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ABSTRACT
Dynamic voltage and frequency scaling (DVFS) is a widely-used
method for energy-efficient computing. In this paper, we present
a new intra-task online DVFS scheme for multiple clock domain
(MCD) processors.

Most existing online DVFS schemes for MCD processors use a
fixed time interval between possible voltage /frequency changes.
The downside to this approach is that the interval boundaries are
predetermined and independent of workload changes. Thus, they
can be late in responding to large, severe activity swings. In this
work, we propose an alternative online DVFS scheme in which the
reaction time is self-tuned and adaptive to application and work-
load changes. In addition to designing such a scheme, we model
the proposed DVFS control and use the derived model in a formal
stability analysis. The obtained analytical insight is then used to
guide and improve the design in terms of stability margin and con-
trol effectiveness.

We evaluate our DVFS scheme through cycle-accurate simula-
tion over a wide set of MediaBench and SPEC2000 benchmarks.
Compared to the best-known prior fixed-interval DVFS schemes
for MCD processors, the proposed DVFS scheme has a simpler de-
cision process, which leads to smaller and cheaper hardware. Our
scheme has achieved significant energy savings over all studied
benchmarks (19% energy savings with 3% performance degrada-
tion on average, which is close to the best results from existing
fixed-interval DVFS schemes). For a group of applications with
fast workload variations, our scheme outperforms existing fixed-
interval DVFS schemes significantly due to its adaptive nature.

Overall, we feel the proposed adaptive online DVFS scheme
is an effective and promising alternative to existing fixed-interval
DVFS schemes. Designers may choose the new scheme for pro-
cessors with limited hardware budget, or if the anticipated work-
load behavior is variable. In addition, the modeling and analysis
techniques in this work serve as examples of using stability analy-
sis in other aspects of high-performance CPU design and control.

1. INTRODUCTION
Various Dynamic Voltage and Frequency Scaling (DVFS) schemes

have been proposed in the literature to improve the energy effi-
ciency of high-performance processors, for example [11, 14, 19,
24]. Among all DVFS schemes, intra-program DVFS can take ad-
vantage of program phase changes during execution and achieve
higher energy efficiency as compared to OS-level inter-program
DVFS schemes. Among intra-program DVFS methods, hardware-
based online DVFS schemes are driven by dynamic workloads, and
thus are more applicable than static profile-based offline ones. In
this paper, we design, model, analyze, and evaluate a new intra-
program online DVFS scheme with adaptive reaction time in the

context of multiple clock domain (MCD) processors [15, 20].
Most existing online DVFS schemes use a fixed time interval

to frame possible voltage/frequency changes. Specifically, during
the time interval, certain system metrics or statistics are monitored,
such as IPC [8] or average issue queue occupancy [19, 23]. At
the end of the interval, the statistics from the current and past in-
tervals are used to compute a new voltage/frequency setting for
future intervals. One limitation of the above schemes is that the
interval boundaries are predetermined and independent of work-
load changes. Thus, no matter what severe workload change oc-
curs, the fixed-interval approaches wait and attempt to adjust volt-
age/frequency at the end of the interval. In addition, they might
miss opportunities to respond to large activity swings inside the
interval. One simple scenario for this case is that the workload in-
creases dramatically in the first half-interval and decreases in the
second half. Average statistics (for example the average queue oc-
cupancy) over the entire interval may not be able to capture this
workload change.

Compared to the above fixed-interval schemes, in this work we
propose an online DVFS scheme in which the reaction time for
DVFS is not predetermined and is instead determined by the actual
workload variation. In other words, the instant to react is adaptive
to large, severe workload changes. So it could be more responsive.
On the other hand, given no or only minor workload changes, an
adaptive scheme will stay inactive for an arbitrarily long time. So
it could also be cost-effective.

We design our adaptive online DVFS scheme in the context of a
Multiple Clock Domain (MCD) architecture, which has been shown
to be a promising alternative to today’s synchronous architecture
and a better platform for DVFS control [15]. (A brief review of
MCD is provided in Section 2.) The triggering condition is based
on recent instant queue occupancy for the issue queues. More
specifically, two queue signals are monitored at each sampling pe-
riod. The first one is the relative queue occupancy value with re-
spect to a reference value, while the second one is the difference of
queue occupancies between two sampling points. Based on these
queue signals, appropriate DVFS decisions are made through a sim-
ple process, which also uses deviation window and resettable time
delay to handle the noise problem and avoid unnecessary DVFS
actions. After an initial design is done, we wish to obtain some an-
alytical insights on whether or how the designed DVFS system will
work and how to improve it. So we derive an aggregate continuous
model for the designed DVFS controller and use it in a formal sta-
bility analysis. The analytic insight obtained is then used to guide
and improve the design in terms of stability margin and control
effectiveness. Finally, we evaluate our DVFS scheme through a
cycle-accurate MCD simulator over a wide set of MediaBench and
SPEC benchmarks.
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Figure 1: The clock domain partitions in an MCD processor by
Semeraro et al [20].

Overall, we feel the main contribution of this work is threefold.
First, rigorous modeling and stability analysis techniques have been
applied to the design to provide insight and guidance, and make
the design more efficient and more resilient. Second, the decision
process in this design is very simple. This leads to smaller and
cheaper hardware. So this scheme is useful for processors with
limited hardware budgets. Third, for a group of applications with
fast workload variations, the current scheme outperforms existing
online DVFS schemes for MCD significantly due to its self-tuning
reactive nature (on average, 18% better than [23], and nearly 3 fold
better than [19]). So this scheme is also useful and suitable to pro-
cessors where the type of application behavior (i.e. rapid workload
variations) is known in advance.

The rest of the paper is structured as follows. In Section 2, we
give a brief review of the MCD processor design and implementa-
tion. Section 3 describes the detailed design of our adaptive DVFS
scheme. In Section 4, we model the designed DVFS control and
gain insights through a formal stability analysis. This is followed
in Section 5 by experimental results. In Section 6, we highlight
important related work. Finally, Section 7 offers our conclusions.

2. BACKGROUND: MULTIPLE CLOCK DO-
MAIN MICROPROCESSORS

Some computer architects and researchers have predicted that in
order to overcome the increasingly severe problems of clock dis-
tribution and power consumption, future high-performance micro-
processors may need to have multiple clock domains (MCD) or
use some form of asynchrony [1]. MCD processors use the Glob-
ally Asynchronous Locally Synchronous (GALS) clocking style
[15]. Each function block or domain operates with an indepen-
dently generated clock, and synchronization circuits ensure reliable
inter-domain communication.

Advantages of MCD processors include less clock distribution
and skew burden, less power consumption due to the absence of a
global clock tree, design modularity, and extra flexibility in DVFS
control [15]. The primary disadvantage of MCD processors is the
inter-domain communication and synchronization overhead. An
interface circuit is needed if data passes between two domains.

One key design issue for an MCD processor is the choice of
where to partition the clock domains. It is still an open research
question as to how to partition in order to maximize the power
performance benefit. Most existing MCD implementations use ar-
chitectural functional blocks as natural boundaries for clock do-
mains. For example, Figure 1 shows a 4-domain partition used by
the MCD implementation by Semeraro et al. [20], which consists
of the front end, integer processing core (INT), floating point pro-
cessing core (FP), and load store unit (LS). The main memory is

considered as an external separate clock domain not controlled by
the processor (for more details see [20]). Another popular MCD
implementation by Iyer and Marculescu [10] uses a 5-domain par-
tition, which is similar to that in Figure 1 but with the front-end
split into two clock domains.

Another key design issue for an MCD processor is the synchro-
nization interface design. A good interface design needs to have
low latency, high throughput, and virtually no synchronization fail-
ure (i.e., no metastability). Nearly all of the existing MCD interface
designs use some kind of queue structures for efficiency. One group
of designs [6] uses token-ring based FIFOs, which have a very low
latency and low synchronization overhead (there is no synchroniza-
tion cost if the token-ring FIFO is neither full nor empty). An-
other group of designs uses arbitration-based queue structures (of-
ten with a stoppable clock) [21, 25]. The designs in this group are
typically failure-free, but may need to check synchronization for
each data transfer. For example, the design by Sjogren and Myers
[21] includes arbitration and synchronization circuits which can de-
tect whether the source and destination clock edges are far enough
apart (i.e., greater than the so-called synchronization window size
in [19]), in order for the source generated signal to be successfully
accessed at the destination. This design has been used by the MCD
implementation in [20]. Note that for a situation like that in Fig-
ure 1, where issue queues already exist between some domains, the
interface queue structure can be integrated with the existing issue
queue to form a combined issue/interface queue structure.

The MCD implementations in [10] and [20] also provide the ca-
pability of independently configuring the frequency and voltage in
each clock domain. An aggressive XScale-style DVFS model is
assumed, in which a clock domain can execute through the DVFS
transition and there is no or very little idle time for the domain wait-
ing for the PLL [7]. In addition, a relatively fast DVFS transition
speed is assumed (around 1µs/20mv) in [19] based on some re-
ported industrial numbers [7]. Also the XScale-style model may
allow any frequency to be used within the allowable range.

The quantitative benefit/overhead studies in [10, 20] have shown
that an MCD processor has the potential to achieve significant power
and performance efficiency. However, many design and control is-
sues remain open and need more investigation in order to fully take
advantage of the power/performance benefits brought by the MCD
processors [15]. Online DVFS is one of these issues, as we will
show next.

3. DESIGN OF ADAPTIVE DVFS SCHEME
One key design issue for adaptive DVFS is how sensitive it should

be in responding to workload changes. Another design question is
how big the frequency/voltage adjustment should be for a triggered
action. So, before proceeding to an actual design, we first give
some rationale and discussion of these key design issues.

As mentioned in the introduction, a variable-interval DVFS scheme
responds immediately to large, severe workload changes. On the
other hand, it will stay inactive for an arbitrarily long time given
no or only minor workload change. Therefore, in general, the num-
ber of voltage/frequency adjustments for an adaptive DVFS scheme
will ultimately depend on the pattern of workload change in a pro-
gram. (Note this is different from that for the fixed-interval DVFS
schemes where only one adjustment is possible for a fixed time in-
terval.) However, for a given program, the number of adjustments
will also depend on the setting of triggering conditions: what size
of workload change should be treated as severe enough to trigger
an action?

The main reason for which we want to respond only to severe
workload changes is the DVFS switching cost, which includes both
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Figure 2: A local control model for a clock domain with an
input queue.

time and energy cost. (The switching cost is typically proportional
to the magnitude of the switching.) The energy cost part for the
DVFS switching comes from the voltage regulator (VR) [4]. Since
the capacitor in VR is relatively small (most VRs are dual-phased
so there are two output capacitors), the switching energy cost is
small and is ignored in most DVFS studies [11, 14, 19, 23]. The
time cost is the main concern in DVFS switching. This is basically
the transition/switching time and may include some amount of idle
time for the processor waiting for PLL relocking [7].

Because of this DVFS switching cost, the adaptive DVFS ac-
tion should be triggered only for large workload changes (in terms
of magnitude and duration) such that the benefit brought by the
DVFS is greater than the switching cost (i.e., there is a net gain
in terms of energy-delay product improvement). Therefore, for
adaptive DVFS control, the choices of the triggering condition and
the amount of adjustment at each action should be based on the
DVFS switching cost. For a DVFS implementation with relatively
fast transition time and no (or very little) processor idle time (de-
note this group as XScale-style DVFS [7]), the triggering condition
and adjustment step can be chosen as relatively low or small in
order to have more frequent and fine-grained DVFS control. On
the other hand, for a DVFS implementation with relatively slow
transition time and long processor idle time (denote this group as
Transmeta-style DVFS [19]), the triggering condition and adjust-
ment step should be chosen as relatively high or big in order to
reduce the switching overhead; and we will have less frequent and
more coarse-grained DVFS control for this case.

3.1 A Design for MCD Processors
Conceptually, the online DVFS problem for an MCD processor

is to adapt the frequency (and execution speed) to program phases
and workload changes in each clock domain. In this work, we
utilize interface queues to guide the DVFS control. Recall from
Section 2 that there are interface queues between clock domains
for synchronization. Intuitively, these queues give clues about the
speed balance between the sender domain and the receiver domain.
For example, an emptying queue may imply that the receiver is
operating too quickly relative to the sender. Conversely, a filling
queue may suggest that it is too slow. A stationary queue might
indicate a perfect match between sender and receiver execution
speeds. Therefore, an online DVFS controller can use this queue
information, such as the fullness of queues and the rate of queue
changes, to detect workload changes and respond to them by in-
creasing or decreasing voltage and frequency in a clock domain.

In this work, we will only use local queue/domain information to
direct DVFS control (a so-called decentralized control scheme). In
other words, we assume the interactions between different queues
and domains are weak and can be ignored. (This assumption is
typically valid for an MCD implementation with relatively simple
structure such as that in Figure 1.) A centralized DVFS scheme
which utilizes all queue/domain information may work better, but

Wait
(reset)

Count Start
Act

(f ± step)

if signal falls
outside DW

If time 
counter > delay Td

after switching 
time Ts

reset

if signal falls  inside DW 
and counter ≤ Td

Figure 3: The state transition graph for our DVFS control,
where the signal refers to the queue signal ( qi − qref ) or
(qi − qi−1); DW is the deviation window.

is much harder to design, as it is still an open research problem.
Based on the above rationale, we will use the local queue infor-

mation as trigger signals for the DVFS actions. Figure 2 shows
such a local control model, where the circle represents a clock do-
main being controlled (such as a floating point function unit). The
clock domain is connected to other domains (such as a decode/issue
domain) through an interface queue (input or output) which has a
finite size. The queue occupancy is sampled and used as a pos-
sible triggering signal by the DVFS controller, which controls the
frequency (and hence the voltage) of the clock domain.

More specifically, our DVFS controller monitors two queue sig-
nals: the relative queue occupancy (qi - qref ) and the relative queue
difference (qi - qi−1); where qi represents the queue occupancy at
the ith sampling point, and qref is the reference queue occupancy,
i.e. the target or nominal queue occupancy. A possible DVFS ac-
tion will be triggered based on these two queue signals. To sim-
plify our design, we use a single step of incrementing or decre-
menting the clock frequency (and voltage accordingly) as the trig-
gered DVFS action. As mentioned earlier, in general, the choice of
the step size (and the time delay, which will be defined shortly) de-
pends on the DVFS switching cost. For the MCD processor with an
XScale-style DVFS model described in Section 2, we will choose
relative small step sizes in order to have more fine-grained fre-
quency adjustments. For processors with Transmeta-style DVFS
model, the design framework in this section can still be used, but
larger values should be chosen for the step size.

To handle the noise or random short-time variation in the queue
occupancy and avoid unnecessary DVFS actions, we use a com-
bination of deviation windows and time-delay relay. The devia-
tion window (DW) is a small interval around the origin (denoted
as [−DW, +DW ]), while the time-delay relay is essentially a re-
settable time counter. A signal will activate the time counter if the
signal falls outside the deviation window. If a pre-set time-delay
has passed, a possible DVFS action will be triggered. Note, for the
time-delay, there are a number of design options. For example, it
can be set as a simple constant (Td0) , or a constant with a scal-
ing factor depending on some system statistics. In our design, we
design it as a constant with a scaling factor depending on signal
values and current frequency setting.

Figure 3 shows the state transition graph for our DVFS design. In
the figure, the signal refers to a queue signal (either qi−qref or qi−
qi−1). Initially, the system is in a Wait state. A transition into Count
will occur if the queue signal falls outside the deviation window.
The system will stay in the Count state until either the preset time
delay (Td) has passed and a transition is made to the Start state, or
the queue signal falls inside the deviation window before the time
delay has passed and a transition is made to the initial Wait state,
which will reset the time counter. The Start state represents that
a frequency (voltage) increment/decrement has been triggered or
scheduled. Since it takes a certain amount of time to physically
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Figure 4: The detailed finite state machine (FSM) graph for our DVFS control, where the signal refers to the queue signal ( qi − qref )
or (qi − qi−1); DW is the deviation window; Td is the time delay; Ts is the switching time spent for one DVFS action.

switch frequency/voltage, the increment/decrement action will be
accomplished (in the Act state) after a switching time Ts. After that,
the system transitions back to the Wait state, resets the time counter,
and is ready for a new round of operations. The detailed finite state
machine (FSM) graph for our DVFS controller is shown in Figure
4, where we shown increment and decrement actions separately.

In the above descriptions, for the sake of clarity, we assume
that the two finite state machines (FSM), one for the trigger sig-
nal (qi − qref ) and one for the signal (qi − qi−1), operate inde-
pendently. However, in practice, methods are required to reconcile
the Act operations triggered by different queue signals in different
FSMs. So we add a new state called Schedule into the above opera-
tion state graphs. If, at any time, only one queue signal is triggering
the Act operation, then the Scheduler will initiate and start the ac-
tion in the same way as we described before. On the other hand,
if two queue signals are triggering DVFS actions at the same time,
the system will schedule the two actions depending on the actions
being triggered. Specifically, if two identical actions are being trig-
gered (both are Up or both are Down), the system will schedule the
two actions in sequence (or combine them into one action with a
step size twice as big). On the other hand, if two opposite actions
are being triggered (one is Up while the other one is Down), the
system will cancel them all and reset both signals to the Wait state.

In the above design the reference queue value qref can be any
value which is neither full nor empty. However, similar to the ob-
servation in [23], we notice that the position of qref specifies the
actual tradeoff between performance degradation and energy sav-
ing. We can increase qref to make the DVFS controller more ag-
gressive in saving energy, or decrease qref to preserve performance
more. The main reason is that the choice of the nominal operat-
ing point qref and its distances to the two queue end-points reflect
the relative margin for the queue to tolerate control errors and in-
put noise before the queue becomes full (will lose performance) or
empty (will waste energy) – see [23] for details.

Next, we look at the issue of hardware implementation. From the
description of the above design, we see the adaptive DVFS decision
logic requires very little hardware in addition to the existing MCD
hardware, since the interface queues and the voltage/frequency switch-
ing mechanism already exist in current MCD implementations [20].
The main additions are some book-keeping hardware. Figure 5
shows the block diagram for a possible hardware implementation
of the basic DVFS decision logic. Specifically, an adder is used to
compute the trigger signal (either qi − qref or qi − qi−1). Since a
queue size is around 20 (� 26), a 6-bit adder is sufficient. Then,
a 7-bit comparator is used to compare the trigger signal with the

deviation window (DW). The rest is a 5-state finite state machine
(FSM) and a time-delay counter. The FSM corresponds to the left
five states in Figure 4. For the counter, if we assume the time de-
lay in Figure 4 is ≤ 256, an 8-bit time-delay counter is sufficient.
The two output signals of the FSM, Start-up and Start-down, will
be used by the voltage (and frequency) switching mechanism in the
voltage regulator. Note the hardware requirement for this scheme
is roughly in the same order as the book-keeping hardware (like
counters) required by the fixed-interval DVFS schemes in [19, 23].
However, in [19, 23], some extra hardware is required to compute
appropriate voltage and frequency settings on a per-interval basis.
This extra hardware is more complex than the book-keeping hard-
ware discussed above (for example, multipliers/dividers or lookup
tables are required to implement the PID controller in [23]). So,
overall, the hardware requirement for the present scheme is much
smaller and cheaper than those in [19, 23].

4. MODELING AND STABILITY ANALY-
SIS OF ADAPTIVE DVFS SYSTEM

In this section, we will look at the adaptive DVFS design from a
control system point of view. The modeling and stability analysis
are intended to gain insights and answer questions such as

• Will the above design work? Under extreme cases, can it
lead to unbounded or unstable results?

• If it works, how well does it work and how can it be im-
proved?

• More specifically, in order to improve the stability margin
and control effectiveness, how should we choose the design
options/parameters like the basic time delays? (There are two
queue signals, so there are two time delays to pick. Should
we use the same amount of delay for both? If not,which one
should be bigger or smaller?)

4.1 Overview of Modeling and Stability Anal-
ysis

This subsection gives an overview of modeling and analysis of
the adaptive DVFS system without going through the derivation
and stability analysis details, which will follow.

In order to analytically evaluate the DVFS design in the previ-
ous section, we need to model the DVFS control operation and the
involved queue and clock domain dynamics. As mentioned earlier,
we use the local control model in Figure 2. The clock domain has
frequency f and execution capability (or service rate) µ, which is a
function of f . The workload (or arrival rate) is denoted as λ. Note
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Figure 5: Block diagram for a possible hardware implementa-
tion of the basic DVFS decision logic.

both µ and λ are time varying and we will denote them as µ(t) and
λ(t). Similarly, we denote the queue occupancy at time t as q(t).
With these notations, we are ready to derive a model.

Recall from Section 3 that our DVFS controller for MCD pro-
cessors has fine-grained step control. We can conveniently approx-
imate the DVFS control by a continuous-time model1. This model
is expressed as

ḟ(t) =
m

h(f)

step

Tm0
(q(t) − qref ) +

l

h(f)

step

Tl0
q̇(t) (1)

Intuitively, the above equation models the aggregate effects of the
frequency control operation in Figures 3 and 4. The first part of
the right hand side of the equation corresponds to frequency con-
trol operation for the queue signal (qi − qref ), while the second
part corresponds to the operation for the queue signal (qi − qi−1).
Specifically, in the equation, ḟ is the time derivative of normalized
frequency f (i.e. ∂f/∂t); q(t) and qref are the queue and reference
queue occupancy as in Section 3; q̇ is the time derivative of queue
occupancy; step is the step size of the frequency change triggered
by the queue signals; Tm0 and Tl0 are the basic time delays for the
queue signals (qi − qref ) and (qi − qi−1) respectively; m and l are
constants which are mainly from the conversion due to the different
units used for queue occupancies and frequencies; h(f) is a func-
tion of f which is used to take account of possible affects of f on
the effective time delay.

We then derive a model for the the queue and clock domain dy-
namics. At an aggregate level, they are modeled as

q̇(t) = γ λ(t) − γ µ(t)

µ(t) = 1

t1+
c2

f(t)

(2)

Intuitively, the first equation in (2) means the queue occupancy
change in a sampling time unit is equal to the number of arrived
elements minus the number of departed/executed elements in that
unit time (this is essentially a continuous-time version of the well-
known Lindley equation [13]); γ is a constant which is proportional
to the size of sampling period. The second equation models the ex-
ecution/service rate µ in terms of clock frequency f , which is es-
sentially a continuous-time version of the model used in [23, 24].
The t1 and c2 are constants whose meaning will be explained in
detail in Section 4.3.

Putting together (1) and (2), we have a complete model for the in-
volved DVFS controller, queue, and clock domain dynamics. This
model is inherently nonlinear. To simplify the stability analysis,
we linearize the system model through a standard nonlinear trans-
formation technique [2] (which is essentially done by choosing an
appropriate h(f) in (1) to compensate for the nonlinear function in

1For processors with Transmeta-style DVFS, which require more
coarse-grained step control, the modeling and analysis in this sec-
tion can still be applied but will be less accurate. A similar but
more complicated discrete-time model can be derived to get a bet-
ter and more accurate analysis result. We leave this as possible
future work.

(2) – details in Section 4.3). Then we proceed with some classic
stability analysis for the linearized DVFS control system. Through
the stability and control performance analysis, we have obtained
the following:

• Remark 1: Given any non-zero values of step and basic time
delays, the DVFS control system in Section 3 is stable. So,
for any workload inputs, the DVFS controller would not lead
to unbounded or unstable results.

• Remark 2: The control effectiveness of our design, in gen-
eral, is mostly dependent on the values of time delays. A
smaller time delay tends to improve the control response and
settling time, and thus increase the control effectiveness. On
the other hand, a smaller time delay will weaken the sys-
tem’s noise rejection ability, which may lead to more unnec-
essary/incorrect DVFS actions and thus reduce the overall
DVFS efficiency. So there is a tradeoff between the control
effectiveness and the system’s noise rejection ability.

• Remark 3: In order to have small percent transient overshoot
in system response, the values of the time delay for those two
queue signals should be constrained by an inequality con-
straint (details in Section 4.3). With a typical system set-
ting, this constraint implies that the time delay for the signal
(qi−qref ) should be relatively larger than that for (qi−qi−1),
and a setting of 2-8 time larger would typically lead to fairly
good results.

In the rest of this section, we will give the derivation and analysis
details. People who are already familiar with these subjects or who
are not interested in these details may wish to skip them and go
directly to the experimental evaluation in Section 5.

4.2 Modeling the Adaptive DVFS controller
The DVFS controller in Section 3 is essentially a discrete device

with some inherent deviation windows and adjustable time delays.
We will derive a model to capture the aggregate effect of its adap-
tive operations. We start by doing it for the queue signal (qi−qref )
only. Later, we will give a complete model for DVFS operations
with both queue signals.

In aggregate, the frequency control operation with the queue sig-
nal (q − qref ) in Figure 3 and 4 can be modeled as

fi+1 = fi + step · I(qi − qref ) (3)

where

I(qi−qref ) =

��
�

1 if (qi − qref ) > DW for (Td + Ts)
−1 if (qi − qref ) < −DW for (Td + Ts)

0 Otherwise

Intuitively, the above equation means a frequency increment or
decrement will occur if the queue signal (qi−qref ) falls outside the
deviation window for a consecutive (Td + Ts) amount of time (in
sampling period units). Otherwise, the frequency stays unchanged.
In the equation, DW stands for Deviation Window; Td is the time
delay; Ts is the switching time; and others are defined the same as
before.

In the DVFS design in Section 3, the discrete step was chosen
to be relatively small in order to have more fine-grained frequency
adjustments. With a small step, the above discrete model can be ap-
proximated by a continuous-time model as follows (we use a com-
bined time delay Tm = Td + Ts).
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Figure 6: The approximation of the Step-up action modeled in
(3) by a continuous-time linear increment action as modeled in
(4).

ḟ(t) =

��
�

step
Tm

if (q(t) − qref ) > DW
−step

Tm
if (q(t) − qref ) < −DW

0 if |q(t) − qref | ≤ DW

(4)

The above model captures the aggregate effects of the frequency
control operation by approximating the discrete-time step up or
down action in (3) with a continuous-time linear increment or decre-
ment action as illustrated in Figure 6 (the slope of the line is step

Tm
).

In the equation, ḟ(t) is the derivative of the frequency f at time t.
As mentioned in the last section, we choose the time delay Tm

as a constant with a scaling factor which is negatively dependent
on the absolute value of the queue signal. That is, Tm is expressed
as

Tm = Tm0 · 1

|q(t) − qref | · m (5)

The above equation means that when the value of the queue signal
is larger, the time delay will be smaller and the DVFS controller
will respond more quickly. Specifically, Tm0 is the basic (constant)
time delay; m is a constant which is mainly used to convert the
value of queue occupancy to the scaling factor for time delay.

In addition, we augment the right side of equation (5) by a func-
tion h(f) to model possible impacts of frequency f on the time
delay. We set h(f) to 1 if the level of frequency has no effect on the
time delay.

Substituting the delay Tm in (5) into the continuous-time model
in (4), assuming DW ≈ 0, and rearranging algebraically, we have
a new model in an ordinary differential equation (ODE) format as

ḟ(t) =
m

h(f)

· step

Tm0
· (q(t) − qref ) (6)

Like (4), the above equation models the aggregate effects of fre-
quency control operation in Figures 3 and 4. However, compared
to (4), this model is much simpler and more amenable to analysis.

We follow a similar procedure to derive another similar model
for DVFS operations with the other queue signal (qi − qi−1). Since
our DVFS controller is driven by both queue signals, we combine
these two models to get a complete model for our DVFS controller.

ḟ(t) =
m

h(f)

step

Tm0
(q(t) − qref ) +

l

h(f)

step

Tl0
q̇(t) (7)

The above model captures the control effects of the DVFS opera-
tion with both trigger signals, (qi − qref ) and (qi − qi−1). (Note
that this equation is the same as (1) in the overview sub-section and
is repeated here for convenience). In the equation, q̇(t) is derivative
of queue value at time t; l and Tl0 have similar interpretations as
the m and Tm0 in (6).

4.3 Stability Analysis of the Adaptive DVFS
System

As described in the overview subsection, the modeling for the
queue and clock domain dynamics is expressed by the following
equations.

q̇(t) = γ λ(t) − γ µ(t) (8)

µ(t) =
1

t1 + c2
f(t)

(9)

Intuitively, the first equation means the queue occupancy change in
a sampling unit time is equal to the number of arrived elements mi-
nus the number of departed/executed elements in that unit time. γ
in the first equation is a constant proportional to the size of the sam-
pling period. The second equation models the execution/service
rate µ in terms of clock frequency f . This µ ∼ f model is es-
sentially a generalization of the model used in [23, 24], which is
discrete-time and models the average execution speed of a clock
domain as a function of the average frequency in a time interval.
The model in [23, 24] is based on the observation that, in most
clock domains, execution time can be separated into two parts, one
that is independent of clock frequency and one that is dependent.
For example, in a load/store domain, the time spent for accessing
asynchronous memory due to a cache miss is independent of do-
main frequency, while the time for querying and accessing a cache
is dependent on frequency. Accordingly, in this model, t1 is the
average amount of unit time per instruction that is independent of
frequency, and c2 is the average number of frequency-dependent
cycles per instruction (the value of t1 and c2 can be estimated on-
line or offline using methods similar to those in [11, 24]). In our
model in (9), we generalize the model in [23, 24] into a continuous-
time model by assuming that, at every sampling time unit, the µ(t)

and f(t) satisfies the same relationship as in the discrete µ ∼ f
model in [23, 24].

Putting together (7),(8) and (9), we have a complete model for
the involved DVFS controller, queue, and clock domain dynamics.
This model is inherently nonlinear. To simplify the stability analy-
sis, we transform the equation (7) in terms of a new state variable
of µ̇(t) through the equation

µ̇(t) = ∂µ
∂f

· ∂f
∂t

= c2
(t1f+c2)2

· ḟ(t)
(10)

which is obtained by taking derivatives on both sides of (9). After
this transformation, equation (7) becomes

µ̇(t) =
c2

(t1f + c2)2
· 1

h(f)

�
m · step

Tm0
(q(t) − qref ) +

l · step
Tl0

q̇(t)

�

(11)

Like (7), this equation also models the frequency control in Figure
3 and 4, but is expressed in a different state variable µ(t). We see
that, in this equation, if we choose the function h(f) proportional
to c2

(t1f+c2)2
, the non-linear part in it will be compensated for and

the above equation becomes linear. Since the function c2
(t1f+c2)2

is
relatively complex to implement in practice, we will approximate
it by a simpler quadratic function k

f2 around the operating point.
(Here, k is a constant factor dependent on the µ ∼ f relationship;
it can be estimated using t1 and c2 values.) Then, we can simply
choose h(f) = 1

f2 to linearize the equation (11).
Therefore, after the above linearization, we have a new system

as

q̇(t) = γ λ(t) − γ µ(t)

µ̇(t) = m·k·step
Tm0

(q(t) − qref ) + l·k·step
Tl0

q̇(t)
(12)
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The above linearized system model is equivalent to the original sys-
tem model in (7) - (9). Therefore, in order to understand the sta-
bility and transient behavior of our DVFS control system, we can
conveniently analyze this linearized system model. By classic sta-
bility theory, the stability behavior of a linear system is decided by
its characteristic roots [12]. For the system in (12), we can solve
the characteristic roots as

s1,2 =
−Kl

2
±
�

K2
l − 4Km

2
(13)

where Km = m·γ·k·step
Tm0

and Kl = l·γ·k·step
Tl0

.
Based on the above characteristic roots, we have the following

observations and remarks.
Remark 1: With a typical system setting (non-zero parameters),

the DVFS control system in Section 3 is stable. So, for any kind of
workload inputs, our DVFS controller would not lead to unbounded
or unstable results.

The above remark comes from the following. A linear system
is stable if all its characteristic roots are negative (i.e. on the left
side of the s-plane) [12]. With a typical system setting, all system
parameters are non-zero and positive. So Km, Kl will be positive.
Then, from (13), we see both roots will be on the left side of the
s-plane. Thus the DVFS control system is stable.

Remark 2: The control effectiveness of our design, in general, is
mostly dependent on the value of time delays. A smaller time delay
tends to improve the control response and settling time, and thus in-
crease the control effectiveness. On the other hand, a smaller time
delay will weaken the actual system’s noise rejection ability (not
modeled by the analytical model), which may lead to more unnec-
essary/incorrect DVFS actions and thus reduce the overall DVFS
efficiency. So there is a tradeoff between the control effectiveness
and the system’s noise rejection ability.

The above remark is based on the following. Though any pos-
itive Km and Kl values would make the system stable, the con-
trol effectiveness is dependent on the actual values of Km and Kl.
Among all the parameters in the Km and Kl definitions, the ba-
sic time delays Tm0 and Tl0 are the most adjustable parameters in
the design space. So, in general, the control effectiveness is mostly
dependent on the values of the time delays. More specifically, the
control effectiveness is typically characterized by the settling time
(ts) and the rising time (tr) of the system unit-step response [12].
For this system, we have ts = 8

Kl
and tr = 0.8√

Km
+ 1.25Kl

Km
us-

ing the formulas in [12]. So, smaller time delays Tm0 and Tl0

(thus larger Km and Kl) will improve the rising and settling time,
and increase the control effectiveness. On the other hand, in our
DVFS system, the time delays are used to handle the noise (i.e. the
random short time input variation) and avoid unnecessary DVFS
actions. So, smaller time delays will weaken the system’s noise re-
jection ability, and may lead to more unnecessary/incorrect DVFS
actions. Therefore, the time delays should be chosen to balance the
control effectiveness and the noise rejection.

Remark 3: In order to for the system to have relatively small
percent transient overshoot in the system response, the values of
the time delay for the two queue signals should be constrained by
an inequality. With a typical system setting, this constraint implies
that the time delay for the signal (qi − qref ) should be relatively
larger than that for (qi − qi−1), and a setting of 2-8 time larger
would typically lead to fairly good results.

The above remark is based on the following. In this system,
the maximum percent transient overshoot is decided by a param-
eter called damping ratio ξ = Kl

2
√

Km
[12]. To have a small per-

cent overshoot (say ≤ 15%) and a good rising time also, we have

Table 1: Summary of All Simulation Parameters
Simulation Parameters Value
Domain frequency range 250MHz – 1.0GHz
Domain voltage range 0.65V - 1.20V
Frequency/voltage change speed 73.3 ns/MHz, 171 ns/2.86mV
Signal sampling rate 250MHz
Time delays (sampling) Tl0 = 10, Tm0 = 50
Step size (f/v) 2.3MHz/2.86mv
Reference queue point 7 INT, 4 FP, 4 LS
Deviation window (DW) ±1 or 0
Domain clock jitter ±110ps, normally distributed
Inter-domain synchro window 300ps
Branch predictor:

2-level L1 1024, hist 10, L2 1024
Bimodal size 1024, BTB 4096 sets, 2-way
Combined size 4096

Decode/Issue/Retire width 4/6/11
L1 data cache 64KB, 2-way
L1 instr cache 64KB, 2-way
L2 unified cache 1MB, direct mapped
Cache access time 2 cycle L1, 12 cycles L2
Memory access latency 80 first chunk, 2 inters
Integer ALUs 4 + 1 mult/div unit
Floating-point ALUs 2 + 1 mult/div/sqrt unit
Issue queue size 20 INT, 16 FP, 16 LS
Reorder buffer size 80
LS retire buffer size 64
Physical Register file size 72 INT, 72 FP

an inequality constraint of 0.5 ≤ ξ ≤ 1 for this system. Sub-
stituting the ξ in the above inequality with Kl and Km, we have
K2

l
4

≤ Km ≤ K2
l . With a typical system setting, we have Kl < 1.

Combining the above two inequalities, we have Km < Kl. As-
suming all other parameters (such as step) are the same for the two
queue signals, the above inequality implies Tm0 > Tl0. In other
words, the time delay for the signal (qi − qref ) should be relatively
larger than that for (qi − qi−1). For example, if Kl = 1

2
, we have

1
16

≤ Km ≤ 1
4

. So the time delay Tm0 is 2-8 times larger than
Tl0, which would typically lead to fairly good transient control re-
sponse. Inside this range, we can take a value close to the upper end
(8 times slower) if overshoot is the major concern, or take a value
close to the low end (2 times slower) if rising time is the major
concern.

So far, we have analytically evaluated the adaptive DVFS design
in terms of stability and control effectiveness. In the next section,
we will experimentally evaluate the DVFS design and check how
well it works in practice.

5. EXPERIMENTAL RESULTS
In this section, we will show experimental results for evaluation.

We will compare our results to those from the conventional syn-
chronous voltage/frequency scaling and to those from two existing
fixed-interval DVFS schemes for MCD processors [19] [23]. At the
end of this section, we will also compare our results to [23] with
different and shorter interval lengths.

5.1 Simulation Methodology and Setup
Our simulation environment is based on that in [23], which is

in turn based on the SimpleScalar toolset [5] with the Wattch [3]
power estimation extension and the MCD processor extension [14,
20]. The MCD extension by Semeraro et al. in [14, 20] has 4 clock
domains as shown in Figure 1.

We implemented our DVFS controller for local queues and do-
mains, following the design and analysis in Sections 3 and 4 . Also,
as in previous work on DVFS in MCD [14, 19, 23], we made the
front end domain run at a fixed maximum speed, and allowed the
INT, FP, and LS domains to be controlled by the DVFS controller.
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Figure 7: Frequency settings obtained from our adaptive DVFS
in the FP clock domain for the benchmark of Epic-decode
.

Since we are assuming an aggressive XScale-like DVFS model as
described in Section 2, we choose a fine-grained step size for the
frequency increment or decrement (2.4MHz/step, so it takes 320
steps to traverse the total frequency/voltage range). We choose a
sampling rate of 250MHz for the queue signals, which corresponds
to the lower bound of the frequency range 250MHz − 1GHz.
Based on the remarks 2 and 3 in Section 4, we choose the basic
time delays for the queue signals (qi − qi−1) and (qi − qref ) as
Tl0 = 8 and Tm0 = 50 respectively (in units of sampling period).
We emulate the signal-dependent time delay by having larger time-
counter increments in Figures 3 and 4 for larger signal values. The
time delay for counting-down is also scaled by a factor of ( 1

f2 ),
where f is the relative frequency using fmax = 1.0GHz as the
base. So, for counting-down in a clock domain, the time delay
would be larger with a lower frequency level and the system would
be more cautious in further scaling down the clock frequency. We
choose a qref of 6 for the INT clock domain which is roughly 1

3
of

its total queue size; and a qref of 4 for the FP and LS clock domains
which are 1

4
of their total queue sizes. These numbers are chosen

to make the overall performance degradation around 5%. For the
deviation window DW , we choose DW = ±1 for the queue sig-
nal qi − qref , and DW = 0 for the signal qi − qi−1. Also, we
assume an aggressive clock gating that is applied whenever the unit
is not used. All other architecture parameters are chosen to have the
same values as those in [14, 19, 23]. A summary of all simulation
parameters is shown in Table 1.

As an illustrative example, Figure 7 shows the frequency settings
in the FP domain obtained from our DVFS controller for the Media-
Bench benchmark Epic-decode. We chose this benchmark because
its FP issue queue has a very simple workload pattern, in which the
queue is emptying except for two distinct phases, as observed in
[19, 23]. From this figure, we see, in the beginning stage, the adap-
tive DVFS controller detected the queue emptiness and quickly re-
duced the FP frequency to fmin = 0.25GHz. The first non-empty
workload phase occurred around the moment at 2500k instructions
when a modest workload increase was detected and the frequency
recovered from fmin = 0.25 to a value around 0.6. After this
recovery, the frequency gradually dropped to fmin = 0.25 again
as the queue decreased and became complete empty again around
the moment at 4000k instructions. The queue stayed empty un-
til a dramatic increase occurred around the moment at 8200k in-
structions. The adaptive DVFS controller detected this dramatic
increase of queue entries and quickly adjusted the clock frequency
to fmax = 1.0GHz.
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Figure 8: Variance spectrum for queue entries in the INT do-
main for the benchmark Epic-decode. The dotted line marks
the interesting frequency/wavelength range used to identify fast
workload variations.

5.2 Benchmark Classifications
We want to evaluate our adaptive DVFS scheme with a broad

set of applications. To show variety, we will present results for 6
MediaBench, 6 SPEC2000int, and 5 SPEC2000fp applications as
shown in Table 2. We chose roughly the same subset of SPECint
and SPECfp as those used in [14, 19, 23]. For MediaBench bench-
marks, we use the official data input set in the MediaBench web site
and the whole program as the simulation window; for SPEC2000
benchmarks, we use the reference input set and choose the simula-
tion window using the published Early SimPoint numbers [17].

Before we start to show the energy/performance results from our
DVFS scheme and compare them to those from prior fixed-interval
DVFS schemes, we want to first look at some benchmark character-
istics which affect the performance of the current and prior online
DVFS schemes. As mentioned in Section 1, the current scheme has
potentially better responsiveness due to its adaptive nature and is
more suitable for applications with fast workload changes. There-
fore, one benchmark characteristic we might wish to look at is
the workload variability. In the rest of this subsection, we will
study this characteristic and identify applications with relatively
fast workload variations.

We use the queue occupancies to characterize the program work-
load. A metric which we can use to justify the application work-
load as varied is the queue occupancy variance. However, there
is a problem with this metric: it only reflects the total workload
variations, and not necessarily the fast variation. To overcome this
problem, we make use of spectrum or spectral analysis [16].

The spectrum of a time series is the distribution of variance as a
function of variance frequency [16] (denote the workload variance
frequency as ω to distinguish it from the clock frequency f ). Note
the basic components for spectrum are the sinusoidal waves of dif-
ferent frequency or wavelengths. Spectral analysis estimates and
computes the variance associated with each frequency component
(The method we use is the Multi-taper method [16] which utilizes
the famous fast Fourier transform during the estimation process).

With the spectrum or spectral density function (spectral density
is in terms of variance per unit frequency), we can get the variance
associated with any range of frequencies by integrating the spec-
tral density over the increment of frequency ω. Therefore, in order
to identify fast workload variations, we can compute and inspect
the queue variance associated with high frequencies or short wave-
lengths only. The question is how to quantify fast, high or short.

Since we are studying adaptive DVFS as compared to fixed-
interval DVFS (which is assumed to have a fixed interval of length
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Table 2: Classification of benchmarks based on workload vari-
ation characteristics (numbers are in units of queue entry square)

Benchmarks Queue variance Classification
INT FP LS

epic-decode 17.2 0.1 7.3
jpeg-decode 12.4 0.0 8.0
jpeg-encode 14.4 0.0 10.1 Group1
172.mgrid 1.7 14.5 5.7 (fast
173.applu 0.8 16.8 8.3 workload
176.gcc 19.1 0.0 7.1 variation)
183.equake 16.7 0.0 5.1
186.crafty 14.4 0.0 7.0
197.parser 13.6 0.0 6.6
adpcm-decode 2.9 0.0 0.5
adpcm-encode 7.6 0.0 0.8
epic-encode 4.1 3.1 1.6 Group2
164.gzip 9.4 0.0 4.5 (slow or
171.swim 1.0 1.8 1.3 negligible
179.art 4.2 4.6 2.9 variation)
181.mcf 5.1 0.0 4.1
256.bzip2 13.3 0.0 2.1

N , N = 5 ∼ 10k sampling periods normally), we define any
queue variance component with a wavelength of N or less as fast
or short. This is because any queue swings inside the control inter-
val (i.e. with a wavelength of N or less) will not be captured by the
fixed-interval schemes (as the swings offset by the averaging in the
fixed-interval schemes). In addition, queue variance components
with extremely short wavelengths are considered noise and are ig-
nored (i.e. they are too fast to be captured by either approach). We
choose 100 sampling periods as the noise drop-off line because the
basic time-delay for our DVFS scheme is about 50.

Therefore, to identify fast workload variations, we compute and
inspect queue variance with wavelengths in the range of [100, N ],
where N is the interval length for the fixed-interval schemes. As an
illustrative example, Figure 8 shows the variance spectrum of the
queue entries in the INT domain for the benchmark Epic-decode
(For convenience, we show the spectrum as a function of the wave-
length, rather than the frequency ω). The queue variance in the
interesting frequency range (marked by the dotted line in Figure 8)
can then be computed.

In Table 2, we have computed the queue variance associated
with the defined interesting frequency/wavelength range for all the
benchmarks. Based on these variance numbers (larger number means
more workload variation), we classify the benchmark set into two
groups with roughly same number of applications: group1 with rel-
atively large workload variations and group2 with relatively small
or negligible variations in the defined frequency range. (Specif-
ically, in table 2, INT and LS numbers are used to classify inte-
ger benchmarks; while FP and LS numbers are used to classify
floating-pointing benchmarks.)

We believe that the above benchmark characterization and clas-
sification will let us have a better and deeper understanding of the
experimental results in the next subsection.

5.3 Energy and Performance Results
We will present energy and performance results from our new

adaptive-reaction DVFS scheme (denoted as adaptive), and com-
pare them to existing fixed-interval DVFS schemes for MCD pro-
cessors [19, 23]. The work in [19] is one of the best-known DVFS
schemes for MCD, and is based on a heuristic called AttackDe-
cay (denoted as fixed-heuristic). The parameters for fixed-heuristic
here are taken from [19], with a 5% performance degradation target
because this target value will lead to an actual performance degra-
dation similar to adaptive. The other work in [23] is a more re-
cently proposed DVFS scheme for MCD which uses a Proportional

Table 3: Average results over group1 benchmarks
Performance Energy Energy-Delay

Schemes degradation savings product
improvement

Synchro 4.7% 7.0% 2.6%
fixed-heuristic 5.9% 9.6% 4.3%
fixed-PID 3.2% 16.2% 13.5%
adaptive 3.3% 18.7% 16.0%

Table 4: Average results over group2 benchmarks
Performance Energy Energy-Delay

Schemes degradation savings product
improvement

Synchro 3.9% 8.4% 4.8%
fixed-heuristic 5.6% 16.3% 11.6%
fixed-PID 3.7% 24.5% 21.7%
adaptive 3.2% 19.7% 17.1%

Integral Derivative (PID) based DVFS controller (denoted as fixed-
PID). Similarly, the parameters for fixed-PID are taken from [23].
For the sake of completeness, we also compare our results to con-
ventional (fully) synchronous voltage/frequency scaling (denoted
as Synchro) which scales the frequency/voltage for the whole pro-
cessor2.

The performance degradation, energy savings, and energy-delay
product (EDP) improvement for each benchmark are shown in Fig-
ure 9. (Note that the benchmarks are arranged with group1 on the
left, and group2 on the right.) The results are relative to the conven-
tional (fully) synchronous processor without voltage scaling. So
all results for MCD include about 1.5% percent inherited perfor-
mance and energy overhead from the baseline MCD processor, as
discussed in [19]. The average energy savings and performance
loss for adaptive over all 17 benchmarks are 19.2% and 3.3% re-
spectively. This gives an EDP improvment of 16.5% for adaptive,
as compared to 3.9% for Synchro, 7.6% for fixed-heuristic3, and
17.3% for fixed-PID. So we see, despite its simpler design and
hardware requirement, the adaptive results on average are quite
close to the best from existing approaches (16.5% vs. 17.3%)

Furthermore, if we look at the energy/performance results for in-
dividual benchmarks, we have more interesting observations. As
we expected, nearly all benchmarks in group1 favor adaptive over
other schemes. Table 3 show the average results over the bench-
marks in group1 for different approaches. From Table 3, we ob-
serve that, for group1 benchmarks, adaptive has achieved signifi-
cantly better energy efficiency than fixed-interval DVFS schemes.
The EDP result from adaptive is about 18% better than that from
fixed-PID (16.0% vs. 13.5%), and nearly 3-fold better than that
from fixed-heuristic (16.0% vs 4.3%). This shows the efficiency of
our DVFS design and its self-tuning reactive advantages.

Next, we look at energy/performance results for the group2 bench-
marks, which have relatively slow or negligible workload varia-
tions. Table 4 show the average results over the group2 bench-
marks for different approaches. We observe that the adaptive re-
sults are still significantly better than those from the Synchro and
fixed-heuristic (we attribute this to the MCD advantage and/or the
effective design in Section 3 which is guided by formal stability
analysis). However, compared to the fixed-PID result, the adap-

2We were not able to implement synchronous dynamic voltage
scaling, so the Synchro results are for static scaling which may
under-represent the benefit of synchronous voltage scaling slightly.
3We noticed that the fixed-heuristic results from our experiments
are close to the published results in [23], but lower than that in
[19]. See discussion in [23] for possible reasons.

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005) 
1530-0897/05 $20.00 © 2005 IEEE 



0%

5%

10%

15%

20%

25%

ep
ic_

de
co

de

jpe
g_

de
co

de

jpe
g_

en
co

de

17
2.m

gr
id

17
3.a

pp
lu

17
6.g

cc

18
3.e

qu
ak

e

18
6.c

ra
fty

19
7.p

ar
se

r

ad
pc

m_d
ec

od
e

ad
pc

m_e
nc

od
e

ep
ic_

en
co

de

16
4.g

zip

17
1.s

wim

17
9.a

rt

18
1.m

cf

25
6.b

zip
2

Ave
ra

ge

Synchro

Fixed-heuristic

Fixed-PID

Adaptive

Performance degradation

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

ep
ic_

de
co

de

jpe
g_

de
co

de

jpe
g_

en
co

de

17
2.m

gr
id

17
3.a

pp
lu

17
6.g

cc

18
3.e

qu
ak

e

18
6.c

ra
fty

19
7.p

ar
se

r

ad
pc

m_d
ec

od
e

ad
pc

m_e
nc

od
e

ep
ic_

en
co

de

16
4.g

zip

17
1.s

wim

17
9.a

rt

18
1.m

cf

25
6.b

zip
2

Ave
ra

ge

Synchro

Fixed-heuristic

Fixed-PID

Adaptive

55

Energy savings

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

ep
ic_

de
co

de

jpe
g_

de
co

de

jpe
g_

en
co

de

17
2.m

gr
id

17
3.a

pp
lu

17
6.g

cc

18
3.e

qu
ak

e

18
6.c

ra
fty

19
7.p

ar
se

r

ad
pc

m_d
ec

od
e

ad
pc

m_e
nc

od
e

ep
ic_

en
co

de

16
4.g

zip

17
1.s

wim

17
9.a

rt

18
1.m

cf

25
6.b

zip
2

Ave
ra

ge

Synchro

Fixed-heuristic

Fixed-PID

Adaptive

52

EDP improvement

Figure 9: Performance degradation, energy savings, and energy-delay product (EDP) improvement for each benchmark; different
schemes are Synchronous voltage scaling, two fixed-interval DVFS schemes (fixed-heuristic and fixed-PID), and the DVFS scheme
with adaptive reaction time.

tive result lags by about 21% (17.1% vs. 21.7%). To understand
the reason, we see that, for the group2 benchmarks, the adaptive
scheme gets little or no useful advantages over fixed-PID from re-
sponsiveness. On the other hand, fixed-PID still has the advan-
tage over adaptive in terms of more accurate/intelligent DVFS de-
cisions. Recall that, for adaptive, to keep the design simple and
reduce the overhead of the decision process, we used simple time
delays and single frequency increment or decrement for choosing
possible DVFS actions. In general, DVFS actions picked by this
mechanism are not as accurate/intelligent as those chosen by the
fixed-PID, which may utilize system information from the current
and past time-intervals and the PID controller to figure out more ac-
curate voltage and frequency settings (of course, this requires more
hardware). Therefore, for the group2 benchmarks, the advantages

associated with fixed-PID prevail and lead to better results for these
than adaptive.

5.4 Comparison to Fixed-PID with Shorter In-
tervals

In previous sections, all fixed-PID results were obtained using
the default interval-length in [23] (10k instructions, which is also
the interval length for fixed-heuristic in [19]). The question is what
the results would be like for fixed-PID if a very short interval were
chosen? Also, how do the adaptive results compare to those from
fixed-PID with shorter intervals?

To answer the above questions, we first look at the pros and cons
of reducing the interval-length for fixed-PID. On one hand, smaller
interval length tends to make DVFS control in fixed-PID more fine-
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Figure 10: The energy delay product improvement (EDPI)
for the benchmark Epic-decode obtained from fixed-PID (solid
lines) as a function of interval lengths, and the increasing hard-
ware complexity level L. We also show the EDPI from adaptive
(the dashed line) as a comparison

grained, which may lead to more energy savings. On the other
hand, the energy overhead associated with the DVFS decision pro-
cess and trigger logic in fixed-PID also increases significantly with
shorter intervals. As mentioned in Section 3, the decision logic in
the fixed-PID can be separated into two parts. The first part is the
logic being executed on a per-cycle basis (such as the counters and
other book-keeping logic). The second part is the logic being ex-
ecuted on a per-interval basis, which is the part to implement the
PID controller and is doing more complicated computations such as
multiplication and division. Therefore, if the interval is relatively
long, the amortized decision logic overhead will be small and neg-
ligible. However, if the interval becomes shorter and shorter, the
amortized overhead will become larger and more significant.

Furthermore, even if we do not count the above decision over-
head, the control efficiency for fixed-PID may still diminish with
extremely short intervals. This is because the noise rejection ability
of fixed-PID, which works like a low-pass filter using the average
queue occupancy over the entire interval, begins to deteriorate with
very short intervals.

Therefore, because of the above pros and cons, reducing the in-
terval length may not lead to increased energy efficiency for fixed-
PID. In general, there exist a range of medium interval-length val-
ues for which the fixed-PID has the best overall control perfor-
mance. (The above discussion is also true for fixed-heuristic. The
author of [18] showed that their DVFS algorithm works best for a
range of interval lengths around 10k instructions).

Figure 10 shows the EDP improvement from the fixed-PID con-
troller as a function of different interval lengths, and different de-
cision logic overhead, for the benchmark Epic-decode. L in the
figure is the scaling factor accounting for different level of hard-
ware complexity of the fixed-PID decision logic4. (L = 0 is for the
ideal and unrealistic case where the PID controller has zero energy
cost). For comparison, we also show the EDP improvement from
the adaptive for Epic-decode (the dashed line).

From Figure 10, we see the best control performance did not

4Specifically, L is used to scale the unit energy cost for fixed-PID
decision logic in each time interval. The unit energy cost is esti-
mated as 3 ·α ·L ·C0 ·V 2 ·k, where 3 accounts for 3 clock domains;
α = 0.5 is the active factor, L · C0 is the total capacitance for the
PID controller with C0 chosen as 1% of the total capacitance of the
integer ALU; V is the voltage in the front end; k is the total number
of cycles the PID controller takes to finish the computation.

occur at very short intervals (like 1000 instructions or shorter).
Rather, it occurred with an interval length somewhere in the medium
range depending on the actual hardware complexity level.

We have also measured the efficiency of the fixed-PID with shorter
intervals for other benchmarks, and compared them to results from
adaptive. Overall, the observations and findings above hold for
them as well.

6. RELATED WORK
In this section, we highlight important related work which we

have not discussed in previous sections.
As mentioned earlier, most existing hardware-based online intra-

task DVFS work uses a fixed window or time-interval. There is
little prior work in the direction of adaptive DVFS design. One
pioneering work in that direction is the Mode-switching algorithm
proposed by Iyer and Marculescu [9]. Their algorithm detects the
High or Low queue occupancies (note they only look at the static
queue occupancies, and do not use information on queue occu-
pancy changes). If a High or Low queue condition has been de-
tected for some consecutive cycles, a possible switch from Fast-
mode to Slow-mode (or vice versa) will be made. We see, though
the reaction time in their work is essentially adaptive, the simple
two-mode switching algorithm has not been able to fully utilize
the power/benefits brought by this paper’s approach. For the pur-
pose of comparison, we have re-implemented their Mode-switching
DVFS algorithm and incorporated it into our simulation infrastruc-
ture. Our experimental results show that, in general, an energy-
delay product improvement of 6 − 7% has been achieved. In addi-
tion, without more detailed analysis, it is not analytically clear how
to further improve [9].

Another two DVFS algorithms for MCD architectures which we
have not discussed are the Shaker algorithm in [20] and the profile-
based algorithm in [14]. They are both offline DVFS algorithms.
As mentioned earlier, the focus of this paper is on hardware-based
online DVFS schemes.

Recently, there have been increasing research efforts in applying
control theory or other system theories in CPU design and control
[22, 23]. One example is the applying of control theory in thermal
control [22]. Another example is our own previous work on ap-
plying control theory to DVFS control for MCD processors [23].
The theoretical analysis in [23] is close to this work since the same
architecture and the same system dynamics are being considered.
However, the focus of the theoretical analysis in [23] is on the de-
sign, that is, how to model the controlled system and use control
theory as guidances in designing a standard PID-based controller.
On the other hand, the theoretical part of this work is focused on
modeling/stability-analysis of an existing DVFS design. So in this
work we derive a mathematical model for an existing design to be
used in the analysis. Then, the obtained analytic insight is used to
tune and improve the original design.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a new dynamic voltage and fre-

quency scaling (DVFS) scheme for multiple-clock-domain (MCD)
processors. The fundamental difference between this scheme and
prior online DVFS schemes for MCD is in terms of when to react or
make a DVFS decision. In the current scheme, the reaction time for
DVFS is not predetermined, and is instead self-tuned and adaptive
to application and workload changes.

As part of the scheme, we have designed a DVFS controller
which has a simple decision process and reacts to recent instant
queue occupancies. In addition, we have derived an analytic model
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for the designed controller and use it in a formal stability analysis.
The obtained analytical insight is then used to guide and improve
the DVFS control.

Compared to the best-known prior fixed-interval DVFS schemes
for MCD [19, 23], the decision process for the new scheme is much
simpler, and this leads to smaller and cheaper hardware. Yet, our
scheme has achieved a significant amount of energy savings over
all studied benchmarks (about 19% energy savings with 3% per-
formance degradation on average, which is close to the best re-
sults from prior online DVFS schemes). In addition, our scheme
is potentially more responsive. For a group of applications with
fast workload variations, our scheme outperforms existing fixed-
interval DVFS schemes significantly: on average, 18% better than
fixed-PID [23]; about 3 fold better than fixed-heuristic [19].

There are several avenues for future explorations. One possible
effort would be to improve the DVFS control in this work by con-
sidering interactions among different queues. Another would be to
combine the proposed DVFS control with thermal control to have
a unified energy-thermal control scheme.

Overall, we feel the proposed adaptive online DVFS scheme is a
promising alternative to the existing fixed-interval DVFS schemes.
Designers may choose the new scheme for processors with limited
hardware budget, or if the type of application behavior is known in
advance to have high workload variability. In addition, the model-
ing and analysis techniques in this work serve as examples of using
stability analysis in other aspects of high-performance CPU design
and control.
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