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ABSTRACT
Multiple Clock Domain (MCD) processors are a promising future
alternative to today’s fully synchronous designs. Dynamic Voltage
and Frequency Scaling (DVFS) in an MCD processor has the ex-
tra flexibility to adjust the voltage and frequency in each domain
independently.

Most existing DVFS approaches are profile-based offline schemes
which are mainly suitable for applications whose execution char-
acteristics are constrained and repeatable. While some work has
been published about online DVFS schemes, the prior approaches
are typically heuristic-based. In this paper, we present an effective
online DVFS scheme for an MCD processor which takes a formal
analytic approach, is driven by dynamic workloads, and is suitable
for all applications.

In our approach, we model an MCD processor as a queue-domain
network and the online DVFS as a feedback control problem with
issue queue occupancies as feedback signals. A dynamic stochas-
tic queuing model is first proposed and linearized through an accu-
rate linearization technique. A controller is then designed and ver-
ified by stability analysis. Finally we evaluate our DVFS scheme
through a cycle-accurate simulation with a broad set of applica-
tions selected from MediaBench and SPEC2000 benchmark suites.
Compared to the best-known prior approach, which is heuristic-
based, the proposed online DVFS scheme is substantially more ef-
fective due to its automatic regulation ability. For example, we have
achieved a 2-3 fold increase in efficiency in terms of energy-delay
product improvement. In addition, our control theoretic technique
is more resilient, requires less tuning effort, and has better scalabil-
ity as compared to prior online DVFS schemes.

We believe that the techniques and methodology described in
this paper can be generalized for energy control in processors other
than MCD, such as tiled stream processors.

Categories and Subject Descriptors: C.1.3 [Computer System
Organization]: Processor Architectures

General Terms: Design

Keywords: Dynamic Voltage/Frequency Scaling, Formal Meth-
ods, MCD processors
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1. INTRODUCTION
Due to the trends of increasing clock speed and increasing scale

of integration, two fundamental problems are present in today’s
synchronous microprocessor designs. First, global clocking dis-
tribution with low clock skew is becoming increasingly difficult.
Second, power consumption is becoming a limiting factor to perfor-
mance. One possible solution to these problems is a Multiple Clock
Domain (MCD) processor, which uses the Globally Asynchronous
and Locally Synchronous (GALS) clocking style [12, 20]. An
MCD processor has less clock distribution and skew burden. It is
also more power efficient due to the absence of a global clock dis-
tribution tree. Another important benefit from an MCD processor
is the extra flexibility in Dynamic Voltage and Frequency Scaling
(DVFS), as the frequency and voltage in each function block or do-
main can be adjusted independently. Therefore, DVFS in an MCD
processor can achieve better energy savings than DVFS in a tradi-
tional (fully) synchronous processor [12, 23].

The goal of this work is to design ananalytic onlineDVFS
scheme for an MCD processor. We categorize existing DVFS work
(for MCD processors or other general processors) along two dimen-
sions. The first dimension is the level of dynamism. The level of
dynamism ranges from low: profile-based offline schemes, to high:
online schemes driven by dynamic workloads. Most existing DVFS
schemes are offline, for example [10, 16, 18, 28]. They typically
use profiling to do offline analysis to obtain optimal DVFS settings
for some set of assumptions about program data sets and execution
model. Then either a compiler [10, 28] or a binary editor [18] is
used to write the DVFS configuration into the application source.
Naturally, the effectiveness of a profile-based DVFS scheme de-
pends on how similar the run-time characteristics are to the offline
analysis at profile time. Therefore, DVFS schemes in this group
are best suited to special-purpose applications, such as multimedia
applications, whose run-time characteristics are constrained and re-
peatable. In contrast, in our work we propose an online DVFS
scheme which takes runtime information directly from the proces-
sor to infer characteristics of the application dynamically, and is
thus suited to all kinds of applications.

The other dimension for categorizing existing DVFS schemes
is the level of formalism. The level of formalism ranges from
purely heuristic-based to formal analytic schemes. Although many
offline schemes take mathematical optimization-based formal ap-
proaches [10, 16, 28], nearly all existing online DVFS schemes
are heuristic-based [11, 19, 23]. They typically include a set of
manually selected rules and threshold values. At run time, certain
processor metrics, such as cache miss rate [19] or queue occupancy
[11, 23], are monitored. These metrics are then compared to the
threshold values and one of the rules is applied depending on the
result of the comparison. The best known online DVFS scheme
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for an MCD processor is the AttackDecay algorithm by Semeraro
et al [23]. However, there are significant limitations in heuristic-
based schemes. First, for a result obtained from a given set of rules
and parameters, it is not analytically clear how to further improve
it and thus make the DVFS more effective. Second, the trial-and-
error tuning process for parameters is very time consuming. Third,
it is generally hard to scale the heuristics for a large system, as the
number of rules and the tuning effort required can grow exponen-
tially.

To overcome the above limitations, the online DVFS scheme in
this paper takes a rigorous analytical approach. We model an MCD
processor as a queue-domain network. The online DVFS problem
is formulated as a feedback control problem with issue queue oc-
cupancies as feedback signals . Specifically, a stochastic model is
proposed for the queue-domain dynamics. Since the queue-domain
system is inherently nonlinear, we first linearize the system through
an accuratefeedback linearization. The controller is then designed
and verified by stability analysis. Next, a possible hardware im-
plementation of the controller is described. Finally the proposed
online DVFS scheme is evaluated by a cycle-accurate architecture
simulator with a broad set of applications selected from the Medi-
aBench and SPEC2000 benchmark suites. Overall, we achieve a
power-saving to performance degradation ratio of6.2 (i.e. on av-
erage,6.2% power is saved for1% performance degradation), as
compared to a ratio of2.5 for the conventional synchronous volt-
age scaling.

Compared to the best known prior online DVFS approach for an
MCD processor [23] which is heuristic-based, the proposed DVFS
scheme has several significant advantages. First, the analytic on-
line DVFS scheme is more effective in terms of energy saving
for the same level of performance degradation. Experimental re-
sults show we achieve an energy-delay product improvement 146%
higher than that of the best-known heuristic-based online scheme
in [23], and 11% higher than the semi-oracle-based DVFS scheme
in [24]. We attribute this promising result to the automatic fre-
quency/voltage regulation ability in the proposed DVFS controller,
which leads to a more effective and precise decision on when, where,
and how much to scale. In addition, the proposed analytic on-
line DVFS scheme requires less tuning effort than heuristic-based
DVFS as the analytic DVFS chooses its control parameters through
stability analysis. Furthermore, the analytic DVFS scheme is more
scalable – we do not have to re-tune parameters or re-set rules in or-
der to include new resources. Also, we can extend it to a global and
centralized DVFS scheme, which will handle interactions among
multiple clock domains (as will be discussed in Section 5).

Overall, we feel that the primary contribution of this work is
threefold. First, our focus is on voltage/frequency control for MCD
architectures, which are relatively new and have great potential in
terms of energy-saving and performance improvement. Second, the
proposed control-theoretic techniques applied to DVFS in MCD
processors have led to a 2-3 fold increase in efficiency compared to
the best-known previous heuristic-based DVFS scheme in MCD
processors. In addition, our control-theoretic technique is more
resilient, complete, and boundable as well. For example, we can
guarantee stability, achieve significant energy savings, and offer
more graceful degradation even under extreme cases. Third, this
is one of the first rigorous analytic approaches to DVFS control.
Previous control theoretic techniques exist [17], but only for mul-
timedia processors with predictable workloads, while our work is
for general workloads.

The rest of the paper is structured as follows. In Section 2, we
give a brief review of the MCD processor design and implementa-
tion. Section 3 describes the modeling, design, and analysis of our
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Figure 1: The clock domain partitions in an MCD processor by
Semeraro et al [24]

online DVFS controller. This is followed in Section 4 by experi-
mental results for the purpose of evaluation. In Section 5, we give
a general outline of centralized DVFS design. Finally, Section 6
offers our conclusions.

2. BACKGROUND: MULTIPLE CLOCK
DOMAIN MICROPROCESSORS

Some computer architects and researchers have predicted that,
in order to overcome the increasing severe problems of clock dis-
tribution and power consumption, future high-performance micro-
processors may need to have multiple clock domains (MCD) or use
some form of asynchrony [1, 21]. MCD processors use the Glob-
ally Asynchronous Locally Synchronous (GALS) clocking style
[20]. Each function block or domain operates with an indepen-
dently generated clock, and synchronization circuits ensure reliable
inter-domain communication.

Advantages of MCD processors include less clock distribution
and skew burden, less power consumption due to the absence of
a global clock tree, DVFS flexibility, and design modularity [20].
The primary disadvantage of MCD processors is the inter-domain
communication and synchronization overhead. An interface circuit
is needed if data passes between two domains.

One key design issue for an MCD processor is the choice of
where to partition the clock domains. It is still an open research
question on how to partition in order to maximize the power-
performance benefit. Most existing MCD implementations use ar-
chitectural functional blocks as natural boundaries for clock do-
mains. For example, Figure 1 shows a 4-domain partition used by
the MCD implementation by Semeraro et al. [24], which consists
of the front end, integer processing core (INT), floating point pro-
cessing core (FP), and load store unit (LS). The main memory is
considered as an external separate clock domain not controlled by
the processor (for more details see [24]). Another popular MCD
implementation by Iyer and Marculescu [12] uses a 5-domain par-
tition, which is similar to that in Figure 1 but with the front-end
split into two clock domains.

Another key design issue for an MCD processor is the synchro-
nization interface design. A good interface design needs to have
low latency, high throughput, and virtually no synchronization fail-
ure (i.e. no metastability). Nearly all of the existing MCD interface
designs use some kind of queue structures for efficiency. One group
of designs [6] uses token-ring based FIFOs, which have a very low
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Figure 2: A conceptual illustration of a perfect online DVFS for
a clock domain in an MCD processor.

latency and low synchronization overhead (there is no synchroniza-
tion cost if the token-ring FIFO is neither full nor empty). An-
other group of designs uses arbitration-based queue structures (of-
ten with a stoppable clock) [26, 29]. The designs in this group are
typically failure-free, but may need to check synchronization for
each data transfer. For example, the design by Sjogren and Myers
[26] includes arbitration and synchronization circuits which can de-
tect whether the source and destination clock edge are far enough
apart (i.e., greater than the so-called synchronization window size
in [23]), in order for the source generated signal to be successfully
accessed at the destination. This design has been used by the MCD
implementation in [24]. Note that for a situation like that in Fig-
ure 1, where issue queues already exist between some domains, the
interface queue structure can be integrated with the existing issue
queue to form a combined issue/interface queue structure.

The MCD implementations in [12] and [24] also provide the ca-
pability of independently configuring the frequency and voltage in
each clock domain. An aggressive XScale-style DVFS model [7] is
assumed, in which a clock domain can execute through the DVFS
transition and the penalty is negligible due to a domain being idle
waiting for the PLL [7]. Also, the XScale model allows any fre-
quency to be used within the allowable range.

The quantitative benefit/overhead studies in [12, 24] have shown
that an MCD processor has the potential to achieve significant power
and performance efficiency. However, many design and control is-
sues remain open and need more investigation in order to fully take
advantage of the power/performance benefits brought by the MCD
processors [20]. Online DVFS is one of these issues, as we will
show next.

3. ONLINE DVFS DESIGN: AN ANALYTIC
APPROACH

3.1 Problem formulation
Conceptually, the online DVFS problem for an MCD processor

is to scale the frequency f to match the varying performance de-
mand in each clock domain. In other words, we want to adapt fre-
quency to workload changes. Figure 2a depicts a typical scenario
with varying demand or workload. For a clock domain, changing
clock frequency will generally change the execution speed or ca-
pability of the domain. So, a perfect DVFS scheme will lead to
a perfect match between the demand and domain execution capa-
bility, as illustrated in Figure 2b. In the figure, perfect is in the
sense of no performance degradation and elimination of all energy
wasted due to excessive capability slack. Thus, the goal of our on-
line DVFS scheme is to get results as close as possible to that of
perfect DVFS.

queue q

clock
domain

demand λ
frequency  f

service rate µ

Figure 3: A single queue model for a clock domain with an
input queue.

Note the excessive capability slack in Figure 2a is just the gap
between the capability line and the demand line. We refer to the
energy wasted due to this slack as Eslack. So for a perfect DVFS
in Figure 2b, the energy savings will be all of the Eslack.

In addition, in Figure 2, we can continue to scale the execution
capability line arbitrarily low below the performance need for non-
realtime applications to get more energy savings, but that comes
with a price of performance degradation, as the performance de-
mand can not be satisfied. We call this part of energy savings
non-slack energy savings or Enon-slack, to distinguish it from the
“ free” energy savings due to the elimination of Eslack.

In this paper, we want to make use of the queues in an MCD to
guide DVFS. Recall from Section 2 that there are interface queues
between clock domains for synchronization. Intuitively, these queues
give clues about the speed balance between the sender domain and
the receiver domain. For example, an emptying queue may mean
the receiver is too fast relative to the sender; a filling queue may
mean it is too slow; a stationary queue means a perfect match of re-
ceiver speed relative to the sender. This suggests a feedback control
scheme for DVFS which uses the queue occupancy as a feedback
signal to control the domain frequency, making its execution speed
adaptive to varying demand. If the adaptiveness is fast enough, the
DVFS scheme should get results close to the perfect matching in
Figure 2.

There are, however, significant challenges to pursuing this idea
along a rigorous analytic direction. First, to design a simple, hard-
ware controller based on control theory, we need an analytical model
for the involved queue and domain dynamics. Second, the queue-
domain relationships are inherently time varying and nonlinear. So
techniques may be needed to solve the nonlinearity problem accu-
rately before we can design an effective DVFS controller.

In the rest of this section, we describe modeling and design of
an online DVFS scheme for local queues and domains. That is,
the DVFS controller considers each queue locally and separately,
assuming the interactions between queues are weak and can be ig-
nored (the so-called decentralized DVFS scheme). We leave the
issue of centralized DVFS to Section 5.

3.2 Overview of modeling and design of DVFS
controller

This subsection is intended to give an overview of the modeling
and design of our online DVFS controller without going through
control theoretic and mathematical details (those details will be
given in subsections 3.3 - 3.6).

We use a local queue model as shown in Figure 3. The circle in
that figure represents the clock domain being considered (such as a
floating point functional unit). The domain has a frequency f and
an execution capability or service rate µ, which is a function of f .
The performance demand is denoted as λ. The queue has a finite
size. (Note this model uses an input queue to a domain. For the
case of an output queue, duals of the arguments in this section will
hold.)

Figure 4 shows the design flow of our DVFS controller, with the
block diagrams corresponding to the major steps for our methodol-
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Figure 4: Design flow for our DVFS controller in MCD proces-
sors. Section numbers inside the blocks indicate the location
where the details of each design step can be found.

ogy. The inputs to the modeling and design blocks are the processor
(MCD) specification and the DVFS control specification. These
include queue length, clock domains and their frequency ranges,
control interval (i.e. the time interval for one possible change of
frequency/voltage), sampling period, queue measures used as feed-
back signals, and other control performance requirements such as
maximum percent overshoot allowed.

The first major step is the modeling of the involved queue and
clock domain dynamic. (The details are described in subsection
3.3.) Based on the processor and control specifications, we derive a
mathematical model for the controlled system, which is expressed
as a set of difference equations. These equations describes the dy-
namic relationship among the feedback signal (q), the demand (λ),
and the frequency (f ).

The next two major steps are the system linearization and the lin-
ear controller design (both are described in subsection 3.4). Since
the controlled queue/domain system is inherently nonlinear, we
first linearize the system using an accurate linearization technique
called nonlinear transformation [2]. As shown in Figure 5, this
technique essentially adds a nonlinear transformer to the feedback
path to compensate for the nonlinearity in the original controlled
system. We then design a variation of the Proportional-Integral-
Derivative (PID) controller for this linearized system, which is com-
monly used in industry [14, 27]. Intuitively, the PID-based con-
troller adjusts the execution rate to adapt to the workload change.
This adjustment is in proportion to the value of the workload change,
the rate of the workload change, and takes into account the prior
history of workload changes. Figure 5 shows the control block di-
agram, where q is the measured feedback signal; qref is the target
or nominal queue operating point; e is the error signal and the in-
put to the PID-based controller; µ is the obtained control signal (or
actuate signal) which is proportional to the value of the error, the
integral of previous errors, and the rate of the error change; f is
the frequency and is obtained from µ through a nonlinear transfor-

PID-based
controller

q

eqref

Disturbance input 

µ

λ

Trans-
former

Controlled system 
(queue and domain)

f- q

linearized system 

+

Figure 5: Control block diagram for a Proportion-Integral-
Derivative (PID) controller for DVFS .

mation; demand λ is the disturbance input which the controller is
trying to adjust the execution rate to match.

The control parameters (or control gains) for the PID-based con-
troller are decided by the stability and control performance anal-
ysis. Note these control gains are the main output of the analy-
sis/design toolbox. The next major step is to take the design with
the control gains, and implement it in hardware (we show a possi-
ble hardware implementation in subsection 3.5). This finishes the
design cycle of a DVFS controller in MCD processors.

A key design setting for the above DVFS controller is the ref-
erence queue occupancy qref . As we will show in subsection 3.6,
the value of qref specifies the actual tradeoff between performance
degradation and energy saving. We can increase qref to make
DVFS control more aggressive in saving energy, or decrease qref to
value performance more. Note that a design could make the value
of qref adjustable by the OS or application software (e.g. through
a special mode set instruction). This mechanism provides an op-
portunity for hardware/software cooperation in the sense that the
hardware is responsible for implementing the fine details of speed
adaptation while the OS/application software will make the overall
policy decision (through qref ) on how aggressively to save energy
or preserve performance.

In the rest of this section, we will describe in detail the design
steps in Figure 4. We will start with the modeling and linear con-
troller design, which involves some control theoretic and derivation
details. (People who are already familiar with these derivations or
are not interested in these details may wish to skip subsections 3.3
and 3.4.) In practice, these control theoretic techniques/details can
be incorporated into an analysis/design toolbox. A designer is able
to use the toolbox to get the control parameters, and then use them
directly in the DVFS policy controller design.

3.3 Analytic modeling of queue and clock
domain dynamics

As mentioned earlier, we use a local queue model as shown in
Figure 3. For a clock domain, the frequency and corresponding
voltage cannot change instantaneously, and there is a minimum
time requirement for one possible change of frequency. So we have
a control interval such that the frequency is fixed inside an interval.
Using T as the length of a control interval, the kth control interval
is just the time period [kT, (k + 1)T ]. Also we denote N as the
total number of sampling periods in a control interval, and assume
each sampling period has a length of ∆t, so T = N∆t.

We want to first model the performance demand and service rate
in a control interval. The demand λ(t) and service rate µ(t) inside
each control interval are modeled as an independent and stationary
random process along the time axis [9] (i.e., they have identical
distributions for all t inside an interval). We denote the expected
values and variances (or noise levels) of λ(t), µ(t) as λ̄, V(λ), µ̄,
and V(µ) respectively. (From now on, for a variable x, we will use
x̄ and V(x) to represent the expected value and variance of x.) Also,
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we use a subscript k as in λ̄k, V(λk) to indicate these values are for
the kth control interval.

Consider q(t) as the queue occupancy at time t. Then the ba-
sic queue equation is expressed as follows (essentially a simplified
version of the Lindley equation [15]) :

q(t+∆t) − q(t) = (λ(t) − µ(t))∆t (1)

Intuitively, this means that queue occupancy change in a unit time
is equal to the number of arrived elements minus the number of
departed elements in that unit time.

Next we want to use the above basic queue equation to model the
queue-domain dynamics across different control intervals. First,
we need to define the feedback signal and other necessary dynamic
state variables. For a control interval, there are a number of ways
to measure the queue utilization and use it as a feedback signal to
the controller. In this paper, we use the average queue occupancy
over all sampling points in the previous interval as the feedback
signal for the current interval (as was used by the heuristic-based
DVFS approach in [23]). We denote this feedback signal for the kth
control interval as q′k . Also, the queue occupancy at the starting
point of the kth interval is qk, so we have qk = q(kT ). If we
express these two dynamic state variables q′k and qk in terms of
values from the previous interval, we have

q′k = 1
N

NP
i=1

q((k−1)T+i∆t)

qk = q((k−1)T+N∆t)

(2)

Next we recursively expand equations (2) using the the basic queue
dynamics in (1) and take the expectation of both sides of the ex-
panded equation. Since both λ and µ are stationary in a control
interval, λ̄k and µ̄k are independent of time t for any k. So we
have

q̄′k = q̄k−1 + 1
N

N−1P
i=0

iP
j=0

(λ̄k−1 − µ̄k−1)∆t

= q̄k−1 + T+∆t
2

(λ̄k−1 − µ̄k−1)
q̄k = q̄k−1 + (λ̄k−1 − µ̄k−1)T

(3)

Intuitively, this means q̄′k, the average queue occupancy over a
control interval, is equal to the sum of the queue occupancy at the
beginning of the interval (q̄k−1) and the average queue changes
due to the differences between the demand rate λ̄k−1 and the ser-
vice rate µ̄k−1. A similar interpretation exists for q̄k, the queue
occupancy at the beginning of next interval, in the above equation.

The above equation describes the dynamics in the considered
queue-domain system across different control intervals. The RHS
of equation (3) is expressed in term of the expected value of the
service rate µ̄k, while the real control signal is fk. So we need to
model their relationship. We use the following model

µ̄k = 1

t̄1+
C̄2
fk

(4)

The above equation comes from the fact that, in most clock do-
mains, execution time can be separated into two parts – one that is
independent of frequency and one that is dependent. For example,
in a load/store domain, the time spent for accessing asynchronous
memory due to a cache miss is independent of frequency, while the
time for querying and accessing cache is dependent on frequency.
Accordingly, in the above model, t̄1 is the average amount of unit
time (or task step) per instruction that is independent of frequency,
and C̄2 is the average number of frequency-dependent cycles per
instruction. Parameters t̄1 and C̄2 can be estimated dynamically
using techniques similar to those in [13, 28].

Putting (3) and (4) together, and dropping ∆t in (3) as T � ∆t,
we have an analytic model for the considered queue-domain system
as

Nonlinear
controller

f
q

µ

(a) (b)

Original
system

Compensated
system

demand λ
domain

Linear
controller

f
q

demand λ
domain

Transformer

Figure 6: Linearization of the original dynamic system through
a nonlinear transformation on the feedback path

q̄′k = q̄k−1 + T
2
(λ̄k−1 − 1

t̄1+
C̄2

fk−1

)

q̄k = q̄k−1 + (λ̄k−1 − 1

t̄1+
C̄2

fk−1

)T
(5)

Note in the above modeling of queue dynamics, we assume the
queue at the nominal operating point is partially full. The queue-
domain relations when the queue is completely empty or full will
be different from that in (1), which must be modeled using some
discrete binary functions like those we will use in Section 5.

In addition, in the above model, we have only considered the
expected values of λ and µ, and have not considered the variance
or noise level of the input V(λ), V(µ). Particularly, we want to check
how the input noise propagates in the feedback signal q̄′, since the
noise in the feedback signal may affect the efficiency of a controller.
We compute the variance Vq′

k
in one interval, assuming the queue

occupancy is known at the beginning of the interval. By expanding
the first sub-equation in (2), taking the variance of both sides of
the expanded equation, and following the variance calculation rules
[9], we have

V(q′
k
) = T+∆t

2T
(V(λk−1) + V(µk−1))

≈ 1
2

(V(λk−1) + V(µk−1))
(6)

From (6), we see the variance or noise in the feedback signal q′

is not amplified and stays at a roughly the same level as the input
noise. This is beneficial to the controller because smaller noise
in the feedback signal tends to have less negative impact on the
efficiency of the controller.

3.4 DVFS controller design
A straightforward design approach for our goals would be to de-

sign a controller for fk, as shown in Figure 6a. However, as indi-
cated in equation (5), this control system is nonlinear, and it is gen-
erally hard to design an effective controller for a nonlinear system,
as there are very limited control techniques and tools for a general
nonlinear system [14]. Fortunately, the nonlinearity inside this sys-
tem can be separated, so we can have a nonlinear transformation on
the feedback path to compensate for the nonlinearity in the original
system dynamics; in this way, the compensated system becomes a
linear one. This accurate linearization technique is the so-called
feedback linearization or nonlinear transformation [2], as shown
in Figure 6b. Specifically, we take µk as the control signal for the
compensated linear system. The actual or internal control signal fk
is obtained through a transformation on the feedback path.

After the linearization, we can design the controller using a rich
set of linear control techniques [14]. A popular choice would be
a variation on the Proportion-Integral-Derivative (PID) controller.
In this work, we use a PI controller because it is relatively simple
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to design and robust in terms of steady-state control performance.
The controlled system with the PI controller can be described by
the following state equations.1

q̄′k = q̄k−1 + T
2
(λ̄k−1 − µ̄k−1)

q̄k = q̄k−1 + (λ̄k−1 − µ̄k−1)T
ek = q̄′k − qref

µ̄k = µ̄k−1 +KIek +KP (ek − ek−1)

fk = C̄2µ̄k
1−t̄1µ̄k

(7)

where the first two sub-equations are simply the analytic queue-
domain model in (5); qref is the reference queue occupancy, i.e.
the target or nominal operating queue point (more discussion of
this in Section 3.6) ; ek is the error signal; µk is the new service
rate coming from the PI controller, with KI and KP the control
parameters (or the so-called control gains); fk is the new clock
frequency obtained by solving (4) for fk .

We then can proceed with stability and transient performance
analysis of (7) and choose appropriate control gains KI and KP

[14], as described next.
In equation (7), we define µk as the output signal, and λk as

the disturbance input signal. Also we define new constants K′
I =

KIT , K′
P = KPT . We can get the transfer function through

the input-output difference equation and the z-transformation [14].
From the transfer function, we can get the corresponding charac-
teristic equation as

2z3 + (K′
I +K′

P − 4)z2 + (2 +K′
P )z −K′

P = 0 (8)

From stability theory [14], the system in (7) is stable if and only if
the roots of (8) are all inside the unit cycle of the z-plane. Assuming
the roots of (8) are z1, z2, and z3, we have the following relation-
ships between the roots and the setting K′

I ,K
′
P , using a standard

coefficient matching technique.

K′
I = 2(z1z2 + z2z3 + z3z1) − 2

K′
P = 2z1z2z3

z3 = 3−z1z2−z1−z2
z1z2+z2+z3+1

(9)

With equation (9), we can use the poles-placement technique [14]
to choose the appropriate K′

I ,K′
P setting for a given stability mar-

gin and transient performance requirement. For example, if z1 and
z2 are chosen with a very small magnitude (e.g. z1 = z2 = 0.25,
as smaller magnitudes give faster settling times), z3 will be placed
outside the unit cycle in the z-plane (e.g. z3 = 1.6) and the sys-
tem will be unstable. So to make the system stable, we need to
choose z1 and z2 with a relatively large magnitude and sacrifice
the settling time a little bit. We also may want it relatively under-
damped in order to have a fast rising time, assuming we can tolerate
1Note these equations describe the dynamic relationship between
the state and control variables. For the control relationship between
these variables, please refer to the control block diagram in Figure
5 in Section 3.2.
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Figure 8: Block diagram for a possible hardware implementa-
tion of the DVFS controller in a clock domain.

the overshoot caused by the underdamping. Considering all of the
above, one good placement is to have z1,2 = 0.5± 0.5i, z3 = 0.6,
and the corresponding K′

I = 0.2, K′
P = 0.6. Figure 7 shows the

step response of the system in (7) for this setting.
Note, in the above controller design, we assume frequency fk

can vary without bounds. In practice, fk has an upper bound and a
lower bound. Also, there is a maximum possible frequency change
in one control interval for a given interval length and clock chang-
ing rate. So, in practice, the DVFS controller would need to check
with these bounding values. In addition, we assume an XScale-
style frequency control which allows continuous frequency changes.
For processors which allow only stepwise frequency changes, the
DVFS controller would need to choose a discrete step which is clos-
est to the requested continuous value.

3.5 Hardware implementation of the DVFS
controller

The most important hardware required to implement the pro-
posed DVFS scheme are the queues. As these queues already ex-
ist as synchronization queues between clock domains, the online
DVFS controller for an MCD processor uses the existing hardware
in a “ two for one” style.

The rest of the required hardware includes two counters, which
are similar to the hardware counters in [23]. One is used to frame
the control interval (a time counter or instruction counter). Since
the length of a control interval is typically a few thousand cycles
or instructions, a single 16-bit counter should be sufficient. The
other one is a queue counter to get the cumulative queue occu-
pancy. Given that a queue size is typically around 20 (� 26) and
we have to total up such occupancies over ≤ 216 cycles, a 22-bit
queue counter should be sufficient. One possible implementation
for computing the average queue occupancy is to choose the inter-
val length as power of two and use a shifter as shown in Figure 8.
The most complicated part is the logic required to compute the con-
trol signal (f ). Since it is done only once for each control interval
and is not time critical, this computation can be finished in multiple
cycles. Specifically, this logic first needs to compute µk as

µk−1 +KI(q̄′k − qref ) +KP (q̄′k − q̄′k−1)

One possible implementation for this task is shown in Figure 8,
which uses two adders to compute the queue differences, and two
pre-computed lookup tables to get the actual control gains or changes
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Figure 9: Piece-wise linear functions to approximate the real
µ(f) function around two operating points.

(one for KI and one for KP ). The actual size of the lookup tables
depends on the queue size, the resolution of the queue values, and
the control gains. For a queue size of 32, a resolution of 0.25 for
queue values, and a 7-bit KP or KI resolution, each lookup table
requires 128 entries and 15 bits per entry as illustrated in Figure 8.

This logic also needs to compute values of µ(f) with µ = 1/(t̄1+
C̄2/f). The t̄1 and C̄2 can be estimated online by some perfor-
mance counters [28]. The rest can be computed by a multiplier or
using again some pre-computed lookup tables. In order to reduce
the hardware requirement for this part, we approximate the µ(f)
function with some piece-wise linear functions. (An illustration is
given in Figure 9 with t̄1 = 0.35, C̄2 = 0.1.) That is, we divide
the frequency range into many small pieces, each of which is cen-
tered at an operating point. Then for f inside a small piece, µ can
be computed using a linear function µ = IPC · f , where IPC
is the effective IPC at the center operating point. For the exam-
ple in Figure 9, we have µ = IPC1f for f inside a small piece
around operating point (f1, µ1), and µ = IPC2f for the small
piece around (f2, µ2). If the size of the frequency piece is small,
this will give a quite good approximation. (In the next section we
will see that because the frequency change rate is relatively slow
in an MCD processor, the maximum possible frequency change in
an interval is relatively small; thus the error from this piecewise
approximation is relatively small.) With this approximation, the
hardware required to compute µ ∼ f will be reduced. We will
need to estimate IPCeffective online using a regular IPC counter,
then compute the new frequency f using the current f , total control
gains (changes), and IPC as shown in Figure 8. The computing
logic for this part can be implemented using a pre-computed lookup
table as discussed above, or using a 16-32 bit multiplier depending
on the frequency resolution. As mentioned earlier, this computa-
tion is not time critical, so we can use some serial multiplication
techniques to further reduce the hardware requirement. Finally, the
new frequency signal f will be used by the frequency and voltage
control mechanism in a clock domain.

Overall, only a modest amount of hardware support is needed to
implement the online DVFS controller.

3.6 Specifying energy and performance trade-
offs with qref

In the DVFS controller design in previous subsections, the ref-
erence queue qref specifies the nominal operating queue point. In
principle, qref can be any value which is neither full nor empty (i.e
0 < qref < 1, if expressed relative to the queue size). In this sub-
section, we show the position of qref specifies the actual tradeoff
between performance degradation and energy efficiency.

We continue to consider the single queue model in Figure 3. No-
tice that, for this queue system, the steady state throughput (i.e.
the steady state performance) degrades if and only if the queue is

full. That is because, at that point, the performance demand from
the upstream domain cannot be satisfied and the arriving process is
forced to stall. Similarly, energy is wasted if and only if the queue
is empty, because the domain is running idle and not doing any use-
ful work. Note, control errors and input noise/variation are the two
major causes for the queue to become full or empty.

In addition, we notice that the distance from the nominal oper-
ating point (qref ) to the full-end queue point, [qref , 1], reflects the
relative margin for the queue to tolerate the control errors and in-
put variation before the queue becomes full and loses performance.
Similarly, the distance from qref to the empty-end queue point,
[0, qref ], reflects the margin to tolerate errors before the queue be-
comes empty and wastes energy.

Therefore, if qref is increasing, then the distance [qref , 1] is de-
creasing and the system is more likely to suffer performance degra-
dation. On the other hand, for an increasing qref , the distance
[0, qref ] is also increasing and the system is less likely to waste
energy. Qualitatively, the bigger the qref , the more performance
degradation and the more energy savings in general. We can choose
how much energy performance tradeoff we want by choosing an
appropriate qref in our online DVFS controller.

As mentioned in section 3.2, in our design, we can also leave
the policy parameters like qref adjustable by the OS or application
software. So the OS/application can direct the overall power man-
agement with a simple lever (making the overall decision on how
aggressively to save energy or preserve performance) while leaving
the actual implementation details of speed adaptation in hardware.
This mechanism shows an example of hardware/software coopera-
tion in DVFS control.

In the rest of this subsection, we will further give a quantita-
tive theoretic estimation of the performance degradation and en-
ergy savings as a function of qref (later, in Section 4, we will show
the actual experimental results). Denote the control error as εc, the
input variation as εv , and the queue length as L. In concept, we
have the following

Performance = PerfectP − Degradation
= PerfectP −D(qref , L, εc, εv)

Energy Savings = Eslack − Wasted + Enon-slack
= Eslack −W (qref , L, εc, εv) +Enon-slack

(10)
where PerfectP is the perfect performance of Figure 2,D is the per-
formance degradation, Eslack and Enon-slack are the slack energy
savings and the non-slack energy savings defined in Section 3.1.

From (10), we see the value of Energy Savings is mostly decided
by the Eslack in the original program and the value of non-slack
energy savings. The energy wasted W is affected directly by qref

as we mentioned. So in general, as qref increases, W decreases,
(also non-slack energy savings increases ), and the overall Energy
Savings increases.

The relative performance, on the other hand, is more closely re-
lated to qref as shown next. To get a theoretical estimation of the
relative performance, we assume the program variation pattern is
more or less exponentially distributed, so the demand and server
process can be approximated by a Markov model [3]. The queue
system considered in this section can be modeled as an M/M/1/L
queue [3]. Also, assuming the controller error εc is 0, we have
µk = λk and the server utilization ρ = 1 [3]. For a given qref and
queue size L, the probability that the queue becomes full is

Ploss =
1

(1 − qref )L+ 1
(11)

Using equations (10) and (11) , we have the performance as
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Performance = PerfectP − Ploss · PerfectP

=
�
1 − 1

(1−qref )L+1

�
PerfectP

(12)

If we use the performance at qref = 0 as the base performance,
then we can compute the relative performance as a function of qref

from (12) as

Relative Performance =
(1 − qref )(L+ 1)

(1 − qref )L+ 1
(13)

Figure 10 shows an example curve from equation (13) with L =
10. It is observed that the relative performance degrades as qref

increases, and the slope increases dramatically.2

The intention of the above analysis is to get some analytical in-
sight on how the relative performance degrades with qref . In Sec-
tion 4, we will give the actual experimental results on performance
and energy saving as a function of qref .

4. EXPERIMENTAL RESULTS
In this section, we present experimental results to illustrate and

evaluate the effectiveness of the proposed online DVFS scheme.

4.1 Simulation methodology and setup
Our simulation environment is based on the SimpleScalar toolset

[5] with the Wattch [4] power estimation extension and the MCD
processor extension [24]. The MCD extension by Semeraro et al.
in [24] has 4 clock domains as shown in Figure 1. It also includes a
cycle-by-cycle computation of the synchronization overhead due to
independent clock frequency, phase, and clock jitter. An XScale-
like dynamic voltage and frequency changing mechanism has been
implemented, which allows any frequency to be used within the
allowable range, as described in Section 2.

We have made two major modifications to the simulation core, in
order to have a more accurate energy and performance estimation.
First, the load-store queue in the MCD simulator has been split
into a separate load-store issue queue and a load-store retirement
buffer. Second, the energy computation in the latest MCD simula-
tor [18] uses a formula inherited from Wattch, which computes the
energy as the sum of power on a cycle-by-cycle basis. While this
formula works fine for a processor with a fixed frequency, it may
give overly-optimistic energy results for a processor with dynam-
ically varying frequency. So we modified the energy computation

2Note, in reality, the applications’ variation patterns are typically
not strict-exponentially distributed. So the actual performance-qref

curve might be slightly different from that in Figure 10. Further,
different applications may have different execution variation pat-
terns, which may lead to different performance-qref curves.

Table 1: Summary of All Simulation Parameters

Simulation Parameters Value
Reference queue point 6 INT, 5 FP, 3 LS
Domain frequency range 250MHz – 1.0GHz
Domain voltage range 0.65V - 1.20V
Frequency/voltage change speed 73.3 ns/MHz, 171 ns/2.86mV
Control interval length 10000 instructions
Domain clock jitter ±110ps, normally distributed
Inter-domain synchro window 300ps
Branch predictor:

2-level L1 1024, hist 10, L2 1024
Bimodal size 1024, BTB 4096 sets, 2-way
Combined size 4096

Decode/Issue/Retire width 4/6/11
L1 data cache 64KB, 2-way
L1 instr cache 64KB, 2-way
L2 unified cache 1MB, direct mapped
Cache access time 2 cycle L1, 12 cycles L2
Memory access latency 80 first chunk, 2 inters
Integer ALUs 4 + 1 mult/div unit
Floating-point ALUs 2 + 1 mult/div/sqrt unit
Issue queue size 20 INT, 16 FP, 16 LS
Reorder buffer size 80
LS retire buffer size 64
Physical Register file size 72 INT, 72 FP

formula to account for the varying frequency in an MCD processor
with DVFS.

We implemented the online DVFS controller for local queues
and domains, following the design in Section 3. Also, as in [18, 23],
we made the front end domain run at a fixed maximum speed, and
allowed the INT, FP, and LS domains to be controlled by the DVFS
controller. We assume a performance degradation target of about
4%, which is roughly the same as that in [23]. Using the curve in
Figure 10 as a general guide, we chose the reference queue point
qref as roughly 1

3
of the total size for INT and FP domains. ( That

is, qref is 6 for the INT domain, 5 for FP). Since the LS domain
is relatively more critical to the overall performance as shown in
[20], we chose its qref to be 3 which is roughly 1

5
of the total

size. For the µ and f relations in (4), we used the piece-wise linear
approximation µ = IPCeffectivef as discussed in Section 3.5.
Also, we assume clock gating will be applied whenever the unit
is not used. All other architecture parameters are chosen to have
the same values as those in [18, 23]. A summary of all simulation
parameters is in Table 1.

We want to evaluate our online DVFS scheme with a broad set of
applications. To show variety, we will present results for 6 Medi-
aBench applications, 8 SPECint applications, and 4 SPECfp appli-
cations as shown in Figure 12. We chose roughly the same subset
of SPECint and SPECfp as those used in [18, 23]. We believe these
programs form a representative set as they display a range of pro-
gram behavior. For MediaBench benchmarks, we use the official
data input set in the MediaBench web site and the whole program
as the simulation window; for SPEC2000 benchmarks, we use the
reference input set and choose the simulation window using the
published Early SimPoint numbers [22].

As an illustrative example, in Figure 11 we show the frequency
setting from the online DVFS controller for the benchmark EPIC-
Decode. The corresponding average queue occupancy trace is also
shown there. Clearly, there is a strong correlation between the
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Figure 11: Frequency trace from DVFS for the benchmark EPIC-Decode in the top row, and the corresponding queue trace in the
bottom row.

queue traces and the obtained DVFS frequency settings. This cor-
relation is most obvious for the FP domain where the FP issue
queue is empty except for two distinct phases. At the beginning,
the DVFS controller detected the queue emptiness and gradually
reduced the FP frequency to fmin = 0.25GHz. Then there was
a modest frequency recovery in the first phase. During the second
phase, the DVFS controller detected a dramatic increase of queue
entries (i.e. increasing demand to the FP clock domain) and quickly
adjusted the clock frequency to fmax = 1.0GHz. The correlations
for the INT and LS domains are similar, but are less obvious as the
queue traces become relatively more complicated.

Next, we will look at the energy/performance efficiency of the
proposed online DVFS controller, and compare results with those
from some best-known prior work.

4.2 Energy and performance results for
different approaches

To compare our results to other prior DVFS approaches, we hold
performance roughly the same for all approaches and look at met-
rics such as energy savings, energy-delay product improvement,
and power/performance ratio. We define the power/performance
ratio as percentage power saved per percentage performance degra-
dation – that is, what percentage power is saved for one percent
performance degradation. Note this definition is the same as that in
[23].

We will present results from our analytic online DVFS scheme
(denoted as Analytic). We compare them to those from the heuristic-
based online DVFS in [23] (denoted as Heuristic), and those from
the semi-oracle-based DVFS in [24] (denoted as SemiOracle). The
SemiOracle assumes the DVFS, by oracle, has full knowledge of
existing slack in a program, and uses a Shaker algorithm to de-
cide DVFS settings. So its results are not realistic, but serve as a
comparison. (However, as stated in [24], the SemiOracle result is
not the upper bound for all possible DVFS results.) The parame-
ters we use for Heuristic and SemiOracle are taken from [23] and
[24], with a 5% performance degradation target for Heuristic and
1% for SemiOracle because these target values will lead to an ac-
tual performance degradation similar to Analytic. We also want
to compare our results to those from the conventional (fully) syn-

Table 2: Average results for different schemes, relative to a con-
ventional (fully) synchronous processor.

Performance Energy Energy-Delay Power/
Schemes degradation savings product Performance

improvement ratio
Analytic 3.6% 19.6% 16.7% 6.2

SemiOracle 3.7% 18.1% 15.0% 5.6
Heuristic 5.8% 11.9% 6.8% 3.0
Synchro 4.7% 7.6% 3.3% 2.5

chronous voltage scaling (denoted as Synchro) which scales the fre-
quency/voltage for the whole processor. It is set to get roughly the
same performance degradation as other approaches.3

The performance degradation, energy savings, and energy-delay
product for each benchmark are shown in Figure 12. The results are
relative to the conventional (fully) synchronous processor without
voltage scaling. So all results for MCD include about 1.5% percent
inherited performance and energy overhead from the baseline MCD
processor, as discussed in [23]. The average results over all 18
benchmarks are summarized in Table 2.

From Table 2 and Figure 12, there are several interesting ob-
servations. First, the overall results from Analytic DVFS are very
promising. We achieve a power/performance ratio of 6.2 on aver-
age relative to a fully synchronous processor. Second, compared
to results from Heuristic DVFS, Analytic DVFS achieves far better
results in terms of Energy-Delay Product (EDP) improvement and
power/performance ratio. For example, the average EDP improve-
ment by Analytic is 146% higher than that of Heuristic (16.7% vs
6.8%, with numbers relative to a synchronous processor). Analytic
DVFS also produces an average result better than those of SemiO-
racle. For example, the average EDP improvement by Analytic
is about 11% higher than that by SemiOracle (16.7% vs 15.0%)4

3We were not able to implement synchronous dynamic voltage
scaling, so the Synchro results are for static scaling which may
under-represent the benefit of synchronous voltage scaling.
4The SemiOracle results from our experiments are close to the pub-
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Figure 12: Performance degradation, Energy savings, and Energy-delay product improvement for each benchmark; different
schemes are Synchronous voltage scaling, Heuristic-based online DVFS, SemiOracle DVFS, and Analytic online DVFS.

These results show the effectiveness of the proposed analytic online
DVFS scheme due to the automatic regulation ability of a DVFS
controller.

Lastly, all MCD DVFS results (both analytic and heuristic-based)
are much better than those by the synchronous voltage scaling,
which shows the energy savings potential of a MCD processor due
to the extra flexibility in DVFS control. Note that the Synchro num-

lished results (relative to a synchronous processor) in [23, 24] . We
noticed, however, that the Heuristic results are not close to the re-
sults reported in [23]. We carefully examined the differences and
consulted the authors. We found, in addition to the differences
due to the energy computation formula mentioned earlier, there are
other possible reasons including different simulation windows, dif-
ferent implementations of the voltage changing mechanism in the
latest distribution of the MCD simulation toolset [25], and different
ways of computing average numbers for media benchmarks.

bers from our experiments are lower than what is usually expected
from the fact that performance scales linearly with f while energy
scales quadratically with v. The main reason is the voltage range in
our experiments is only half that of the frequency range. As stated
in [23], this reflects the current trend of shrinking voltage ranges in
processor designs as the supply voltage continue to scale aggres-
sively relative to the threshold voltage.

4.3 Energy-performance tradeoffs as a
function of qref

In the last subsection, the reference queue operating point qref

for all benchmarks were set to the values in Table 1—roughly 1
3

of the total size. Also, in Subsection 3.6, we have shown analyti-
cally how the performance and energy vary as a function of qref in
general. In this subsection, we show that experimentally.
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of qref for individual benchmarks – adpcm-encode (�), epic-
encode (✷), and jpeg-encode (•).
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Figure 14: Average relative performance degradation over the
6 MediaBench benchmarks as a function of qref

We use the 6 MediaBench benchmarks in the last subsection for
this study, as they are relatively small. For each benchmark, we
apply the Analytic online DVFS control with a relative qref varying
from 0.0 to 1.0 (the same qref value for all three INT, FP, and LS
queues). We then compute the performance and energy savings
relative to the values for the baseline MCD.

Figure 13 shows the relative performance as a function of qref

for 3 of the MediaBench benchmarks. (Note, in our simulation,
each domain has a frequency lower bound of 0.25GHz, so the low-
est relative performance in Figure 13 is not 0.) From this figure we
see that, due to different execution variation patterns in different ap-
plications, their performance curves have slightly different shapes
and slopes. We also computed the average relative performance
over all 6 MediaBench benchmarks, as shown in Figure 14, which
has a shape relatively close to the analytic estimation in Figure 10.

Recall that from Section 3.6, the energy savings is also affected
by qref . The general trend is that energy savings increase as qref

increases. Figure 15 gives an illustration of this general trend using
the average relative energy savings over the 6 MediaBench bench-
marks.

Thus, we believe the results in this subsection and Section 3.6
shows both analytically and experimentally how the energy perfor-
mance tradeoff is affected by the qref setting in our DVFS con-
troller.

5. DISCUSSION OF FUTURE WORK
The online DVFS scheme studied in previous sections is decen-

tralized. That is, it uses only local queue information and ignores
interactions among multiple queues. The decentralized DVFS scheme
can work fairly well in an MCD processor where frequency change
in one clock domain has negligible or little impact on other domains
and queues. For example, for the 4-domain MCD processor stud-
ied in Section 4 which has a fan-out structure, decentralized DVFS
works quite well, as shown by the experimental results in Section
4.
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Figure 15: Average relative energy savings over the 6 Media-
Bench benchmarks as a function of qref

However, for an MCD processor with more elaborate domain
partitions and strong interactions among multiple queues, a central-
ized online DVFS scheme may be needed in order to make correct
and efficient scaling decisions. For example, in a system where
three clock domains are in series with two queues in between, the
status of first queue will not only depend on its neighboring do-
mains, but also depend on the status of the downstream queues
and domains. So, in this case, online DVFS needs to look at the
status of all queues to make correct and efficient control actions.
Otherwise, a clock domain can be confused by information from
individual local DVFS controllers—one scenario is, when its input
and output queues are both full, the local controller for its input
queue will suggest a speed increase while the local controller for
its output queue will suggest the opposite.

A systematic approach to design a centralized DVFS scheme
needs to extend the DVFS framework in Section 3 using a global
control theory. A new analytic model is first needed for all queues
in an MCD processor which interact with each other. We can gener-
alize the single queue-domain model used in previous sections into
a queue-domain network. For each clock domain, its input queue
can take flows (demand) from multiple sources (either a upstream
domain or an external input source) through a join operation. Also,
a clock domain can send out flows to multiple destinations (either
a downstream domain or an external output sink) through a split
operation. For this system, due to the interactions among multiple
queues and domains, the actual execution speed µ and the arriving
flow rate (demand) λ for a clock domain will be affected by the
status of all related queues. For example, µ for a domain will be
zero if its downstream queue is full. Similarly, λ for a domain will
be zero if its upstream queue is empty. To analytically model these
interactions, we need to use tools like an indicate function 1() and
introduce a flow-matrix A. The indicate function is defined as

1(x) =

�
1 if x > 0
0 if x ≤ 0

(14)

and the flow-matrix A defines how the tasks flow from one domain
to another for a given queue-domain network.

With an analytical model for this system, control can be achieved
by feeding back the state variables (the so-called state feedback
with integral control [14]). Intuitively, this means frequency and
voltage are controlled using all queue information as feedback sig-
nals. Note that, the design of an actual control law may need some
linearization techniques in order to eliminate the nonlinearity due
to presence of the indicate function.

The above extension to centralized DVFS control is one of the
topics we are currently exploring. We have obtained a detailed an-
alytic model and a practical global DVFS decision algorithm based
on DVFS controllers. The details are beyond the scope of this pa-
per.

Apart from the above extension, there are some other avenues
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for future exploration. In this paper, in an attempt to have a better
comparison with the results from prior work, we have chosen many
design options to be identical to those used earlier, such as using the
average queue occupancy for a fixed interval length of 10k as the
feedback measure. We are currently investigating how these design
options affect the DVFS control and if we can choose better design
options or even make them adaptive. We are also considering an
analytic framework for an event-driven DVFS scheme, which is
different from the interval-based DVFS approach in this paper (a
simple example for an event-driven DVFS is in [11]).

6. CONCLUSIONS
In this paper, we have presented an analytic online scheme for

dynamic voltage and frequency scaling (DVFS) in a multiple clock
domain (MCD) processor. There are two salient features about the
proposed DVFS scheme. First, it is online and dynamic workload
driven. Second, it takes a rigorous analytic approach and is guided
by control theory.

Compared to the best-known prior online DVFS, which is heuristic-
based, our online DVFS scheme has achieved a 2-3 fold increase in
efficiency. In addition, our control theoretic technique is more re-
silient and complete. For example, we can guarantee stability and
achieve significant energy savings even under extreme cases. Fur-
thermore, our scheme has the advantage of requiring less tuning
effort and having better scalability.

Specifically, we model the MCD processor as a queue-domain
network and the corresponding online DVFS as a feedback control
problem. We have described the modeling, analysis, design, and
implementation of the proposed DVFS controller. Our experimen-
tal results show that we have achieved an Energy-Delay product
improvement which is 146% higher than that from the best-known
heuristic-based online DVFS, and 11% higher than that from an
semi-oracle-based DVFS scheme.

We believe the techniques and methodology described in this
paper can be generalized for effective energy control in proces-
sors other than MCD. For example, there are many tiled CMPs
in research now [8], and the ideas here would translate neatly to
DVFS for them as well. Furthermore, the formal control tech-
niques described here for DVFS can also serve as examples for
applying control theory to other aspects of dynamic execution in
high-performance CPUs.
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