor, online dynamic voltage and frequency scaling
aims to scale frequency to match varying performance demand. Without
DVFS (a), energy waste (Eslack) occurs (shaded area), but a perfect DVFS con-
trol scheme (b) can result in a perfect match between domain-execution
capability and demand.

tionary random process along the time axis.4

That is, they have identical distributions for all
t inside an interval. The expected values and
variances (or noise levels) of λ(t) and μ(t) are
⎯λ, V(λ),⎯μ, and V(μ), respectively. (From this
point, for variable x, ⎯x represents x’s expect-
ed value, and V(x) represents its variance. The
subscript k means that these values are for the
kth control interval.)

Given a queue occupancy at time t of q(t),
the basic queue equation is

q(t+Δt) − q(t) = (λ(t) − μ(t)) Δt (1)

Thus, queue occupancy change within
some time period equals the number of arriv-
ing elements minus the number of departing
elements in that period.

Next we used the basic queue equation to
model the queue domain dynamics across dif-
ferent control intervals. The average queue
occupancy over all sampling points in the pre-
vious interval is the feedback signal for the
current interval. We denote the feedback sig-
nal for the kth control interval as q′k and the
queue occupancy at the kth interval’s starting
point as qk. We can then express these two
dynamic state variables in terms of values from
the previous interval, and recursively expand
them using the basic queue dynamics in Equa-
tion 1. A continued derivation2 of q′k and qk

yields an analytical model that describes the
dynamics in the queue domain’s system of
interest across different control intervals:

(2)

where⎯t1 and⎯C2 are parameters that describe
⎯μk−1 (the expected value of the service rate) in
terms of the real control signal—frequency
fk-1.2

Intuitively, this means⎯q′k, the expected
value of the average queue occupancy over a
control interval, equals the sum of the queue
occupancy at the beginning of interval⎯qk−1,
and the average queue changes because of the
differences between the demand and service
rates (⎯λk−1 and⎯μk−1). We can similarly inter-
pret⎯qk, the expected value of the queue occu-
pancy at the beginning of the next interval.

Interval-based controller design
In designing an interval-based DVFS con-

troller for MCD processors, a straightforward
approach would be to control the interval fre-
quency as in Figure 3a. As Equation 2 indi-
cates, however, this control system is nonlinear,
and tools for general nonlinear systems are very
limited,5 which makes designing an effective
controller difficult. Fortunately, as Figure 3b
shows, we can separate the nonlinearity in the
original system dynamics and use a feedback
linearization or nonlinear transformation6 to
compensate for the nonlinearity, which yields
an essentially linear system.

Linearization makes it possible to choose
from a rich set of linear control techniques,6

including many variations of the proportion-
integral-derivative (PID) controller. As Figure
4 shows, PID-based controllers adjust the exe-
cution rate to adapt to the workload change,
considering the value and change rate, as well
as the controller’s observed history of work-
load changes.

Our interval-based DVFS controller, which
the following state equations describe, is based
on a proportion-integral (PI) controller, a
popular variant of the PID-based controller.

⎯ ′ = + −
+

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

− −

−

q q
T

t
C

f

q q

k k k

k

k

1 1

1
2

1

2
1λ

kk k

k

T

t
C

f

T− −

−

+ −
+

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 1

1
2

1

2
1λ

54

ENERGY-EFFICIENT DESIGN

IEEE MICRO

Queue, q

Clock
domain

Load rate, λ
Frequency, f

Service rate, μ

q

Event-driven
DVFS controller

f

Figure 2. Single-queue model for a clock domain with input
queue q. The circle represents the clock domain being con-
sidered, such as a floating-point functional unit. The domain
has frequency f and an execution capability or service rate,
µ, a function of f. The performance demand is λ, and the
queue has finite size.

(3)

The first two subequations in Equation 3
are simply the analytic queue-domain model
in Equation 2; in the other subequations, qref

is the reference queue occupancy—the target
or nominal operating queue point; ek is the
error signal; µk is the new service rate coming
from the PI controller, with KI and KP the con-
trol parameters (or the so-called control
gains); and fk is the new clock frequency
obtained from µk.

We then analyzed the stability and transient
performance of Equation 3 and chose appro-
priate control gains, KI and KP, a process we
describe in detail elsewhere.2

Implementation issues
Implementing our DVFS controller requires

only a modest amount of hardware support.2

Two counters are needed to frame the control
interval and to record cumulative queue occu-
pancy. Given that the control interval is typi-
cally around a few thousand cycles, and the
queue size is typically around tens or hundreds,
small 16- to 32-bit counters should suffice in
most cases. Apart from these counters, the most
complicated logic is to compute control signal
f. This logic consists of two parts: one to com-
pute µk and one to compute the nonlinear
transformer (obtaining fk from μk). Elsewhere2

we proposed two possible implementations for
these tasks, which use small, precomputed
lookup tables or small multipliers. Though this
part of the logic is more complicated, the con-
trol algorithm activates it only once for each
control interval. Therefore, the overall hard-
ware cost and power consumption are still neg-
ligible, relative to total system power
consumption.

Reference queue occupancy qref is a key fac-
tor for our DVFS controller because its value
specifies the actual trade-off between perfor-
mance degradation and energy savings.
Increasing that value makes DVFS control

more aggressive in saving energy; decreasing it
emphasizes performance. A design could also
have the operating system or application soft-
ware adjust qref, for example, through a special
mode-set instruction. This flexibility provides
the opportunity for hardware and software to
cooperate in achieving energy efficiency. The
hardware would be responsible for imple-
menting the fine details of speed adaptation
while the software would make the overall pol-
icy decision (through qref) on how aggressive-
ly to save energy or preserve performance.

⎯ ′ = + −()
= + −()

− − −

− − −

q q
T

q q T

k k k k

k k k k

1 1 1

1 1 1

2
λ μ

λ μ

ee q q

K e K e e

f
C

k k

k k I k P k k

k

= ′ −

= + + −()
=

− −

⎯ ref

μ μ
μ

1 1

2 kk

kt1 1− μ

55SEPTEMBER–OCTOBER 2005

Nonlinear
controller

f
q

μ

(a) (b)

Original
system

Compensated
system

Demand, λ

Linear
controller

f
q

Demand, λ

DomainDomain

Transformer

Figure 3. Making the control system linear. A simple design would aim to
control interval frequency directly (a), but the current control system is non-
linear, making design difficult. A better approach is first to separate the non-
linearity inside this system to arrive at a nonlinear transformation on the
feedback path (b). In this transformation, μk becomes the control signal for
the compensated linear system, and actual or internal control signal fk is
obtainable through a transformation on the feedback path.

PID-based
controller

q

eqref μ
Transformer Controlled system

(queue and domain)

f− q

Linearized system

+

Disturbance input, λ

Figure 4. General block diagram for a proportion-integral-derivative (PID)
controller. In the figure, q is the measured feedback signal; qref is the target
or nominal queue operating point; e is the error signal and the controller
input; µ is the obtained control signal (or actuate signal), which is propor-
tional to the error value, the integral of previous errors, and the error change
rate; f is the frequency, which the controller obtains from µ through a non-
linear transformation. Finally, demand λ is the disturbance input, which the
controller is trying to match by adjusting the execution rate.

Experimental results
Our simulation environment is based on the

SimpleScalar toolset7 with the Wattch8 power
estimate extension and the MCD processor
extension.9 The MCD extension has four clock
domains and includes a cycle-by-cycle com-
putation of the synchronization overhead from
independent clock frequency, phase, and clock
jitter. The environment also implements an
XScale-like dynamic voltage and frequency
changing mechanism that lets the hardware
use any frequency within the allowable range.

We implemented the online DVFS con-
troller for local queues and domains, following
the design described earlier. Also, as others have
done,10,11 we ran the front-end domain at a
fixed maximum speed and allowed the DVFS
controller to control the integer, floating-point,
and load/store domains. Table 1 summarizes
our simulation parameters. We assumed a per-
formance degradation target of about 4 per-
cent, roughly the same as that in other
experiments,11 and a qref roughly a third of the
total size for integer and floating-point domains
(6 for the integer domain, 5 for floating-point).
Since the load/store domain is relatively more
critical to overall performance,12 we chose a qref

value of 3 for it, roughly a fifth of the total size.
We also assumed that the processor would
apply clock gating whenever the unit was idle.
The selected values for all other architecture
parameters are the same as those in our previ-
ous work.10,11 (Some values, such as clock jit-
ter, are based on published industrial numbers.)

We obtained results for six Mediabench,
eight SPECint, and four SPECfp applica-
tions—a program set that displays a wide
range of program behavior.2 To compare our
results with those of other DVFS approach-
es, we held performance roughly the same for
all approaches and looked at metrics such as
energy savings, energy-delay product (EDP)
improvement, and power-performance
ratio—the percentage of power saved per per-
centage of performance degradation. Table 2
presents the comparative results.

SemiOracle assumes the DVFS, by oracle,
has full knowledge of a program’s slack, and it
uses a Shaker algorithm to decide DVFS set-
tings. Its results are thus not realistic, but rather
serve as a comparison, although the SemiOr-
acle result is not the upper bound for all pos-
sible DVFS results.9 Heuristic represents the
heuristic-based online DVFS that Semeraro et
al. proposed.11 We assumed an additional 5
percent performance degradation target for
Heuristic and a 1 percent target for SemiOra-
cle because these target values will lead to a
performance degradation similar to analytic.
Finally, for Synchro, which scales the frequency
and voltage for the whole processor, we set the
performance degradation to roughly the same
value as for other approaches.

As the table shows, the overall results from
our DVFS scheme (Analytic) are very promis-
ing. We achieved a power-performance ratio
of 6.2 on average, relative to a fully synchro-

56

ENERGY-EFFICIENT DESIGN

IEEE MICRO

Table 1. Summary of simulation parameters.

Parameter Value
Reference queue point (qref) 6 for integer, 5 for floating-point,

and 3 for load/store
Domain frequency range 250 MHz to 1.0 GHz
Domain voltage range 0.65 V to 1.20 V
Frequency/voltage change speed 73.3 ns/MHz, 171 ns/2.86 mV
Control interval length 10,000 instructions
Domain clock jitter ±110 ps, normally distributed
Interdomain synchronization window 300 ps

Table 2. Average results for a range of DVFS schemes.

Energy-delay
Performance Energy product Power-performance

Schemes* degradation (%) savings (%) improvement (%) ratio
Analytic 3.6 19.6 16.7 6.2
SemiOracle 3.7 18.1 15.0 5.6
Heuristic 5.8 11.9 6.8 3.0
Synchro 4.7 7.6 3.3 2.5

*Analytic represents our online DVFS scheme. SemiOracle is an existing scheme with SemiOracle-based DVFS. Heuristic represents

heuristic-based DVFS. Synchro is conventional, fully synchronous voltage scaling.

nous processor. Compared with Heuristic,
Analytic achieves far better results in EDP
improvement and power-performance ratio.
Analytic’s average EDP improvement, for
example, was 146 percent higher than that of
Heuristic (16.7 percent versus 6.8 percent,
with numbers relative to a synchronous proces-
sor. Analytic also produces a better average
result than SemiOracle, with an average EDP
improvement about 11 percent higher than
that of SemiOracle (16.7 percent versus 15.0
percent). These results show the effectiveness
of our DVFS controller’s ability to automati-
cally regulate voltage and frequency choices.

Finally, all MCD DVFS results (Analytic,
SemiOracle, and Heuristic) are much better
than those of Synchro, which shows the ener-
gy savings potential of an MCD processor
with extra flexibility in DVFS control.

Extensions for chip multiprocessors
With extensions, our formal DVFS

approach works equally well with CMPs.1

Substituting individual processors for func-
tional domains is fairly straightforward, but
CMPs typically do not have the synchroniza-
tion queues found in MCDs. Consequently,
to extend our approach to CMPs, we used
each processor’s task queue—either a software
data structure in the operating system or (as in
our experiments) a hardware structure in each
tile.13 If each element in the task queue is a
thread in a parallel application, then the faster
a processor executes, the quicker the task
queue will drain. Threads have variable exe-
cution times, just as individual instructions
(especially loads) have significant variation.
We assumed that a CMP consists of several
tiles organized as a two-dimensional grid with
a mesh interconnect and that each tile
includes a processor, task queue, and associ-
ated memory controller.

Elsewhere2 we argue that considering the
interactions among MCDs significantly increas-
es the problem’s complexity and that such inter-
actions are small enough to ignore. In contrast,
in CMPs, interactions among parallel applica-
tion threads are typically much stronger. Thus,
although DVFS based on purely local infor-
mation is simple and appealing, it is not always
sufficient. In particular, for some applications,
interthread relationships mean that the target
qref has three critical requirements:

• It must adapt at runtime to match thread
behavior.

• It must be based on global information,
rather than fixed locally.

• Its setting must preserve performance.

Our solution for these requirements is dist-
PID, a formal, online method that supports
stable, distributed, coordinated DVFS con-
trol. In the experimental results section, we
compare dist-PID with the purely local inter-
val-based method we have described, which
we ported trivially to work with CMPs.

Dist-PID
The idea behind dist-PID is that the threads

on the critical path must run at maximum
speed to preserve performance, but others can
run more slowly to maximize energy savings
without affecting performance. In parallel
applications, critical-path threads are the last
threads to reach a synchronization point. If
each tile knows the expected execution time of
the longest running-thread, it can adjust its
processing speeds to match. Determining
exactly which threads are on the critical path
is highly challenging, so dist-PID attempts to
identify these threads by choosing which tile
has the most work left to do. This is not
unreasonable because parallel sections require
all threads to finish before moving on. Thus,
the tile with the most work to do is likely to
be the one on the critical path.

Dist-PID operation has three steps. First,
at each tile, it estimates future queue occu-
pancy (tile workload) assuming the maximum
service rate, and denotes this as qtarget. Second,
through pairwise information exchange, each
tile identifies the tile with the critical-path
thread by keeping track of the highest qtarget

received. Finally, with this information, each
tile determines the new service rates (tile fre-
quency settings), slowing down tiles not exe-
cuting critical-path threads. Figure 5 shows a
snippet of execution for a simple parallel
application in which we assume that a thread
running on a tile has spawned three tiles: A, B,
and C. Mathematically A, the slowest running
core (or most heavily loaded), must equal the
maximum frequency (1 GHz), running the
tile on the critical path at highest frequency. In
all other tiles, the equation produces a fre-
quency lower than maximum because those

57SEPTEMBER–OCTOBER 2005

tiles’ original qtargets are lower than qref.

Estimating queue occupancies
Because parallel applications have vastly dif-

ferent granularity ranges, to estimate the occu-
pancy, or workload, of a particular tile relative
to that of another, we had to augment the task
queue information with a normalizing load
factor. This has two strong advantages. First,
the controller can identify and account for
longer-running threads and can thus differ-
entiate between lightly and heavily loaded
tiles. Second, different programs can use the

same hardware controller because the program
carries information about the weight of each
of its threads (which the compiler or pro-
grammer has set), thus normalizing that
weight to the hardware.

The controller associates a normalizing load
factor (0 to 1,000) with each thread, which
either the compiler or programmer provides as
an estimate of the thread’s lifetime or its load on
the processor. Various methods are suitable for
obtaining load factors, including regression-
based tools that model performance.14,15 For an
application such as Quicksort, we needed only
a simple model based on the input argument
size and requiring only one multiply. The model
yielded only a 2 percent error in estimating run-
time over various input distributions. For Oth-
ello (a game-playing algorithm), a linear model
with a single multiplication led to a 7 percent
error for random board configurations. Given
that our technique requires only relative accu-
racy in estimating thread runtime, we could
simplify these models even more to reduce their
processing overhead. Queue occupancies at each
tile are then the summation of the normalizing
load factors in the tile’s task queue.

Experimental results
To evaluate dist-PID and local-PID, we

coded five multithreaded benchmarks. Two
are kernels that are aggressively multithread-
ed to tax our technique (recursive Quicksort
and Othello). Three others are SPEC
(http://www.spec.org) benchmarks (equake,
twolf, and mcf) that we manually partitioned.

We generated our results using a multi-
processor simulator that is a modification of
Xtrem16—a validated SimpleScalar ARM7

simulator. Our modifications added support
for multiprocessing and networking, as well
as additional power modeling for new mod-
ules. We modeled the chip’s interconnect
power using Orion17 (with a nominal voltage
of 2.08 V). For DVFS, processors operated at
frequencies between 100 MHz (0.45V) and
1 GHz (2.08V).

We modeled a 16-core CMP with the archi-
tectural parameters in Table 3, scheduling
threads with a simple heuristic policy:

• Look for free processors.
• If none are available, schedule onto the

processor with the lightest load.

58

ENERGY-EFFICIENT DESIGN

IEEE MICRO

600 MHz 475 MHz

850 MHz

22

22

0.375
0.375

16.2516.25
qk−1:16 qk:20

qtarget=22

qk−1:29 qk:26

qtarget=16.25

qk−1:11 qk:9

qtarget=0.375

A

B

C

Figure 5. How dist-PID works. On tile A, queue occupancy
increased (from 16 to 20) because the tile cannot keep up
with the processing requirements, while the reverse is true
at B (11 to 9) and C (29 to 26). Thus, the frequency should
be less for B and C, and more for A. The idea is to have
each tile evaluate its own maximum service rate (qtarget).
Because tile A is experiencing the highest load, it has the
highest qtarget. Each tile then selects A’s qtarget to use as the
reference queue occupancy (qref).

Table 3. Architectural parameters.

Parameter Value
Processor clock Two-way, 1-GHz, 7 stage pipelining
Issue/decode/commit width 2/2/2 instructions per cycle
L1 data and instruction caches 32-Kbyte, 4-way, 32-byte blocks,

1-cycle latency
L2 cache None
Memory 20 cycles
Network topology 2D mesh
Channel width and flit size 256 bit/256 bit
Link traversal 1-cycle latency between hops

3-cycle network injection/ejection
DVFS transition and setup delays 73.3 ns/MHz, 171 ns/2.86 mV

The processor cores broadcast queue occu-
pancies and load factors every 2,500 cycles
while carrying out DVFS (if needed) every
50,000 cycles.

Savings in energy-delay product. To evaluate the
efficiency of dist-PID and local-PID schemes,
we normalized them against a baseline
scheme—a processor with no DVFS but that
“tile gates” a tile when all the threads in a tile’s
task queue are stalled (waiting for other
threads) or when the tile has no threads. Dur-
ing this time, the processor shuts off the tile,
and thus it consumes no dynamic power.

Figure 6 shows the EDP with normalized
dist-PID and local-PID for the five bench-
marks. Local-PID uses a qref of only 300, a third

of the maximum expected queue occupancy.2

Overall the local scheme had 86 percent of the
baseline’s energy consumption but increased
runtime by 7 percent, producing an EDP that
is 97 percent of the baseline. By comparison,
dist-PID saved 20 percent of energy but
increased runtime only 6 percent, giving an
EDP of 85 percent. Othello is problematic for
both schemes, since it has long-running threads
punctuated with short bursts where it launch-
es many threads. This combination makes it
difficult to figure out the critical path. Quick-
sort, though, maps well to dist-PID: The size
of the input arguments proved a good proxy
for computation complexity.

Sensitivity to load-factor variation. Figure 7

59SEPTEMBER–OCTOBER 2005

0

0.2

0.4

0.6

0.8

1.0

1.2

Quicksort Othello equake twolf mcf average

Local-PID Dist-PID

Figure 6. Energy-delay product with local-PID and dist-PID. We normalized both schemes against a baseline
(EDP of 1.0) in which a processor shuts off the tile when its task queue is waiting for threads. In all cases,
dist-PID equaled or outperformed local-PID.

0

1

2

3

4

5

6

7

8

9

100× 10× 1× 0.1× 0.01×
Load factor

N
or

m
al

iz
ed

 e
xe

cu
tio

n

local-PID (Othello) dist-PID (Othello) local-PID (Quicksort) dist-PID (Quicksort)

Figure 7. Runtime variations with varying normalizing load factor. Again, dist-PID outperformed local-PID.

shows the execution time (normalized against
the baseline) after varying the normalizing
load factor of Othello and Quicksort from
100× to 0.01× for both schemes. For both
applications, dist-PID is relatively resilient
under normalizing load factor variation.
Local-PID, however, is quite fragile. For Oth-
ello the performance of local-PID jumps quite
suddenly at some point, when the normaliz-
ing load factor crosses over qref. Once the nor-

malizing load factor consistently stays above
qref, local-PID tries to preserve performance. If
it is below qref, local-PID tries to save energy,
without regard to the overall program state.
This crossover point is not always foreseeable
and not particularly predictable.

These results show that distributed, coordi-
nated control improves EDP and is also large-
ly more resilient because of the flexibility that
intertile coordination affords. For Quicksort,

60

ENERGY-EFFICIENT DESIGN

IEEE MICRO

Dynamic voltage and frequency scaling (DVFS) is a com-
mon technique for improving energy efficiency in processors.
DVFS schemes vary according to level of dynamism, either
online or offline, and formalism. Most existing DVFS schemes
are offline,1-4 and typically use profiling to do offline analysis.
Either a compiler1,4 or a binary editor3 then writes the DVFS
configuration into the application. The effectiveness of such a
profile-based scheme depends on the quality of the profile. Our
schemes are online and thus require no profiling information.
Instead, they respond to workload changes at runtime.

In formalism, existing DVFS schemes range from purely
heuristic to formal, analytic schemes. Although many offline
schemes take mathematical optimization-based formal
approaches,1,2,4 nearly all existing online DVFS schemes are
heuristic-based.5-7 At runtime, the scheme enables monitor-
ing of certain processor metrics, such as cache miss rate6 or
queue occupancy.5,7 The scheme then compares these metrics
to the threshold values and applies some rules according to
the comparison results. Currently, the best known online
DVFS scheme for a multiple clock domain multiprocessor is
the AttackDecay algorithm by Semeraro et al.7 Heuristic
schemes impose significant limitations, however. First, it is
not analytically clear how to improve them and thus make
DVFS more effective. Second, the trial-and-error tuning
process for parameters is time-consuming. Third, it is gener-
ally hard to scale the heuristics for large systems, since the rules
and tuning effort required can grow exponentially.

Recently, researchers have increased efforts to apply control
theory or other system theories in CPU design and control.8,9

An example is the application of control theory to thermal
control.8 Previous control theoretic techniques address ener-
gy efficiency in processors,10 but only for multimedia proces-
sors with predictable workloads. Our techniques, in contrast,
are suitable for general workloads.

References
1. C-H Hsu and U. Kremer, “The Design, Implementation, and

Evaluation of a Compiler Algorithm for CPU Energy Reduc-
tion,” Proc. Programming Language Design and Implemen-
tation (PLDI 03), ACM Press, 2003, pp. 38-48.

2. J.R. Lorch and A.J. Smith, “Improving Dynamic Voltage Scal-
ing Algorithm with PACE,” Proc. Sigmetrics, ACM Press,
2001, pp. 50-61.

3. G. Magklis et al., “Profile-Based Dynamic Voltage and Fre-
quency Scaling for a Multiple Clock Domain Microprocessor,”
Proc. Int’l Conf. Computer Architecture (HPCA 03), IEEE CS
Press, 2003, pp. 14-25.

4. F. Xie, M. Martonosi, and S. Malik, “Compile-Time Dynamic
Voltage Scaling Settings: Opportunities and Limits,” Proc. Pro-
gramming Language Design and Implementation (PLDI 03),
ACM Press, 2003, pp. 49-62.

5. A. Iyer and D. Marculescu, “Power Efficiency of Multiple Clock
Multiple Voltage Cores,” Proc. Int’l Conf. Computer-Aided
Design (ICCAD 02), IEEE CS Press, 2002, pp. 379-386.

6. D. Marculescu, “On the Use of Microarchitecture-Driven
Dynamic Voltage Scaling,” Workshop on Complexity-Effec-
tive Design (WCED) 2000; http://www.ece.cmu.edu/~dianam/
conferences/wced00.pdf.

7. G. Semeraro et al., “Dynamic Frequency and Voltage Control
for a Multiple Clock Domain Microarchitecture,” Proc. Int’l
Symp. Microarchitecture (Micro-35), IEEE CS Press, 2002, pp.
356-367.

8. K. Skadron, T. Abdelzaher, and M. Stan, “Control-Theoretic
Techniques and Thermal-RC Modeling for Accurate and Local-
ized Dynamic Thermal Management,” Proc. Symp. High Per-
formance Computer Architecture (HPCA 02), IEEE CS Press,
2002, pp. 17-28.

9. Q. Wu et al., “Formal Online Methods for Voltage/Frequency
Control in Multiple Clock Domain Microprocessors,” Proc. Int’l
Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS 04), ACM Press, 2004, pp. 248-
259.

10. Z. Lu et al., “Control-Theoretic Dynamic Frequency and Voltage
Scaling,” Proc. Int’l Conf. Compiler, Architecture, and Synthe-
sis for Embedded Systems, ACM Press, 2002, pp. 156-163.

Dynamic Voltage and Frequency Scaling Schemes

local-PID performs well when the normaliz-
ing load factors are overestimated—for exam-
ple, when the list to be sorted is larger than
what we tuned for. This tells the local-PID
controller to try to preserve performance.
When normalizing load factors are underesti-
mated, though, performance skyrockets—
much more than in dist-PID. However, if the
load factor is tuned for a large Quicksort, a
smaller one will take a massive hit in perfor-
mance. Common sense would thus be to lean
toward tuning for smaller Quicksorts. Taken to
the extreme, only very small Quicksorts would
be eligible for energy savings, which misses the
point of DVFS.

Our work shows that formal techniques
for managing power-performance trade-

offs are effective on several types of high-per-
formance processors—both single-core MCD
processors and multicore CMPs. Although
these individual solutions are appealing and
show substantial EDP improvements for
many applications, the future of this work lies
in designing and implementing multiloop
control techniques that coordinate several
metrics at once, using a variety of policies and
mechanisms. We are working toward such
implementations and believe that they offer
great promise for allowing future micro-
processors to actively manage their power, per-
formance, and thermal goals. MICRO

Acknowledgments
We thank David Albonesi and his research

group for their MCD simulator, which we
used as a base for some of our simulation
infrastructure. Thanks also to Julia Chen and
Kevin Ko for their contributions to the CMP
architecture and simulator used in portions of
this work. We also thank Diana Marculescu,
Anoop Iyer, Greg Semeraro, and YongKang
Zhu for helpful discussions during the early
development of this work.

This research was supported by NSF grants
CCR-0086031 (ITR) and CNS-0410937.
Martonosi’s work is also supported in part by
Intel, IBM, and SRC.

References
1. P.Juang et al., “Coordinated, Distributed,

Formal Energy Management of Chip
Multiprocessors,” Proc. Symp. Low-Power

Electronics and Design (ISPLED 05), IEEE
Press, 2005, pp. 127-131.

2. Q. Wu et al., “Formal Online Methods for
Voltage/Frequency Control in Multiple Clock
Domain Microprocessors,” Proc. Int’l Conf.
Architectural Support for Programming
Languages and Operating Systems (ASPLOS
04), ACM Press, 2004, pp. 248-259.

3. Q. Wu et al., “Voltage and Frequency
Control with Adaptive Reaction Time in
Multiple-Clock-Domain Processors,” Int’l
Symp. High-Performance Computer
Architecture (ISCA 05), IEEE CS Press, 2005,
pp. 178-189.

4. R.V. Hogg and A.T. Craig, Introduction to
Mathematical Statistics, 5th ed., Prentice
Hall, 1995.

5. B.C. Kuo, Automatic Control Systems, 7th
ed., Prentice Hall, 1995.

6. K.J. Astrom and B. Wittenmark, Adaptive
Control, Addison-Wesley, 1995.

7. D. Burger and T.M. Austin, “The
SimpleScalar Tool Set, Version 2.0,”
Computer Architecture News, June 1997,
pp. 13-25.

8. D. Brooks, V. Tiwari, and M. Martonosi,
“Wattch: A Framework for Architectural-
Level Power Analysis and Optimization,”
Proc. Int’l Symp. Computer Architecture
(ISCA 00), IEEE CS Press, 2000, pp. 83-94.

9. G. Semeraro et al., “Energy Efficient
Processor Design Using Multiple Clock
Domains with Dynamic Voltage and
Frequency Scaling,” Proc. Int’l Symp. High-
Performance Computer Architecture (HPCA
02), IEEE CS Press, 2002, pp. 29-40.

10. G. Magklis et al., “Profile-Based Dynamic
Voltage and Frequency Scaling for a Multiple
Clock Domain Microprocessor,” Proc. Int’l
Conf. Computer Architecture (ISCA 03),
IEEE CS Press, 2003, pp. 14-25.

11. G. Semeraro et al., “Dynamic Frequency and
Voltage Control for a Multiple Clock Domain
Microarchitecture,” Proc. Int’l Symp.
Microarchitecture (Micro-35), IEEE CS Press,
2002, pp. 356-367.

12. E. Talpes and D. Marculescu, “A Critical
Analysis of Application-Adaptive Multiple
Clock Processors,” Proc. Int’l Symp. Low
Power Electronics and Design (ISLPED),
ACM Press, 2003, pp. 278-281.

13. P. Juang et al., “Hardware-Modulated
Parallelism in Chip Multiprocessors,” tech.

61SEPTEMBER–OCTOBER 2005

report, Princeton Univ., Dept. Electrical Eng.,
2005.

14. A. Muttreja et al., “Automated
Energy/Performance Macromodeling of
Embedded Software,” Proc. 40th Design
Automation Conf. (DAC 04), IEEE CS Press,
2004, pp. 99-102.

15. A. Muttreja et al., “Hybrid Simulation for
Embedded Software Energy Estimation,”
Proc. 42nd Design Automation Conf. (DAC
05), ACM Press, 2005, pp. 23-26.

16. G. Contreras et al., “XTREM: A Power
Simulator for the Intel Xscale Core,” Proc.
Conf. Languages, Compilers, and Tools,
ACM Press, 2004, pp. 115-125.

17. H.-S. Wang et al., “Orion: A Power-
Performance Simulator for Interconnection
Networks,” Proc. Int’l Symp.
Microarchitecture (Micro-35), IEEE CS Press,
2002. pp. 294-305.

Qiang Wu is a PhD candidate in Princeton
University’s computer science department. His
research interests include power-aware micro-
processor design and control. Wu has an MS
in electrical engineering from the University
of Sydney and a BS in electrical engineering
from Southeast University in China. He is a

student member of the IEEE and ACM.

Philo Juang is a graduate student at Prince-
ton University. His research interests include
chip multiprocessors and sensor networks.
Juang has a BSEE from the University of Vir-
ginia. He is a student member of IEEE.

Margaret Martonosi is a professor of electri-
cal engineering at Princeton University. Her
research interests include computer architec-
ture and the hardware-software interface, with
particular focus on power-efficient systems
and mobile computing. Martonosi has a PhD
and an MS from Stanford University, and a
BS from Cornell University, all in electrical
engineering. She is a senior member of IEEE
and a member of ACM, where she is the vice
chair of ACM SIGARCH.

Li-Shiuan Peh is an assistant professor of elec-
trical engineering at Princeton University. Her
research interests include interconnection net-
works and parallel computer architectures.
Peh has a PhD in computer science from Stan-
ford University. She is a member of the IEEE
and ACM.

Douglas W. Clark is a professor of computer
science at Princeton University. His research
interests include computer architecture, low-
power techniques, and clocking and timing
in digital systems. Clark has a PhD in com-
puter science from Carnegie-Mellon Univer-
sity and a BS in engineering and applied
science from Yale University.

Direct questions and comments about this
article to Margaret Martonosi, Dept. of Elec-
trical Engineering, Princeton University, Prince-
ton, NJ 08544-5263; mrm@princeton.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

62

ENERGY-EFFICIENT DESIGN

IEEE MICRO

Coming in
IEEE Micro

November–December 2005
Guest Editors

Sarita Adve, University of Illinois, Urbana-Champaign
Pia Sanda, IBM

Reliability-Aware Microarchitecture
The industry must develop novel microarchitectural approaches to build
reliable and dependable computers out of unreliable and unpredictable
elements. This issue focuses on error-tolerant microarchitectures, low-
overhead spatial or temporal redundancy techniques, and other strategies
for enhancing reliability.

