
226

Foundations of Empirical Memory Consistency Testing

JAKE KIRKHAM, Princeton University, USA

TYLER SORENSEN, UC Santa Cruz, USA

ESIN TURECI, Princeton University, USA

MARGARET MARTONOSI, Princeton University, USA

Modern memory consistency models are complex, and it is difficult to reason about the relaxed behaviors that

current systems allow. Programming languages, such as C and OpenCL, offer a memory model interface that

developers can use to safely write concurrent applications. This abstraction provides functional portability

across any platform that implements the interface, regardless of differences in the underlying systems. This

powerful abstraction hinges on the ability of the system to correctly implement the interface. Many techniques

for memory consistency model validation use empirical testing, which has been effective at uncovering

undocumented behaviors and even finding bugs in trusted compilation schemes. Memory model testing

consists of small concurrent unit tests called “litmus tests”. In these tests, certain observations, including
potential bugs, are exceedingly rare, as they may only be triggered by precise interleaving of system steps

in a complex processor, which is probabilistic in nature. Thus, each test must be run many times in order to

provide a high level of confidence in its coverage.

In this work, we rigorously investigate empirical memory model testing. In particular, we propose method-

ologies for navigating complex stressing routines and analyzing large numbers of testing observations. Using

these insights, we can more efficiently tune stressing parameters, which can lead to higher confidence results

at a faster rate. We emphasize the need for such approaches by performing a meta-study of prior work, which

reveals results with low reproducibility and inefficient use of testing time.

Our investigation is presented alongside empirical data. We believe that OpenCL targeting GPUs is a

pragmatic choice in this domain as there exists a variety of different platforms to test, from large HPC servers

to power-efficient edge devices. The tests presented in the work span 3 GPUs from 3 different vendors. We

show that our methodologies are applicable across the GPUs, despite significant variances in the results.

Concretely, our results show: lossless speedups of more than 5× in tuning using data peeking; a definition of

portable stressing parameters which loses only 12% efficiency when generalized across our domain; a priority

order of litmus tests for tuning. We stress test a conformance test suite for the OpenCL 2.0 memory model

and discover a bug in Intel’s compiler. Our methods are evaluated on the other two GPUs using mutation

testing. We end with recommendations for official memory model conformance tests.

CCS Concepts: • Computing methodologies → Graphics processors; • Software and its engineering →
Software testing and debugging.

Additional Key Words and Phrases: memory consistency, autotuning, conformance testing, GPUs, OpenCL

ACM Reference Format:

Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi. 2020. Foundations of Empirical Memory

Consistency Testing. Proc. ACM Program. Lang. 4, OOPSLA, Article 226 (November 2020), 29 pages. https:

//doi.org/10.1145/3428294

Authors’ addresses: Jake Kirkham, jak4@alumni.princeton.edu, Princeton University, USA; Tyler Sorensen, tyler.sorensen@

ucsc.edu, UC Santa Cruz, USA; Esin Tureci, esin.tureci@princeton.edu, Princeton University, USA; Margaret Martonosi,

mrm@cs.princeton.edu, Princeton University, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART226

https://doi.org/10.1145/3428294

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

https://doi.org/10.1145/3428294
https://doi.org/10.1145/3428294
https://doi.org/10.1145/3428294

226:2 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

1 INTRODUCTION
With the end of Dennard scaling, computational gains are increasingly achieved through parallelism

and specialization. However, efficient many-core systems remain difficult to design and implement

correctly. A crucial component of such systems is the memory consistency model, which specifies

memory-ordering constraints in shared memory concurrent programs. These constraints are

specified at the programming language and must be honored throughout the various layers of the

modern system stack. For example, compilers must take the memory model into account when

performing optimizations, and microarchitectural implementations must ensure certain orderings

when propagating values through deep and distributed shared memory hierarchies. A bug in any

one of these complex systems could be critical: e.g. memory propagating out-of-order is akin to a

race-condition, which have been the cause of power failures [United States Department of Energy

2004] and medical equipment malfunctions [Leveson and Turner 1993].

The strongest memory model, i.e. the model that allows the fewest behaviors, is known as se-
quential consistency [Lamport 1979]. It states that a concurrent program execution must correspond

to a sequential interleaving of thread instructions. However, most modern systems (languages

and architectures) have adopted relaxed memory models, in which there are legal program exe-

cutions that do not correspond to an interleaving. Such behaviors, known as relaxed behaviors,
are allowed to accommodate various optimizations, from compiler transformations to hardware

store buffers. Taking into account the nuanced (and sometimes counter-intuitive) nature of relaxed

models, there are ample opportunities for bugs to be introduced throughout the system stack.

Indeed, prior work has identified memory-model related errors in applications [Alglave et al. 2015],

compilers [Manerkar et al. 2016], and hardware implementations [ARM 2011].

Many modern high-performance programming languages, e.g. C/++ and OpenCL, specify a rela-

tional relaxed memory model, described using a dynamic, partially ordered happens-before relation
between annotated memory operations. The key validation task now is providing confidence that

programming language implementations, i.e. the compiler and resulting machine code execution,

matches the programming language specification. State-of-the-art techniques in this area typically

fall into two categories: formal proof and empirical testing.

Formal Proofs. Ideally, validation of an implementation would be through formal proof, which

would show that an implementation honors a specification given any legal program. There has

been much work on performing such proofs for memory consistency models, however, due to the

complexity of the models and implementations, proofs are largely contained to one layer of the

system stack and are performed manually, e.g. using interactive theorem provers. For example,

the C++ programming language has proven compiler mappings to the following ISAs: x86 [Batty

et al. 2011], PowerPC, and ARM [Batty et al. 2012]. Moving down the system stack, prior work has

proven hardware implementations, however with manual effort [Choi et al. 2017].

While these proofs and methodologies are important, they are not always practical (or even

correct). Compiler proofs must be manually adapted to account for new (or unmodeled) parts

of the languages (e.g. see [Chong et al. 2018; Flur et al. 2017]) and must be safely incorporated

into massive compiler code bases. Hardware proofs at this point have only been applied to small

systems implemented using very specific frameworks. Deployed systems are much larger and

implementation details are proprietary. In the worst (though rare) cases, bugs have even been found

in “proven-correct” systems [Manerkar et al. 2016; Norris and Demsky 2013; Yang et al. 2011].

Empirical Testing. A more accessible approach to validation is testing, where a large number of

test cases are run on an implementation. While testing does not provide formal guarantees, it has

been incredibly successful at finding bugs in complex systems, e.g. compilers [Yang et al. 2011]

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

Foundations of Empirical Memory Consistency Testing 226:3

and microarchitectural features [Ta et al. 2019]. Memory consistency testing has been especially

effective over the years, as problematic behaviors can be concisely distilled into small unit tests,

called “litmus tests”. These test cases can be synthesized by enumerating cycles in happens-before

relations [Alglave et al. 2014], which correspond to a program exhibiting a relaxed behavior.

Litmus tests are parallel programs and are non-deterministic. Each test allows several outcomes,

only one of which corresponds to a relaxed behavior. To provide coverage for the many interleavings

that may occur throughout the system stack, litmus tests are run many times. Testing campaigns in

prior work have applied a limited amount of tuning and run for a bespoke constant iteration count,

typically between 50K to 10M per litmus test. However, these testing campaigns show a variety of

undesirable properties when analyzed under a rigorous statistical lens.

1.1 Deficiencies of Prior Studies

Fig. 1. Distribution of logarithm of number of re-

laxed behaviors in the AEA dataset. Vertical red

line indicates the cutoff point for 95% reproducibil-

ity probability. 8% of the tests revealing relaxed

behavior are not reproducible at this rate.

We illustrate the issues with using fixed iteration

counts in empirical memory model testing by ex-

amining a large set data set from a 2015 study on

Nvidia GPUs [Alglave et al. 2015], which we refer to

as the AEA (Alglave Et Al.) dataset. This campaign

ran 10930 tests across 5 different GPUs; altogether,

containing the results of roughly 140 hours of mem-

ory model testing. Each test was run for a fixed 50K

or 100K iterations on each device. Analyzing this

data set, we identify three significant deficiencies:

Reproducibility. A conformance test suite would

be of limited use if different runs passed and failed

sporadically. While testing has an inherent amount

of uncertainty in it, statistical methods can provide

meaningful bounds of confidence on runs, missing

in all prior memory consistency testing work.

To illustrate this, we analyze the AEA data set as

follows: For each GPU, we compute the probability of reproducibility, 𝑃𝑟𝑒𝑝 , as the probability of

observing at least one relaxed behavior for tests that showed any relaxed behaviors when the same

number of iterations is repeated. Approximating the true rate of occurrence of relaxed behavior as

the observed rate, we can compute this probability as:

𝑃𝑟𝑒𝑝 = 1 − 𝑘𝑁 (1)

where 𝑘 is the frequency of not observing (1 − (𝑛/𝑁)), 𝑛 is the number of occurrences of relaxed be-

havior and𝑁 is the number of iterations run. A closer look at this equation shows that (1 − (𝑛/𝑁))𝑁
converges to the Taylor series expansion of 𝑒−𝑛 for large 𝑁 :

(1 − (𝑛/𝑁))𝑁 = 1 − 𝑁
𝑛

𝑁
+ 𝑁 (𝑁 − 1)

2!

𝑛2

𝑁 2
+ 𝑁 (𝑁 − 1) (𝑁 − 2)

3!

𝑛3

𝑁 3
· · ·

≈ 1 − 𝑛 + 1

2!

𝑛2 + 1

3!

𝑛3 · · ·

≈ 𝑒−𝑛

(2)

Since we typically have thousands of iterations, the reproducibility rate can therefore be directly

computed as 1 − 𝑒−𝑛 and tied only to the number of times a relaxed behavior is observed: for 𝑛 = 1,

𝑃𝑟𝑒𝑝 is 63.21%, for 𝑛 = 2, it is 86.47%, for 𝑛 = 3, it is 95.02% and so on.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

226:4 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

Figure 1 shows the number of relaxed behaviors for all the tests that have at least one observation

for all the GPUs in the AEA dataset, where the red vertical line is the number of observations

needed for 𝑃𝑟𝑒𝑝 of 95% which is 3. Note that this is an arbitrarily chosen level of reproducibility and

can be set to any desired level. In the AEA dataset, 960 (∼19.4%) of all tests with relaxed behavior

have 1 or 2 observations made (𝑃𝑟𝑒𝑝 of 63.21% and 86.47% respectively). This, as we will describe

below, is also an important indicator for potential false negatives.

Estimated False Negatives: A common critique of testing is that it cannot guarantee the absence

of bugs. While this is always going to be true, there are statistical techniques that can be applied

to large data-sets to control for the number of false negatives. We cannot compute the true false

negative rate without making assumptions about the underlying processes. However, we can derive

a lower bound on the potential number of false negatives (𝐹), by undertaking the following exercise:

how many of the observed relaxed behaviors would we not observe if we were to repeat the above

set of experiments? We can compute this using

𝐹 =

𝑚𝑎𝑥∑
𝑖=1

𝑚𝑖 ∗ (1 − 𝑖/𝑁𝑖)𝑁𝑖
(3)

where𝑚𝑖 is number of parameter/GPU sets with 𝑖 observed relaxed behaviors and (1 − 𝑖/𝑁𝑖)𝑁𝑖
is

the probability of not being able to reproduce this observation with 𝑁𝑖 iterations. As can be seen,

the rate of false negatives is closely related to 𝑃𝑟𝑒𝑝 . We note, however, that this provides a lower

bound on the true number of false negatives since we cannot include true false negative cases from

the original dataset. Computing this for the AEA dataset, we see that 287/4948 tests would not be

reproduced resulting in a false negative rate of 5.8% percent. If all positive cases in the AEA set had

3 or more observations, this number would have been 61 (1.2%).

Just as we probabilistically sampled the AEA dataset, the original dataset and experiments

themselves sample the true probabilistic landscape of these systems. Accordingly, it is likely that

AEA dataset also had similar rate of false negatives if not more. The above exercise therefore

provides an insight into what percentage of such tests might have been missed in the original

experiment. We propose that the number of iterations for zero observations be kept at the maximum

iteration count that is required for 𝑃𝑟𝑒𝑝 value of at least 95%, for the cases where it was observed.

Redundant Testing Time: The time spent testing a system is increasingly becoming a significant

concern, as projects have built up large suites of tests over the years. Furthermore, smaller systems

with lower clock frequencies and smaller amounts of memory, e.g. mobile devices, may take longer

to execute tests. For example, using the litmus7 testing tool [Alglave et al. 2011], we found that a

server-level CPU executes 5M test iterations per second. On the other hand, we found that an Intel

integrated GPU (used in laptops) executes only 750 tests per second.

One of our contributions is showing that litmus tests may not need to be run for the full iteration

count if interesting behaviors are occurring frequently enough. To understand the savings that

can occur in a large campaign, we run the following analysis on the AEA dataset. We compute

the minimum number of iterations that need to be run in order to have a 𝑃𝑟𝑒𝑝 of > 95% for each

test case where relaxed behavior was observed. We reverse calculate the number of iterations (𝑁)

that would be sufficient: 𝑁 = 𝑙𝑜𝑔(1 − 𝑃𝑟𝑒𝑝)/(𝑙𝑜𝑔(1 − 𝑝)), where p is the observation rate. This

computation shows that in the AEA dataset over 86 million iterations were unnecessary, which in

some scenarios can correspond to several days of unnecessary testing.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

Foundations of Empirical Memory Consistency Testing 226:5

Table 1. GPUs used in this study; along with short names used throughout the text. While the Intel OpenCL

driver reports a large number of compute units (CUs), prior work has thread-occupancy 8× less than this

reported number [Sorensen et al. 2016]

Vendor Chip Discrete # of CUs Short Name

Nvidia Quadro P5000 Yes 20 Quadro

AMD RX Vega 64 Yes 64 Vega

Intel Iris Pro 650 No 48 Iris

1.2 Foundations of Empirical Memory Consistency Testing
In this work, we explore and evaluate our ideas on Graphics Processing Units (GPUs). These

ubiquitous devices are found in systems ranging from the most powerful super computers to

tiny edge devices, e.g. smart watches. Clearly, GPUs in these different settings have different use-

cases, and the corresponding performance/power trade-offs have resulted in a large architectural

diversity, with nearly all major vendors producing their own chip. Despite this chaotic landscape,

programming models, such as OpenCL, aim to provide a unified abstraction under which these

devices can be programmed. Since version 2.0, OpenCL has officially adopted a language-level

memory consistency model, which we will use to guide our experiments.

Contributions. As this paper will show throughout, different GPUs have significantly different

behaviors in terms of the type and frequency of observed relaxed behaviors, as well as the stressing

parameters that increase relaxed behavior observations. We also show that our methodologies

are robust to these differences, and while the specific numbers in observations may change, our

proposed techniques are able to increase efficiency and yield statistical insights across all platforms.

Our contributions can be summarized as:

(1) Tooling: a portable GPU memory model testing tool, targeting OpenCL, that can be config-

ured with a range of stressing parameters (Section 3).
1

(2) Characterization of Relaxed Memory Observations: Using our tool, we collect relaxed

memory testing observations across 3 GPUs, 6 litmus tests, 1K stress parameter configura-

tions and 10K test iterations each. We characterize: (1) the frequency of observing relaxed

behaviors with different stressing parameters; (2) the rates of relaxed behaviors per parameter

configuration; (3) the stability of relaxed behavior rates across time (Section 4).

(3) Efficiently Tuning and Generalizing Stress Parameters: Our characterizations motivate

the need to tune stressing parameters to yield higher rates of relaxed memory observations.

To this end, we develop techniques to efficiently tune stress parameters and methods for

generalizing parameters to perform well across different GPUs. This includes: (1) a data

peeking scheme that yields a lossless 5× increase in tuning speed; and (2) a novel portability

metric that enables stressing parameters to be generalized across GPUs, costing only a 12%

reduction in the rate of relaxed memory observations (Section 5).

(4) Conformance Testing of the OpenCL 2.0 Memory Model: We develop a conformance

test suite for the OpenCL 2.0 memory model, which couples litmus tests with tuned stress.

Using this, we find a bug in the Intel OpenCL compiler and perform a mutation testing

analysis on AMD and Nvidia GPUs. We show that our conformance tests can expose 83% of

the mutants, while existing conformance tests find none. We conclude with recommendations

for memory model conformance test designs (Section 6).

1
Tool is available at: https://github.com/tyler-utah/OpenCLLitmus_v_2

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

https://github.com/tyler-utah/OpenCLLitmus_v_2

226:6 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

Store Buffering (SB)

1 W[x]=1 3 W[y]=1
2 L1=R[y] 4 L2=R[x]

WB: L1==0 && L2==0

Load Buffering (LB)

1 L1=R[y] 3 L2=R[x]
2 W[x]=1 4 W[y]=1

WB: L1==1 && L2==1

Message Passing (MP)

1 W[y]=1 3 L1=R[x]
2 W[x]=1 4 L2=R[y]

WB: L1==1 && L2==0

Fig. 2. Three litmus tests: SB, LB, andMP. Each test consists of two concurrent threads: one thread executes

the left-hand instructions, (black circles); another thread executes the right-hand instructions (white circles).

Instructions are Read (R) and Write (W). Memory locations are initialized to 0. Local variables are prefixed with

an L. Each test allows one relaxed behavior, which can be tested by examining values of local variables and

memory post mortem, as indicated by the last line in each test (labeled with WB).

Table 2. The 7 possible outcomes of the tests in Figure 2: Sequentialization of the threads (the first two);

sequential interleaving (next 4, allowed under sequential consistency); the relaxed behavior (allowed under

various relaxed memory models (e.g. OpenCL and C/++) if sufficient synchronization is not used).

Execution SB LB MP

1 2 3 4 (L1==0 && L2==1) (L1==0 && L2==1) (L1==1 && L2==1)
3 4 1 2 (L1==1 && L2==0) (L1==1 && L2==0) (L1==0 && L2==0)

1 3 2 4 (L1==1 && L2==1) (L1==0 && L2==0) (L1==0 && L2==1)
1 3 4 2 (L1==1 && L2==1) (L1==0 && L2==0) (L1==0 && L2==1)
3 1 4 2 (L1==1 && L2==1) (L1==0 && L2==0) (L1==0 && L2==1)
3 1 2 4 (L1==1 && L2==1) (L1==0 && L2==0) (L1==0 && L2==1)

Relaxed Behavior (L1==0 && L2==0) (L1==1 && L2==1) (L1==1 && L2==0)

2 BACKGROUND
Here, we review memory consistency models, illustrating relaxed memory behaviors through small

idiomatic tests (Section 2.1). Next, we provide an overview of GPU programming, including the

formal memory model adopted in OpenCL 2.0 (Section 2.2).

2.1 Memory Consistency Models
A memory consistency model specifies the values that load operations are allowed to return in

shared-memory concurrent programs [Sorin et al. 2011, ch. 1]. The strongest model is sequen-

tial consistency [Lamport 1979], which states that any behavior of a concurrent program must

correspond to some sequential interleaving of the instructions. However, all modern multi-core

architectures, and many low-level languages (e.g. C) provide relaxed memory models, where some

allowed program behaviors do not correspond to an interleaving of instructions.

Litmus Tests. We illustrate relaxed memory models using “litmus tests”: small concurrent tests

with a post-mortem condition that is only allowed under a relaxed memory model. Figure 2 shows

three tests that we will discuss frequently throughout: Store Buffering (SB), Load Buffering (LB)

and Message Passing (MP). The possible behaviors of each test are enumerated in Table 2: there

are six possible sequential interleavings of instructions, leading to three sets of final values for the

two local variables (L1 and L2). Each test might also allow a relaxed behavior, allowed by common

relaxations in memory consistency models. For example, the SB relaxed behavior is allowed in the

x86 ISA [Sewell et al. 2010], while LB and MP are allowed in ISAs like ARMv8 [Pulte et al. 2018].

Memory Model Specifications. Nowadays, memory models are specified through happens-before

relational constraints, e.g. the C++ model [Batty et al. 2011]. These models formalize concurrent

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

Foundations of Empirical Memory Consistency Testing 226:7

program executions as a set of events (e.g. reads and writes), and relations. Executions are disallowed

if the model’s relational constraints are not satisfied; for example, a model may build a temporal

happens-before relation between events, which is intuitively constrained to be acyclic. These models

are appealing due to their expressivity, i.e. they can capture more behaviors than thread-local

reordering specifications, and their relational semantics are straightforwardly incorporated into

formal tools, e.g. test-case synthesis [Wickerson et al. 2017]. However, the formalism of these models

is not needed for this work. Thus, while we may refer to relational models and their applications

(e.g. test-case synthesis in Section 6), our contributions do not require an in-depth background.

Explicit Orderings and Data races. Memory models describe how to disallow relaxed behaviors,

i.e. restoring sequential consistency. Some models provide special fence instructions (e.g. mfence
in x86) that can be placed between memory operations to provide relative ordering. For example,

if an mfence instruction is placed between the write and read in the SB test on both threads,

then the relaxed behavior would be disallowed on x86. Other models, e.g. ARMv8 and C, provide

programming annotations for read and write instructions, e.g. release and acquire annotations

for writes and reads, respectively. In the MP test, if instructions 2 and 3 are annotated with

release and acquire respectively, then the relaxed behavior is disallowed.

Higher-level languages (e.g. C) can have a notion of a data-race: a pair of concurrent memory

accesses that are not synchronized (e.g. ordered by a happens-before relation). Programs with races

are typically given “catch-fire” semantics, i.e. all program behavior is undefined. In this work, we

aim to test a well-defined memory model specification, thus we protect all our concurrent memory

accesses with explicit atomic types and accesses, provided by the OpenCL language (described in

Section 2.2). By definition, atomic accesses never race, thus our tests are all data-race free.

2.2 GPU Programming and OpenCL
GPUs have supported general purpose programming languages for over a decade now, with

the two main languages being: CUDA [Nvidia 2019], which exclusively targets Nvidia GPUs;

and OpenCL [Khronos Group 2019], which targets GPUs from many different vendors. GPU

programming models have evolved rapidly and now contain a range of diverse features. However,

given that (1) support for programming features varies across different chips, and (2) we target a

range of GPUs in this work (Table 1), our GPU programming subset will be relatively simple. Because

we target GPUs from non-Nvidia vendors, we will default to OpenCL terminology throughout.

Programming GPUs. A GPU program consists of two components: the host computation, which is

executed on the CPU; and the device computation (sometimes called the kernel), which is executed

on the GPU. The host copies memory to the device and then launches the kernel to perform

computation on the data. After the kernel finishes, the host can copy the computed data back to the

CPU. The kernel is programmed with OpenCL C (based on C99). A kernel is executed in a SIMT

(single instruction, multiple threads) manner, where many threads execute the same kernel, but

have access to unique thread identifiers, which are commonly used to: (1) access distinct memory

locations in a data-parallel program, or (2) conditionally execute certain code blocks.

The OpenCL model exposes an execution hierarchy, which can efficiently be mapped to the

spatial layout of massively parallel GPU devices. The base unit of execution is called a thread,
2

which executes one instance of the kernel. Equal-sized contiguous sets of threads are organized into

workgroups (or thread-blocks in CUDA), which naturally map onto compute unit (or streaming

multiprocessor in CUDA). A GPU provides three memory spaces: global memory is available to all

threads on the GPU; local memory (shared memory in CUDA) is shared only between threads in the

2
Some OpenCL literature refers to threads as work-items

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

226:8 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

same workgroup; private memory is private to a thread. These memory regions can be efficiently

implemented on GPUs through large register files (for private memory), non-coherent scratchpads

(for local memory) and a traditional, cached memory hierarchy (for global memory).

Synchronization can be achieved at the workgroup level using the barrier primitive. There is

no official synchronization primitive available at the inter-workgroup scope, although prior works

have shown how one can be implemented [Gupta et al. 2012; Xiao and Feng 2010].

OpenCL Memory Consistency Model. OpenCL specifies a relational memory model, defined using

happens-before relations [Khronos Group 2015, ch. 3.3]. Instructions executed in program order are

defined to be happens-before ordered. Inter-thread orderings can be induced by using atomic types
(e.g. integers and booleans), which can be accessed (i.e. read from or written to) with primitive

functions. These accesses can be annotated with different memory orders, which induce different

strengths of synchronization. In order from strongest to weakest, these orders are:

(1) seq_cst: is short for sequential consistency; if all shared accesses have this annotation, then

all relaxed behaviors are disallowed; e.g. if all instructions of the tests of Figure 2 are given

this annotation, then the specification disallows all relaxed behaviors.

(2) release/acquire: are given to writes and reads, respectively. If a read acquire observes a
value written by a write release, then it induces a happens-before relation; e.g. in MP, if 2

and 3 are release/acquire annotated, then the relaxed behavior is disallowed.

(3) relaxed: is the annotation with the weakest constraints. It induces no synchronization; e.g.

all relaxed behaviors of the Figure 2 tests are allowed if the accesses are annotated this way.

The OpenCLmodel extends the Cmodel by providing an additional annotation to atomic memory

accesses that specifies the level (or scope) of the OpenCL hierarchy at which synchronization is

to be induced, e.g. workgroup, or device. Memory ordering guarantees are only provided if the

synchronizing threads belong to the same instance of the hierarchy defined by the memory scope

annotation. That is, if two threads are in the same workgroup, they should use the workgroup
scope annotation. The widest scope we consider in this work is device, and all threads executing

on the same GPU can synchronize with this scope.

There are many nuances to these models (e.g. mixing annotations, non-atomic accesses, etc.).

However, a full description is outside the scope of this paper. These models have been rigorously

formalized (for C [Batty et al. 2011] and OpenCL [Batty et al. 2016]) and tools exist to explore

litmus test behaviors
3
. This work uses the OpenCL model only at a high-level to reason about

simple litmus tests; however, this is sufficient to find bugs in an industrial compiler (Section 6).

3 TUNING PARAMETERS AND EXPLORATORY DATASETS
Relaxed behaviors can be difficult to observe on some architectures, especially GPUs. Prior works

have shown that to observe any relaxed behaviors on Nvidia GPUs, some additional stress and

fuzzing heuristics were required. For example, litmus tests typically consist of a small number of

threads; the additional GPU threads can be programmed to repeatedly access a disjoint memory

region. This can cause contention in the memory hierarchy, affecting the ordering that memory

values propagate to other threads. Other heuristics involve changing the affinity of testing threads,

i.e. changing the physical core to which they are mapped. Different cores are at spatially different

locations on the chip and may interact through different mechanisms, e.g. a different cache level.

Here we overview tuning parameters we use to influence the rate at which relaxed behaviors are

observed in empirical litmus testing. These tuning parameters are inspired by prior works [Alglave

et al. 2015, 2011; Sorensen and Donaldson 2016] and have been shown to be effective for CPUs and

3
see: http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

Foundations of Empirical Memory Consistency Testing 226:9

Stressing Memory Region

…Stress Line 0 Stress Line 1 Stress Line n

… …… Selected Stress
Line x

Selected Stress
Line 0

(a)

(b)

(c)

Word
0

Word
1

Target
0 …(d)

Stress Line Offset load/store
loop

(e)

Word
y… Word

0 ……

…Workgroup Set 0 Workgroup Set x
Stressing

Workgroups

load/store
loop

Word
1

Target
x

Word
y

Fig. 3. Overview of memory stress. The memory stressing region is divided into disjoint, equal sized regions

called stress lines (a→b). A random set of stress lines is picked at each iteration (c). The memory location

that is actually accessed is selected at a random offset in each selected stress line (d). Stressing workgroups,

disjoint from testing workgroups, repeatedly access testing targets with load and store operations in a loop.

Nvidia GPUs. Our contribution is to port these parameters to OpenCL in a robust and portable

way, which allows us to evaluate their efficacy on a wider variety of devices. Our implementation

prioritizes parameter exploration while other implementations either hard code parameter settings,

or limit their domain. For example, the study in [Sorensen and Donaldson 2016] (which we will refer

to as the SD16 study) used much smaller domains and explored them exhaustively. We increase the

domain sizes with the intent of developing efficient tuning strategies.

The parameters are divided into three sets: (1) Memory parameters that dictate the memory

locations in the litmus test and how non-testing threads might stress the memory system; (2) Con-

currency parameters that aim to temporally align testing threads; and (3) Affinity parameters that

aim to map testing threads to a variety of computational resources on the device. Our framework has

a 2-level search space. We will call the outer-level the parameter space. We will refer to parameter

names at this level with the SmallCaps font. Once parameter values are set, there are inner-level

parameters, called iteration parameters. These parameters are simply randomized at each iteration.

That is, iteration parameters are not tuned, they are fuzzed. Each iteration is one execution of a

litmus test and will produce exactly one outcome, e.g. in Table 2, one iteration of the SB test will

yield one of the behaviors in the SB column.

3.1 Memory Parameters: Stressing and Testing Locations
Our memory stressing scheme is inspired by the SD16 study, where threads (at the workgroup

granularity) and memory are cleanly partitioned into two disjoint sets: testing and stressing. Testing
workgroups execute the litmus test on a region of memory allocated for the test, testing memory. On
the other hand, stressing workgroups only access stressing memory. This partition eases development,

as stressing never conflicts with the actual litmus test, which could result in false positives. Stressing

workgroups repeatedly access a small number of memory locations, known as stressing targets in the
stressing memory. Figure 3 shows an overview of the stressing partition of the testing framework.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

226:10 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

Stress Lines. The SD16 study showed that stressing targets had similar efficacy (with respect to

the rate at which relaxed behavior were observed) in contiguous 512-byte (or 1024-byte) memory

regions. That is, if stressing a memory location 𝑙 caused a rate 𝑟 of relaxed behaviors to be observed

for a given test and chip, then stressing any memory location from 𝑙 to 𝑙 + 512 (assuming that 𝑙

is 512-byte aligned and byte-addressable), would yield a similar rate 𝑟 for the same chip and test.

While there was no concrete hardware justification given for this, it was speculated that these

region sizes corresponded to a combination of bus width, cache-line size, etc.

To implement this, we introduce the parameter StressLineSize. This parameter is set to a

power-of-two value, say 𝑍 . The stressing memory is divided into disjoint, equal sets of size 𝑍 , each

of which we call a stress line. This is illustrated in (a)→(b) in Figure 3. The stressing targets are

then selected to be in different stress lines. The selected stress lines and the stress line offset (see

(d) in Figure 3) are iteration parameters, i.e. randomized for each iteration.

Target Number. Many threads concurrently accessing the same location will pressure the coher-

ence protocol, which must enforce single-address consistency. However, accessing a wide variety

of locations may cause cache thrashing and timing variability with respect to how memory is

propagated through the system. Thus, there is intuition for having both a large and small number of

targets. To implement this, we introduce the TargetNumber parameter. This is a number between

1 and 16 (𝑁), which dictates how many stress-lines are concurrently stressed. That is, 𝑁 disjoint

stress-lines are selected (as randomized iteration parameters) and assigned to the stressing work-

groups (see stressing memory in (d) and stressing workgroups in (e) of Figure 3). The assignment

strategy of mapping workgroups to stressing targets is also a parameter: StressAssignment. This

can be set to either round-robin or chunking. In round-robin, stressing workgroups (with id wig)
are assigned to stressing the target number (wig % N). For chunking,𝑊 stressing workgroups are

assigned to stressing target (wig / (W/N)).

Access Pattern. Having assigned targets to workgroups, now the access pattern to use to stress the

target must be determined. Intuitively, load instructions can bring in fresh lines, potentially causing

temporal variability from cache thrashing. On the other hand, store instructions can invalidate

remote cache lines, increasing bus traffic. Taking inspiration from the SD16 study, all stressing

workgroups use the same sequence of instructions to repeatedly access their target location in a

loop. The parameter AccessPattern dictates this access sequence: it is two instructions, each of

which can be a load or store. This is illustrated in the interaction between (e) and (d) in Figure 3.

Testing Locations. Litmus tests typically consist of a small number of memory locations. The tests

we consider in this work contain only two, which we refer to as 𝑥 and 𝑦. Empirically a litmus test

may show different behaviors depending on the relative location of 𝑥 and 𝑦. For example, if 𝑥 and

𝑦 are on the same cache line, then behavior corresponding to asynchronous cache line propagation

may not be observed. Thus, it is important to empirically run tests with testing locations distributed

throughout memory. To implement this, the XYStride parameter is provided. This value can be

set to a power-of-two, say 𝑄 . Testing locations (𝑥 and 𝑦) are then assigned to be in distinct 𝑄-sized

regions of the testing memory. There are two associated randomized iteration parameters: The

selected 𝑄-sized region for 𝑥 and 𝑦, and the word-offset of 𝑥 and 𝑦 inside their respective region.

Pretest Memory Stress. The hardware units that testing threads execute on may contain compo-

nents that allow relaxed behaviors if stressed. Because stressing threads are disjoint from testing

threads, these testing thread hardware components may not be stressed. Thus, we provide a

PretestMemoryStress parameter where testing threads execute several iterations of memory

accesses (determined by a corresponding PretestAccessPattern parameter) immediately prior to

executing the litmus test. Pilot tests showed that 100 iterations worked well in practice.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

Foundations of Empirical Memory Consistency Testing 226:11

3.2 Concurrency Parameters: Barrier and Occupancy
Due to subtle timing differences (e.g. thread launch latency, variable memory access latency),

threads can become significantly desynchronized. This is problematic in litmus tests because one

thread may execute its test program far enough ahead of the other thread that all memory accesses

have had enough time to propagate to global visibility. Thus, the observed outcomes will simply

correspond to a sequential execution, e.g. the first two outcomes in Table 2.

Prior work has shown that synchronizing threads immediately before they execute the litmus

test can increase the number of relaxed behaviors observed [Alglave et al. 2015, 2011]. To achieve

this, we provide the Barrier parameter: when enabled, it adds a software-implemented barrier

for the litmus testing threads, occurring immediately before their litmus test instructions. Because

GPUs do not provide the necessary forward progress guarantees for barriers [Sorensen et al. 2016],

we use a timeout feature, where threads can exit the barrier after some time. Thus, if testing threads

are not fairly scheduled, they will eventually cleanly exit the barrier unsynchronized; however, this

is better than the alternative of deadlock, from which it can be difficult to recover.

Occupancy. GPUs offer a parallel programming model in which kernels can be launched with

thousands of threads. However, the system is only able to run a subset of threads concurrently,

limited by hardware resources [Sorensen et al. 2016]. In order for testing threads to temporally

align, and for stressing threads to execute concurrently, we limit the number of workgroups for the

testing kernel. while still aiming to cover a variety of system configurations. To achieve this, we

use an iteration parameter that randomizes the number of workgroups each iteration. We select

between 2× the number of compute units, and 2, the number of testing threads.

3.3 Affinity Parameters: Id Shuffling and Oversubscription
While GPUs can runmany threads concurrently, litmus tests typically consist of only a small number

of threads. A thread-to-hardware mapping might deterministically place threads on computational

resources spatially related to their thread id. Thus, simply assigning litmus test threads to the

first few GPU thread ids may not robustly expose behaviors that occur when threads mapped to

different hardware components interact, e.g. due to a shared cache. Prior work has shown that

randomly assigning native thread ids to the litmus test threads has been successful at increasing the

number of observed relaxed behaviors [Alglave et al. 2015, 2011; Sorensen and Donaldson 2016].

To encourage threads that span various hardware resources to interact, we implement a Thread-

Shuffle parameter. When this parameter is enabled, we override the native OpenCL thread ID

primitive with a new thread id mapping that our testing framework provides. Concretely, in a

kernel launched with a total thread count of𝑇 , we allocate a new array 𝑆𝑇 of size |𝑇 |, and initialize

it with the identity mapping, i.e. 𝑆𝑇 [𝑖] = 𝑖 . We then shuffle 𝑆𝑇 and use the values as a new thread

id for kernel threads, i.e. a kernel thread can get a new shuffled id with 𝑆𝑇 [𝑡𝑖𝑑]. The shuffling is

constrained to honor workgroup membership. That is, two threads that share the same workgroup

natively, will have shuffled ids that also share the same workgroup.

Similar to the iteration parameter that randomizes the number of workgroups each iteration,

we similarly randomize the number of threads per workgroup. Prior work has shown that GPU

compute units can be oversubscribed with smaller workgroup sizes. Thus, random configurations

can encourage both co-occupancy and disjoint resource occupancy of testing threads, testing even

more system configurations. Thus, we supply an iteration parameter for workgroup size.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

226:12 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

3.4 Parameter Summary and Datasets

Table 3. Summary of outer parameters: Parameters

marked with a † have a corresponding pre-stress pa-
rameter. Shaded parameters correspond to memory

stress and only change the program if MemoryStress

is enabled. Upper bounds were obtained from a short

run of pilot experiments across our GPUs.

Parameter Values

ThreadShuffle {on, off}

Barrier {on, off}

MemoryStress† {on, off}

StressLineSize 2
𝑥
, 𝑥 ∈ {1 − 10}

TargetNumber {1 − 16}
StressAssignment {round-robin, chunking}

AccessPattern† A0;A1; A0,A1 ∈ {LD, ST}

XYStride 2
𝑥
, 𝑥 ∈ {1 − 9}

Table 4. Experimental space for the: Exploratory Data

Set (EDS) and Stationarity Data Set (SDS). The one

parameter sample for SDS corresponds to the param-

eter configuration from EDS that revealed the most

relaxed behaviors per chip/test combination.

EDS SDS

GPUs 3 3

Litmus Tests 6 6

Parameter Samples 1000 1

Iterations 10000 1000000

Total Executions 18000000 18000000

Table 5. Total time to collect data described in Table 4.

Larger chips (w.r.t. compute units) take longer to run

as the memory stress provides more workgroups to

concurrently access memory, significantly slowing

down execution time, e.g. see [Iorga et al. 2020].

Chip Time (h)

Quadro 52

Vega 66

Iris 36

Total 154

The outer parameter space is summarized in

Table 3. There are 10 parameters (the memory

stress must be enabled for the shaded ones), lead-

ing to a total of 737K possible configurations.

To explore how parameters influence the rate

of observed relaxed behaviors, we collect two

data sets: the Exploratory Data Set (EDS) and

the Stationarity Data Set (SDS). These data sets

consist of many samples across many parame-

ter settings, summarized in Table 4. The EDS

will be analyzed for the effect that different pa-

rameters have on the rate of observed relaxed

behaviors; thus, the large number of parameters

sampled. On the other hand, the SDS dataset

will be analyzed to see if relaxed behavior rates

are stable across a given parameter setting, thus

there is only one parameter sample and many

iterations. The parameter samples and iteration

values were chosen as they were worked well in

pilot experiments and were feasible under our

time and resource constraints. The runtime, per

chip, to collect the data is given in Table 5.

To explore a variety of relaxed memory be-

haviors, we applied the parameters to all of the

two-thread, two-memory location litmus tests,

as enumerated using critical cycles by prior

work [Alglave et al. 2010]. These tests are the

three presented earlier in Figure 2: MP, LB, and

SB. The three additional tests are S,R and 2+2W.

Each test is instantiated where each memory ac-

cess is annotated with relaxed memory order

and device memory scope. Thus, the tests are

data-race-free; however, the OpenCL memory

model allows the relaxed outcome. This is desir-

able as our initial exploration aims to examine

the rates at which relaxed behaviors can be ob-

served when allowed. Our motivation is that

if we cannot observe relaxed behaviors when

they are allowed, then it is very unlikely we will

observe them when they are forbidden (e.g. in

conformance tests). Our approach has proven

pragmatic, finding a bug in Intel’s compiler, as

documented in Section 6.1.

Cause of Relaxed Behaviors. Relaxed memory

behaviors can occur throughout the computing

stack (e.g. compiler or hardware). Our stresses are aimed at finding bugs that deal with insufficient

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

Foundations of Empirical Memory Consistency Testing 226:13

synchronization after the high-level language is mapped to ISA instructions. Different techniques

would likely be employed to test compiler reorderings. While we cannot guarantee that the relaxed

behaviors we observe are not due to compiler reorderings, we believe it to be unlikely. The addresses

for litmus test locations are passed as kernel parameters, which the compiler cannot tell are distinct,

thus a compiler reordering could violate the single-address consistency guarantees from the high-

level language. Furthermore, memory consistency bugs have typically been found in the compilation

mapping scheme (from JavaScript [Watt et al. 2020], to C++ [Manerkar et al. 2016], as well as

the issue we present in Section 6.1). As far as we know, there have never been errors reported in

compiler reorderings of atomic instructions; thus we leave testing and tuning compiler reorderings

to future work.

4 INITIAL OBSERVATIONS: FREQUENCY, RATES, STABILITY AND EFFECTIVENESS
In order to develop a statistically sound, and effective, tuning methodology, we first need to under-

stand the landscape over which the tuning would be performed. To achieve this, we characterize

several dimensions over our entire dataset. In particular, we examine: the number of parameter

configurations that yield any relaxed behavior result; the rates at which relaxed behaviors are ob-

served; and the stability of relaxed behavior rates over time. We use these observations to motivate

and guide the tuning strategy laid out in the Section 5. Throughout the following results section,

we will often color code our images. Red corresponds to results from Vega, yellow corresponds to

results from Quadro, and blue corresponds to results from Iris.

4.1 Sequential, Interleaving, and Relaxed Observations
We first explore how many parameter configurations are able to reveal at least one relaxed behavior

across chips and tests. Prior work has postulated that GPU relaxed behaviors are extremely rare

and require tuned stress to reveal behaviors [Sorensen and Donaldson 2016]. If indeed, only a

small number of parameters are able to reveal relaxed behaviors, it would be strong evidence that

memory consistency testing needs to be carefully tuned. Otherwise tuning may not be necessary.

Figure 4 shows stacked bar charts across chips and litmus tests showing the different outcomes

observed. Recall that there are 1000 configurations, executed for 10K iterations each. The bar chart

shows how many configurations, across all iterations, revealed: (1) only sequential behaviors, i.e.

the first two rows in Figure 2; (2) at least one interleaving behavior, i.e. the middle four rows of

Figure 2; and (3) at least one relaxed behavior, i.e. the last row of Figure 2. We see that only a small

number of parameters result in exclusively sequential behaviors, likely due to the care taken to

ensure concurrent execution (see Section 3.2).

Overall, we observed relaxed behaviors for all chips on all tests; thus, we see this as evidence that

our stress techniques generalize across GPUs, even if relaxed behavior revealing parameters are rare.

We also note that this is further evidence that GPUs implement relatively weak memory models,

compared to some of their CPU counterparts (e.g. x86 would only show SB relaxed behaviors).

Finally, this is the first work to show empirical relaxed behaviors on Intel GPUs (Nvidia and AMD

were shown in [Alglave et al. 2015]).

The percent of parameters that reveal relaxed behaviors, however, vary significantly across chip

and litmus test. Overall, Iris revealed relaxed behaviors for the fewest number of configurations (less

than 50% for all tests); thus, this chip likely needs more careful tuning when testing. Interestingly,

for Vega both extremes are observed: For example, LB and S both showed at least one relaxed

behavior for every parameter configuration. This is the first evidence of relaxed behaviors being

so readily observable on GPUs. On the other hand, SB on the same chip only appeared in 2.6%

configurations, being the ”rarest“ observed relaxed behavior for all chip/test pairs. Across chips,

the SB relaxed behavior is observed in the fewest number of configurations. The LB and S tests are

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

226:14 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

(a) Vega (b) Quadro (c) Iris

Fig. 4. Stacked bar charts per chip (and test) for the percent of outer parameter configurations that revealed:

at least one relaxed behavior; at least one interleaving, but no relaxed behaviors; and only sequential behaviors.

observed in the largest numbers of configurations for both Vega and Quadro, but interestingly, in

the fewest for Iris.

Ultimately, these results show that while some relaxed behaviors are relatively easy to provoke

(appearing under a variety of parameters), some remain incredibly rare. Thus, it appears that time

allocation for tuning should be adaptable, so that rare tests can be more carefully tuned, while

others can be more quickly tuned. We propose such a method in Section 5.1 and show a 5× speedup

in tuning across the board.

4.2 Rate Distribution
The percentage of parameter configurations that revealed at least one relaxed behavior does not

tell the complete story. Different parameters may cause relaxed behaviors to be observed at higher

or lower rates. Low rates are undesirable because they must be run a high number of iterations to

establish confidence about the observations, a key example being reproducibility (as we discussed

in Section 1.1). On the other hand, a parameter set that yields a high rate of observed relaxed

behaviors does not have to be run for as many iterations and higher confidence can be established

much quicker. We will use this insight in Section 5.1.

Figure 5 shows for each of the three GPUs, a histogram of the rates at which relaxed behaviors

were observed for all configurations which revealed at least one relaxed behavior. Results are

aggregated across all tests per GPU, with the tests R and LB being omitted for Vega. This is

because all tests (per GPU) followed a similar trend, except for these two. Specifically, the histogram

shows an exponential decay, i.e. the number of parameters that yield higher relaxed behavior

observation rates decreases exponentially. Figure 6a shows the same data as Figure 5c, except on a

logarithmic scale to illustrate this point. Figure 6b shows one of the outliers, LB on Vega which

clearly does not follow an exponential decay and exposes massive rates, i.e. LB shows a max rate

of over 8K (per 10K) compared to the max rate of 350 when these outliers are excluded.

As discussed in Section 1.1 , in practice the mere existence of relaxed behavior is not sufficient for

the analysis of a system for correctness: reproducibility of the relaxed behavior in a short amount

of time is necessary to make the design, analysis and debugging process efficient. Therefore, we

now explore the above results with respect to reproducibility. Revisiting Section 1.1, number of

relaxed behavior observations needs to be at least 3 for a 𝑃𝑟𝑒𝑝 of 95%. Our graphs show that many of

parameter configurations revealed 1 or 2 observations, meaning that they are not reproducible with

high probability. This is shown in the first bucket (highlighted) in Figure 5, which has a fixed bucket

size of [1-2]. In fact, over half of the parameter configurations for Quadro did not yield a high

enough relaxed behavior rate to be reproducible. The flip side of the coin is that we likely have a

significant number of false negatives. Using now Equation 3, we can estimate the probability of not

being able to reproduce these results with at least one relaxed behavior. For Iris,Quadro and Vega,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

Foundations of Empirical Memory Consistency Testing 226:15

(a) Vega (b) Quadro (c) Iris

Fig. 5. Rate of observed relaxed behaviors histograms: All GPUs show an exponential decay, that is parameters

that reveal a low rate of relaxed behaviors are much more common than parameters that reveal many relaxed

behaviors. The first bucket (shown in a darker color) is a fixed size, containing parameters that had a rate of

[1-2] (per 10K) relaxed behaviors. This bucket is highlighted as these runs have low 𝑃𝑟𝑒𝑝 (described in text).

(a) Iris rate histogram on a logarithmic scale (b) Vega rate histogram for the LB test

Fig. 6. Two cases of the rate histograms examined further

number of false negatives per number of parameter sets with relaxed behavior is 25/533, 56/876
and 0/998 respectively (lowest number of relaxed behavior occurrence for Vega was 14). Note

that this is a lower bound for false negatives since we cannot include the cases that are truly false

negative in our original data. We do not explore this further however, as we are more interested in

parameter settings that revealed a high rate of relaxed behaviors.

Our key observation here is that there are a small number of parameter configurations that lead

to high rates of relaxed behavior observations, which in turn, allow more confident reasoning about

results. A relaxed memory testing suite should strive for these high rates to ensure reproducibility,

even at lower iteration counts. At the extreme end, the highest observed rate (out of 10K) is 9484

for LB on Vega, which shows a relaxed behavior nearly every single execution (we leave further

exploration around this extreme result to future work). The lowest rate is SB on Vega showing

only 3 per 10K; a startling difference. This is further evidence that tuning and testing techniques

should be adaptable, i.e. on Vega one would allocate more time to difficult tests like SB and less

time to tests like LB that are readily observable. We also note the curiosity that SB has the highest

rate on Iris, but lowest on Quadro and Vega. The Intel chip is integrated while the others are

discrete, and thus, they likely have different hardware components that cause these differences.

4.3 Stationary Relaxed Behavior Observation
Because litmus tests are run for many iterations, one must make sure that the system is stable,

i.e. there are no fluctuations that cannot be accounted for by the mean and variance of the re-

laxed behavior rate. A stable system provides confidence that there are no unaccounted factors

contributing to the relaxed behavior rate. This is especially important when experiments are run

consecutively; prolonged GPU usage might result in physical conditions that can affect the system

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

226:16 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

Table 6. Minimum and maximum rates observed across chips. Quadro has a low max rate (111 out of 10K),

meaning all relaxed behaviors are rare on this chip. Vega has an incredibly high rate of almost 95% for LB.

Chip Min. Rate (per 10k) Max. Rate (per 10k)

Quadro SB 8 S 111

Vega SB 3 LB 9484

Iris LB 62 SB 544

performance. For example, recent work showed that frequency throttling caused large variances in

shared-memory interference experiments [Iorga et al. 2020]. In addition, our tuning heuristics (see

Section 5) require reliable confidence intervals that can only be derived from stationary processes.

To explore system stability, we analyzed the rate of relaxed behaviors given a fixed set of

parameters over ten million iterations, which is the maximum number of consecutive iterations

of tests run on any of the GPUs in our study. We used several methods to test whether relaxed

behavior observation is stationary. A process is stationary if its mean and variance is preserved

across independent variables, e.g. time and iteration count. In the case of a Poisson process (such

as observance of a relaxed behavior) these two properties, i.e. mean and variance, are equal.

To ensure that the relaxed behavior rate is stationary for our chip/test combinations, we carried

out several analyses: in addition to visually inspecting the rate across time (Figure 7, bottom

row), we compared inter-arrival count distributions of the entire run, the initial 20% and the last

10% of the entire run for each chip/test combination to compare relaxed behavior frequencies in

these two windows. We fit the data using a Poisson process to obtain the rate of relaxed behavior

and compared the observed rates both qualitatively and also using the Kolmogorov-Smirnov (KS)

statistical significance test using the raw data. As can be seen in Figure 7, for a stable chip/test

combination, the rate is stable throughout the experiment duration. However, for some chip/test

combinations this is not the case.

The KS test evaluates whether two datasets are likely coming from different distributions. The

rationale for using the KS test is this: our goal is to determine if the relaxed behavior rate is stable

across a tuning experiment. This would provide confidence that a change in rate of occurrence is

due to change in parameters rather than a mode switch or drift in the system. Thus, we need a test

that can show if there are any significant changes in the rate throughout the duration of an entire

tuning experiment. The KS test achieves this goal. We run the KS test with the null hypothesis that

the distributions are coming from the same distribution. If the null hypothesis is rejected then KS

test indicates that with high likelihood (p-value < 0.05) two samples have different distributions,

i.e. rates, thus tuning experiments cannot be soundly run. However, if KS test cannot reject the

null hypothesis, then even if we cannot guarantee that the rate distributions are not coming from

the same distribution, the rates of these distributions must be (with high likelihood) very close

to each other. Since all we need is for the rate to not change statistically significantly, this means

the tuning experiment is sound to run, as our goal is not to prove that there is only one mode but

rather that the rate does not change significantly across time/iterations.

Running this test on the first 20% of the iterations and the last 10% of the iterations we can

eliminate chip/test combinations that are not stable for further analyses. Table 7 shows the p-values

coming from the KS test for all chip/test combinations. We found 4 combinations (out of 18) that

are not stable across iterations. Figure 7b shows the rate of relaxed behavior occurrence for one of

these combinations. One can observe here that around iteration count 7 million the rate jumps,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

Foundations of Empirical Memory Consistency Testing 226:17

(a) Iris (b) Vega

Fig. 7. Top row: Histogram of inter-arrival iteration count for relaxed behavior generated with log-binning.

Plotting the rate this way results in histograms with the peak of the curve pointing to the Poisson rate

[Sigworth and Sine 1987]. Distribution for the entire 10 million iterations (black) as well as the first 20% (grey)

and the last 10% of the iterations (white) show the same Poisson rate as also confirmed with KS statistical

test. The fitted lines show curve-fitting of the histogram data to ℎ(𝑥) = 𝐴𝑥𝑝𝑥−1 (1 − 𝑝), where A is the scaling

factor, x is the number of relaxed behaviors (independent variable, x-axis) and p is the probability of relaxed

behavior. Bottom row: Number of Relaxed Behavior per 100K iterations over 10M iterations.

Table 7. Kolmogorov-Smirnov statistical test p-values for all chip and test combinations. These p-values were

used to determine the conditions that do not result in the same rate at the beginning and end of the entire

experimental run.

Chip MP LB SB R S 2+2W

Vega 0.451 0.991 0.436 7.6e-38 0.991 2.7e-66

Quadro 0.073 4.5e-14 0.418 0.857 0.974 3.5e-08

Iris 0.988 0.419 0.126 0.447 0.231 0.546

along with its variance. If the tuning experiment were to be run on this combination the effect of a

new parameter set could not be distinguished from such a jump and therefore yield false results.

5 LITMUS TEST TUNING
Due to the large combinatorial space, the parameter configurations that yield high rates of relaxed

behaviors are rare and highly variable. Ideally, one would like to be able to quickly tune over this

configuration space. Tuning could be as straightforward as collecting a data set similar to our EDS

data set (see Table 4) and simply searching for the parameter configurations that are the most

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

226:18 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

effective. However, the running time of this approach is prohibitive (see Table 5), requiring well

over 1 day of just tuning time. Industrial contacts have informed us that such a high running time

is not feasible in many cases, e.g. conformance test suites.

This section aims to reduce the overall cost of tuning parameters. First, we propose a data peeking
technique that can be used to quickly prune parameter settings that do not improve effectiveness.

Next, we evaluate portable parameters and various metrics to obtain them. We show that global

(i.e. a single) parameter setting can reveal relaxed behaviors in 88% of the cases that hyper-tuned

parameters can, but only if the right parameter combining method is used. Finally, we examine

cross-test correlations and show that parameters that are effective for one test may also be effective

for another. Thus, tuning time can be reduced by only tuning across a smaller number of tests.

Between these observations, we show that tuning time can be reduced by orders-of-magnitude, at

only a small cost to overall effectiveness, if any.

5.1 Data Peeking on Test Tuning

Fig. 8. Time evolution for the number of relaxed behav-

iors observed while tuning with data peeking. The blue

bar is for our data peeking while the black for running

all 10K iterations. Each bar has a band of the 95 CI.

This example is forMP on Iris.

Fig. 9. Speedups obtained through data peeking for

each GPU/test combination. Blue bars are for Iris, red

for Vega, and yellow for Quadro.

Our first tuning optimization technique is data
peeking. That is, in a test comparing two pop-

ulations 𝐴 and 𝐵, we can stop collecting sam-

ples early from 𝐴 if we can be confident that

𝐵 is more effective. In some cases, data peek-

ing has been controversial and has led to ques-

tionable research practices, e.g. p-hacking. For
example, an incorrect way to use data peeking

is to run experiments until a statistical test re-

ports a small enough 𝑝 value. Since confidence

intervals of stationary processes are monoton-

ically decreasing, this would not be a reliable

method. Rather than using 𝑝 values, we use

confidence intervals. Thus, two populations of

unequal size can be confidently compared if

their confidence intervals do not overlap.

Using this insight, we propose the following

random-search tuning strategy, also demon-

strated by pseudo-code in Figure 10. Select

three values: (1)𝑀 , the total number of param-

eter configurations to explore; (2) 𝑁 , an upper

bound on the number of samples to collect per

configuration; and (3) 𝑃 < 𝑁 , a peeking factor

(lines 1-3). Next, randomly select a parameter

configuration𝐶 and collect 𝑁 samples (lines 22-

23). Determine the rate 𝑅 of observed relaxed

behaviors, along with the confidence interval

around 𝑅, using the normal distribution as an

approximation to binomial distribution with

N
(
𝑛𝑝,

√
𝑛𝑝 (1 − 𝑝)

)
and using the 𝑍𝑠𝑐𝑜𝑟𝑒 for

95% confidence interval(lines 24-25; 12-18). Next, for𝑀 iterations, randomly select a new parameter

configuration 𝐶∗
(lines 28-29). For 𝑃 iterations, cumulatively collect 𝑁 /𝑃 samples from 𝐶∗

(lines

33-34). At each iteration, compute 𝑅∗
and its CI (lines 35-36). For each iteration, determine if the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

Foundations of Empirical Memory Consistency Testing 226:19

1 M = input() # total number of parameter configurations to test
2 N = input() # max iterations for a given parameter configuration
3 P = input() # peeking factor
4

5 RANDOM_CONFIG():
6 # returns a random parameter configuration
7

8 EXECUTE(CONFIGURATION, I):
9 # executes I iterations using CONFIGURATION parameters and returns a list of length I
10 # with an outcome for each iteration.
11

12 CI(DATA):
13 # returns the size of the 95 CI bounds around the rate of relaxed memory observations
14

15 Z = 1.96 # Z-score constant for 95% CI
16 W = # num. of relaxed behaviors in DATA
17 Q = # num. of observations in DATA
18 return Z * sqrt((W * (1 - W)) / Q)
19

20 MAIN():
21 # the initial parameter configuration is run for the full iteration count
22 C = RANDOM_CONFIG()
23 DATA = EXECUTE(C, N)
24 R = # relaxed behavior rate in DATA
25 R_CI = CI(DATA)
26

27 # iterate through M parameter configurations
28 for i in range(M):
29 C∗ = RANDOM_CONFIG()
30 DATA∗ = []
31

32 # perform data peeking every N / P iterations
33 for j in range(P):
34 append EXECUTE(C∗, N / P) to DATA∗

35 R∗ = # relaxed behavior observation rate in DATA∗

36 R_CI∗ = CI(DATA∗)
37

38 # if the new parameters show fewer relaxed behaviors than the
39 # current best parameters (using 95 CI), then break early
40 if R∗ + R_CI∗ < R - R_CI:
41 break
42

43 # if better, update the current best parameter set
44 # (and corresponding rate and confidence interval)
45 if R∗ > R:
46 C, R, R_CI = C∗, R∗, R_CI∗

47

48 # return the best found configuration and corresponding rate
49 # of relaxed behavior observations
50 return C,R

Fig. 10. Pseudo code for using data peeking to accelerate tuning time.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

226:20 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

confidence interval around 𝑅∗
is below the confidence interval of 𝑅 (lines 40-41). If so, the sample

collecting from𝐶∗
can be stopped early, as we are rigorously confident it has a lower rate of relaxed

behavior observation than 𝐶 . In the case where confidence intervals overlap, then 𝑁 total samples

of 𝐶∗
will be collected. 𝑅 and 𝑅∗

are compared. If 𝑅∗
is larger, then 𝐶 is replaced with 𝐶∗

(and 𝑅

with 𝑅∗
) (lines 45-46). After𝑀 total iterations, we return 𝐶 as our tuned parameter configuration.

Evaluation. We evaluate our approach by simulating tuning on our EDS using 𝑀 = 1000 and

𝑁 = 10000. We choose a peeking factor of 10, i.e. we peek every 1000 samples. We include all

chip/test combinations in our evaluations; including the 4 combinations that were non-stationary

(Section 4.3). We urge caution when tuning non-stationary processes, as observations can be

influenced by unaccounted for variables, and thus may not converge to the global maximum. In

our evaluation, we verify that all tuning simulations converged to the maximum, but this is not

guaranteed for non-stationary processes. For such cases in practice, we recommend additional

stability checks (e.g. our approach using the KS test in Section 4.3) during the tuning run; non-stable

runs can then be restarted from the point of instability.

We run 32 simulations of tuning, both using data peeking, and also just running full iterations.

We show the average (over 32 runs) observed rate of relaxed behaviors in virtual time (with one

step being the time to run one iteration) with (blue) and without (black) peeking. Figure 8. The

speedup is clear across the runtime.

Aggregate speedups are shown in Figure 9. In all cases with early stopping, our data peeking is

able to find the actual maximum parameter configuration, indicating our statistical assumptions are

sound. Data peeking often yields substantial speedups in tuning, with a geometric mean speedup

multiple of 8.16 for Iris, 5.53 for Vega, and 6.32 forQuadro, resulting in a time savings of 32 hours

for Iris, 54 hours for Vega, and 44 hours for Quadro, using the timings from Table 5.

While there are other intelligent tuning approaches, e.g. simulated annealing and Bayesian

optimization, we leave exploration to future work. Such techniques often require careful selection

of meta-parameters. Prior work studying tuning for shared memory interference (in the context of

application slowdowns) showed that random-search often performed just as well as more intelligent

searches [Iorga et al. 2020], most likely due to non-smooth nature ofmany of the parameter functions.

Because relaxed memory observations likely stress similar hardware components, this is likely the

case for our study as well.

5.2 Portable Parameters
While we have explored methods for reducing the cost of tuning, it may be the case that a test-suite

prefers not to tune at all, and instead, contain parameter values that work reasonably well across a

variety of chips, even if they are not the most effective on any one chip (or test) in particular. We

will refer to this concept as portable parameters. The notion of portability in test suites is different

than what has been classically studied in performance. That is, the most important aspect is the

observation of a behavior, with the magnitude of the effect being a secondary consideration. In this

section, we explore various methods of providing portable parameters and evaluate how effective

they are across our EDS. There are three dimensions of portability we will consider:

(1) Global: This is the widest dimension: it considers all tests across all GPUs and aims to provide

a single parameter configuration that works well across the entire domain.

(2) Per-GPU: This approach aggregates results from all litmus tests per-GPU to provide 𝑁 (in

our case, 3, the number of GPUs) parameter configurations, specialized for each chip.

(3) Per-test: This approach aggregates results from all GPUs per-litmus test to provides𝑀 (in

our case, 6, the number of litmus tests) parameter configurations, specialized per test.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

Foundations of Empirical Memory Consistency Testing 226:21

(a) # of relaxed behaviors

(b) # of tests that revealed at least one relaxed be-

havior

Fig. 11. Two graphs showing the specialization/portability trade-off and effectiveness of optimization metrics

(4) Per-GPU/Test: This is narrowest dimension, simply providing each GPU/test combination

the parameter configuration that reveals the highest rate of relaxed behaviors. There are

𝑁 ∗𝑀 parameter configurations here (18 in our case).

We consider 3 possible optimization metrics when deriving portable parameter configurations

across tests or GPUs. Each successive strategymore aggressively aims to reward per-test observation

over frequency magnitude. We refer to a GPU/test tuple as a combo when discussing these metrics:

(1) Maximize Frequency Sum (MFS): Pick the parameter configuration that maximizes the

sum of relaxed behavior observation frequencies across the combos in the domain.

(2) Maximize Log Frequency Sum (MLFS): Pick the parameter configuration that maximizes

the sum of the log of the relaxed behavior observation frequencies across all combos in the

domain. The intuition here is that increasing the rate in test with a low frequency test is

more valuable than increasing the rate in a test with an already high frequency. Combos that

show 0 relaxed behaviors are ignored.

(3) MLFS-Floor (MLFS-F): This strategy is more involved, and aims to harshly punish configu-

ration that do not reveal any relaxed behaviors in a combo. The base-case is MLFS, with the

addition that a rate of 0 provides a score of −∞. Thus, only configurations where relaxed

behaviors were observed in all combos (across their domain) will have a meaningful score. If

all configurations provide a −∞ score (across the domain), the metric picks the configuration

with fewest instances of −∞, and picks the one with the highest MLFS score.

Figure 11 evaluates these three strategies across our three domains, using our EDS. Figure 11a reports

the raw number of relaxed behaviors observed across all chips/tests using different portability

strategies. However, given that the observation of relaxed behaviors is more important than the

rate, Figure 11b shows the number of GPU/test combinations that revealed at least one relaxed

behavior with the portable parameter configuration selected. Given that we have 3 GPUs and 6 tests,

the max value in Figure 11b graphs is 18. The upper bound in this analysis is the Per-GPU/Test

dimension, as it will simply pick the parameter configuration that caused the highest rate on each

GPU/test pair, regardless of the strategy. The lower bound is Global, as it aims to generalize (i.e.

provide a single parameter configuration) across all GPUs and tests.

Figure 11a shows that MFS shows close to the same number of total relaxed behaviors regardless

of whether it was tuned globally or per-GPU/Test. This is likely due to a few tests showing a large

number of relaxed behaviors. On the other hand, MLFS-F shows far fewer relaxed behaviors as

the domain becomes more portable, with only a small score at the global domain. However, we

see the opposite in Figure 11b. This is bounded by the total number of combinations we have (18).

MLFS-F reduces only slightly to 16 when generalized to global. MLFS reveals the same behaviors

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

226:22 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

Table 8. 𝑅2 Values for Cross-Test Correlations For Each Chip. Sums are normalized to the highest value.

(a) Vega

𝑅2
MP LB SB R S TPTW

MP 0.05 0.09 0 0.01 0.01

LB 0.01 0.19 0.61 0.13

SB 0.03 0.01 0

R 0.02 0.12

S 0.04

SUM 0.16 0.99 0.13 0.36 0.69 0.3

(b) Quadro

𝑅2
MP LB SB R S TPTW

MP 0.034 0.126 0.089 0.041 0.029

LB 0.029 0.033 0.787 0.618

SB 0.149 0.035 0.021

R 0.037 0.027

S 0.636

SUM 0.208 0.977 0.235 0.218 1 0.866

as MFS, only slightly increasing in the global domain. Thus, we see the trade-offs in creating

portable parameter sets. If raw relaxed behavior counts are most interesting, then MFS performs

well. If per-test observations are prioritized, then MLFS-F performs well. We highlight that the most

general domain (global) for MLFS-F keeps 88% (16 out of 18) of its efficiency from the hyper-tuned

(Per-GPU/Test) configurations, showing that portable stressing configurations can be effective.

5.3 Cross Test Correlations
Optimizing tuning using data peeking is a lossless optimization. Here we aim to optimize tuning

further by reducing the number of tests that need to be tuned. The intuition is that certain relaxed

behaviors in different tests may be provoked by stressing the same hardware components. For

example, both the SB and R litmus test contain a thread that executes a read-after-write sequence.

The relaxed behavior that reorders this sequence could potentially be due to a store-buffer, which

buffers the write operation and executes the read out-of-order.

We can explore the relationship of relaxed behavior observation rates between tests by using a

correlation analysis, while acknowledging that such a relationship does not necessarily have to

be linear. This yields a metric, 𝑅2
, which can determine the extent of the correlation. This value

is between 0 and 1 and indicates the fraction of variability that can be explained by a common

factor where 0 indicates no correlation and 1 indicates perfect correlation. Because we seed the

parameter configuration random sampler the same across tests and chips, we can match up the

same configurations across tests to check for correlation. Table 8 shows the 𝑅2
values for pairwise

correlation between tests for Vega, which has the lowest values, and Quadro, which has the

highest levels. Notice that both of these two chips have S and LB tests highly correlated.

We note that while one could compute the multivariate correlations from a covariance matrix

for the entire test suite run under various parameter configurations, one cannot make use of this in

a practical sense since the independent factors obtained are not interpretable for decision making

and therefore cannot be used for sorting. We thus use the pairwise 𝑅2
metric and sort the litmus

tests in order of aggregate 𝑅2
values, providing a priority order when tuning (Table 9). That is,

while an unconstrained tuning campaign would simply tune across tests, our test ordering provides

a meaningful way to reduce the number of tuned tests while maintaining effectiveness across the

entire suite. However, this optimization is not guaranteed to yield the best parameter settings

overall, and the fewer tests are tuned, the less effective the parameters will be over all the tests.

6 TESTING CONFORMANCE AND CONSISTENCY PROPERTIES
We now turn our attention to the main use-case: conformance testing. Throughout, we have

performed systematic characterizations of the effect of parameters and tuning. In order to rigorously

explore conformance testing, we need a formal foundation and a methodology to examine how

future bugs might appear.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

Foundations of Empirical Memory Consistency Testing 226:23

Table 9. The litmus test priority order per-chip,

and across all chips (Global). Orders are deter-

mined using sum of 𝑅2 values. Tests higher in the

priority have a higher rate of correlation across

the testing set, and thus are candidates to be pri-

oritized higher for both tuning and testing.

Chip Litmus Test Priority

Vega LB > S > R > 2+2W > MP > SB
Quadro S > LB > 2+2W > SB > R > MP
Iris LB > MP > S > R > 2+2W > SB

Global LB > S > 2+2W > MP > R > SB

To do this, we first perform a conformance test-

ing campaign on existing OpenCL 2.0 implemen-

tations (Section 6.1).
4
In doing so, we found (and

confirmed) an issue in the compiler for Iris. We ex-

plore the types of stress required to reveal the bug

and how frequently it occurs. Next, we evaluate our

stress and conformance tests using mutation test-
ing [DeMillo et al. 1978; Jia and Harman 2011], an

approach where small errors are introduced, and

testing techniques are evaluated based on how well

they find the errors (Section 6.2). We discuss our

results in relation to industrial conformance test

suites, how they compare to ours, and how they

might be improved (Section 6.3). Finally, we explore

two important memory model properties: SC-per-location and Multi-copy atomicity on our chips

(Section 6.4).

6.1 Conformance Testing
First, we explore if bugs exist in current OpenCL implementations. To do this, we create conformance

tests from our 6 litmus tests. For tuning, we used the relaxed atomic annotation. For conformance

tests, we strengthen the memory annotations to produce the minimally forbidden [Wickerson et al.

2017] variant of the test. That is, memory orders are selected such that if any one of them is relaxed,

the relaxed behavior would be allowed. Across our 6 tests:MP, LB, SB, R, S, 2+2W, this yields 9,

4, and 2 store instructions with memory orders seq_cst, release, and relaxed, respectively. For
loads, there are 3, 4 and 2 with memory orders seq_cst, acquire, and relaxed, respectively.

We run the 6 conformance tests across our three GPUs for 100K iterations using the narrowest

tuned variants of stress: i.e. the parameters found in the EDT that revealed the highest number of

relaxed behaviors for the corresponding relaxed-variant of the test. Our results showed no relaxed

behaviors on Vega andQuadro, but we observed 34 relaxed behaviors forMP on Iris: an incorrect

behavior according to the specification. We have reported the issue to Intel and they have confirmed

and pushed an update to the compiler mapping for release and acquire atomic instructions.
5

Further Exploration. The MP test was the only test that revealed erroneous relaxed behaviors on

the Iris. Our initial discovery used the least portable parameter configuration, i.e. the one selected

using the Per-GPU/Test approach (see Section 5.2). With this parameter configuration, the Iris

exposed 34 relaxed behaviors over 100k iterations. To explore the portability of our metrics, we ran

the sameMP conformance test using the parameter configuration selected by MLFS-F under Global

portability. Under this parameter configuration, the Iris exposed 23 relaxed behaviors over 100k

iterations. We then repeated the sameMP conformance test with no stress. Under these conditions,

the Iris exposed 0 relaxed behaviors over 100k iterations; this result suggests that stress of some

sort is a requirement to observe any erroneous behavior for the MP test on Iris; however, that

stress can be tuned globally and does not have to be specific to the chip or test.

6.2 Mutation Testing
Even without observing bugs on Vega orQuadro, we can still evaluate our methods usingmutation
testing: a methodology to evaluate test suites. Mutation testing begins with an implementation, 𝑖 ,

4
Nvidia does not yet have an implementation of OpenCL 2.0. We use the mapping proposed in [Batty et al. 2016]

5
See: https://github.com/intel/intel-graphics-compiler/commit/1c6b78c8b02d7383a1b12bc2323c9bf56380a72c

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

https://github.com/intel/intel-graphics-compiler/commit/1c6b78c8b02d7383a1b12bc2323c9bf56380a72c

226:24 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

Table 10. Relaxed behavior exposure rates for different parameter configuration optimization approaches

over 6 mutations. We began with the most specialized approach, Per-GPU/Test, and eliminated mutations,

indicated by –, from further testing if that parameter configuration did not expose any relaxed behaviors.

Chip 𝑖0 𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

Vega Per-GPU/Test 0.47216 S 0.00012 SB 0.00015 SB 0.0 0.01798 2+2W 0.00007 MP

Vega No Stress 0.17247 S 0.0 0.0 – 0.0 0.0

Vega Global MLFS-F 0.00033 S 0.0 0.0 – 0.00019 2+2W 0.0

Quadro Per-GPU/Test 0.0 0.0 0.0 0.0 0.00108 2+2W 0.0

Quadro No Stress – – – – 0.0 –

Quadro Global MLFS-F – – – – 0.00016 2+2W –

to be tested. The implementation is then duplicated into a set 𝐼 ; however, each 𝑖 ′ ∈ 𝐼 contains some

modification to 𝑖 ′ which makes it incorrect, i.e. allows erroneous behaviors that were not allowed

previously. Examples include negating conditionals, changing loop bounds to be off-by-one, etc.

Each 𝑖 ′ is called a mutant. A test suite 𝑢 can then be run on each mutant; the more mutants that 𝑢

exposes (i.e. the test suite identifies a bug in 𝑖 ′), the more effective the test suite.

To apply mutation testing to our domain, we start with the vendor-provided OpenCL memory

model implementation as 𝑖 . To create our set of mutants, 𝐼 , we create a memory model API wrapper

that intercepts calls to the OpenCL atomic operations. We re-map the atomic operation memory

orders to introduce problematic weakenings, while still beingwell-defined. An example is weakening

a seq_cst annotation to a relaxed annotation. Considering all pairs of operations (load and store)

and all memory orders (seq_cst, release/acquire, relaxed), there are 6 possible re-mappings

that introduce weakenings: thus we have 6 mutants (called 𝑖𝑥 where 𝑥 is between 0 and 5).

In our set-up, a test suite 𝑢 consists of a set of litmus tests coupled with stressing parameters. Our

litmus test suite consists of the 6 conformance tests discussed in Section 6.1. Recall that these tests

are instantiated with minimally forbidden memory orders; thus, any memory order weakening

would allow a relaxed behavior under the OpenCL specification. We can then evaluate various

stressing approaches by creating a set of test suites,𝑈 , composed of different test suites, 𝑢 ′
, which

are differentiated only by their stressing parameters. This experiment will allow us to evaluate the

stressing parameters based on how many mutants they expose.

Evaluation. The results of testing all mutants under the different stresses are shown in Table 10.

Each row is a chip coupled with a stress configuration; each column is a mutant. The table entry is

empty (-) if we did not run the mutant: we only ran mutants where we saw an initial witness in the

Per-GPU/Test stresses. If the entry is non-empty and non-zero, then it contains a rate (observations

divided by 100K) and the litmus test with that rate. The litmus test with the highest rate is selected.

We see that Vega is able to expose 5 out of the 6 mutants (𝑖0, 𝑖1, 𝑖2, 𝑖4, 𝑖5), while Quadro is

only able to reveal 1 (𝑖4). We postulate that the low values for Quadro could be due to the Nvidia

OpenCL mapping being too conservative, e.g. seq_cst accesses have fences before and after. Thus,

tests like SB that have only seq_cst accesses require more than one weakening for two accesses

not to have a fence between them. We additionally try to account for overfitting by running tests

with global parameters. However, we are still only able to observe one mutant on Quadro. Future

work will more closely explore how to expose more mutants on more devices.

We also find that only one mutant was exposed with no stress. This is compelling evidence that

some amount of stressing is necessary in memory model conformance testing. Out of 5 observed

mutants, only 2 were observable with the global portable stress (𝑖0, 𝑖4). For both chips, 2+2W

observation rates reduced by at least an order of magnitude going from Per-GPU/Test stress to

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

Foundations of Empirical Memory Consistency Testing 226:25

Global stress. Thus, more specifically targeted stress is more capable at finding bugs. Throughout

this paper, S on Vega has been a curiosity. Here we see that Global stress provides a lower rate of

relaxed behavior observations than no stress on 𝑖0.

6.3 Discussion on Conformance Testing
The official Khronos Group conformance test suite for Vulkan

6
contains only two litmus tests: MP

and a coherence test (Write-after-read). It executes no stress with the tests. On the other hand,

academic explorations execute massive amounts of tests over many hours. We believe it is time to

bridge this gap, i.e. that there can be efficient and robust conformance testing for memory models.

The results from this work suggest some small, but meaningful additions to the test suite: (1) Some

amount of stress, as the Intel bug and 4 mutants required it to observe; (2) The addition of S, SB,

and 2+2W to the conformance test suite, as they revealed mutants at the highest rate; (3) a data

aggregation effort, where large testing campaigns can be run once, then analyzed in studies like this.

Over the last ten years, rigorous formal memory models have been adopted by industry (Vulkan,

ARM, C, OpenCL). We believe it is time that their testing received a similar treatment.

6.4 SC-per-Location and Multi-Copy Atomicity
As a final set of experiments, we explore two additional memory consistency properties: SC-per-

Location and multi-copy atomicity.

SC-per-Location. Intuitively, SC-per-location means that if a program consists of a single memory

location, then it must have sequentially consistent behavior. Most ISAs and languages provide this

property, assuming that the program is data-race free (e.g. C++ [Batty et al. 2011], X86 [Sewell

et al. 2010], PowerPC and ARM [Batty et al. 2012]). However, previous work has shown that

some ARM CPUs erroneously violated this property [ARM 2011], and violations have also been

observed on Nvidia GPUs, i.e. in the AEA study [Alglave et al. 2015]. Given the problematic history

of SC-per-location, we explore if we are able to: (1) reproduce prior results of SC-per-location

violations on older Nvidia GPUs; and (2) test SC-per-location on our three newer GPUs. We use

the 5 coherence tests given in [Alglave et al. 2014, fig. 6]: CoWW, CoRW1, CoRW2, CoWR, and

CoRR. We implement the tests in OpenCL by instantiating the memory order for each access to be

relaxed, which is sufficient (according to the specification) to disallow the relaxed behaviors.

We obtained access to an Nvidia K80 GPU through Amazon Web Services (AWS). This is not the

exact same GPU chip used in the AEA study, but it has the same architecture (Kepler). Because this

is an Nvidia chip, we first use the Per-GPU Nvidia stressing parameters. We run the CoRR test for

10M iterations and observed 15 violations, successfully reproducing the violation of SC-per-location

reported in prior works. We also run CoRR using the global stressing parameters: under this stress

variant we observed 378 relaxed behaviors in 10M iterations. Thus, even though the Per-GPU

stress was tuned on an Nvidia GPU, the K80 is different enough from the Quadro that the general

stress revealed relaxed behaviors at a much higher rate. We are encouraged that our general stress

worked well on an untuned chip and test, however, this result also shows the danger of overfitting:

parameters for one chip may not be optimal on another chip, even from the same vendor.

Finally, we run all five SC-per-location tests for 10M on our three GPUs (Vega, Iris,Quadro)

using the Per-GPU stress. We do not observe any violations; thus, although older GPUs showed

SC-per-location violations, the newer GPUs that we test do not.

Multi-Copy Atomicity. The second property we test is multi-copy atomicity: a property that

states that two threads cannot observe memory updates in conflicting order. The idiomatic litmus

6
see: https://github.com/KhronosGroup/VK-GL-CTS/tree/master/external/vulkancts/modules/vulkan/memory_model

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

https://github.com/KhronosGroup/VK-GL-CTS/tree/master/external/vulkancts/modules/vulkan/memory_model

226:26 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

test for this property is known as IRIW [Sorin et al. 2011, sec. 5.5.2], in which two threads both

write to two different memory locations, 𝑥 and 𝑦. Then two additional threads read both 𝑥 and 𝑦.

The behavior of interest is when one of the reading threads sees location 𝑥 updated before 𝑦, and

the other reader sees 𝑦 updated before 𝑥 .

A difficulty in testing multi-copy atomicity in language models (like OpenCL), is that thread-local

reorderings of the loads should be disallowed. In ISAmodels, this can be enforced with dependencies

between the loads [Alglave et al. 2014], however language models do not provide mechanisms to

control this. Thus, we test two variants of IRIW: one with relaxed memory order (IRIW_Relaxed)

and one where all accesses are annotated with release/acquire memory orders (IRIW_RelAcq).

Both are allowed by the OpenCL specification, but the release/acquire variant might disallow more

thread-local reorderings.
7
Observations of the relaxed behavior do not indicate a bug, but rather

reveal that the chip may not be multi-copy atomic: a property considered quite weak in traditional

memory models. For example, early ARM ISA memory models allowed the behavior, but disallowed

the behavior since ARMv8 [Pulte et al. 2018].

Table 11. Number of relaxed behaviors observed

out of 10M iterations of the two IRIW tests. Iris

shows weak behaviors in both tests, while Vega

and Quadro do not show any.

Chip IRIW_Relaxed IRIW_RelAcq

Vega 0 0

Quadro 0 0

Iris 188 10

The results of running the two IRIW variants for

10M iterations each is given in Table 11. For each chip

𝐶 , we run the test with the per-GPU tuned stress for

chip 𝐶 , as this stress should be specialized per-chip,

but portable over tests. Our results show IRIW re-

laxed behaviors on the Iris, but none on the Vega or

Quadro. The relaxed variant of the test shows many

more relaxed behaviors than the release/acquire vari-

ant, potentially because thread-local reorderings are

disallowed by the release/acquire annotations. To ac-

count for overfitting, we also ran these tests on Vega

andQuadrowith the global MLFS stress parameters

and still did not observe any relaxed behaviors. Thus, we are not able to provide any evidence that

these two chips are not multi-copy atomic. We emphasize that our testing does not provide any

guarantees: it is possible that our global stress is still overfit to tests with only two threads.

7 RELATEDWORK
Testing Memory Models. There have been many prior works on testing memory models, however

this work is the first that we know of that statistically analyzes the results of a large amount number

of tests, under a variety of stresses, and executed across a wide range of different devices. Early

work dates back to the early 90’s with the ARCHTEST tool [Collier 1992]. This tool checked for

thread-local reorderings (e.g. the Write-Read reorderings allowed by x86) by checking for violations

when reading and writing monotonically increasing sequences to different memory locations.

TSOtool [Hangal et al. 2004] was another early testing tool, which generated pseudo random

programs that contained memory access sequences that would detect violations of the TSO memory

model. Using a similar philosophy, [Ta et al. 2019] randomly generates data-race free programs with

manufactured memory access conflicts; these programs can then be tested for relaxed behaviors,

which would violate a SC for DRF (sequential consistency for data-race free programs) property.

Our approach uses formally synthesized programs, i.e. they are not randomly generated, however

our stressing parameters do contain a degree of randomness. We believe this allows us to get

7
by thread-local reorderings, we do not mean just compiler reorderings; we also mean processor-local reorderings, which

can occur in the reorder buffer (RoB) or load-store queue (LSQ) of modern processors. Prior work has referred to thread-local

ordering as preserved program order [Alglave et al. 2014]

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

Foundations of Empirical Memory Consistency Testing 226:27

the best of both worlds, i.e. our litmus tests are idiomatic and can come with a notion of formal

coverage, while the stress can be tuned per GPU to increase the probability of seeing issues.

The diymemory model tool suite combines formal semantic modeling with empirical testing [Al-

glave et al. 2014]. The litmus tool executes litmus tests for a fixed iteration count and reports

a histogram of observed results. litmus performs testing at the ISA level and has been used to

test x86, ARM, and PowerPC memory models. It was later extended to test Nvidia GPUs [Alglave

et al. 2015], revealing many unexpected behaviors. More recently, empirical testing has become

a standard part of shared memory semantic modeling. For example, works on ARM mixed-sized

memory accesses [Flur et al. 2017], JavaScript concurrency [Watt et al. 2020], and transactional

memory [Chong et al. 2018] all contain a litmus testing campaigns (albeit with fixed iteration

counts and no stressing). Our hope is that the statistical methodologies proposed in this work will

influence the now-common empirical validation parts of these works.

GPU Memory Model Specifications. Our testing methodologies require a rigorous specification to

test against; such specifications have been developed and analyzed in prior works. Most closely

related is a study on how SC annotations can lead to counter-intuitive behaviors when combined

with GPU scopes in OpenCL [Batty et al. 2016]. These surprising behaviors could be distilled as

litmus tests and examined using our testing methodologies, e.g. to inform specification designers.

However, the current scope of our work does not consider different levels of the GPU hierarchy,

and thus these surprising behaviors were not considered. Instead, we choose to be exhaustive at a

single level of the GPU hierarchy (inter-workgroup), and a fixed number of threads (2).

Other GPU memory model specification work includes an official formal PTX model [Lustig

et al. 2019]; this specification would be an interesting target for our testing, but would only apply

to Nvidia GPUs. Others have proposed stricter data-race free models for heterogeneous systems,

like GPUs [Hower et al. 2014]; these models would need to be tested differently than our proposed

methodology: that is, because they do not have any well-defined allowed relaxed behaviors, they

cannot be tuned to maximally expose relaxed behaviors.

8 CONCLUSION
In this work, we have rigorously explored the frequency, rates and stability of relaxed behavior

observations in relaxed memory model testing. Our tests span 3 GPUs, 6 litmus tests and millions

of test samples. We have shown that effective stressing parameters are exponentially rare; however,

we can rapidly tune to find them. We show a method for providing portable parameters that remain

effective when applied across a wide domain. Our testing results led to a confirmed bug in an

industry compiler and concrete suggestions for official conformance testing suites.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback which greatly improved the clarity

of the paper. We thank Sreepathi Pai for the use of the GPU Zoo at the University of Rochester,

which was our main source of GPUs for this work. We thank Mariusz Merecki and Jacek Jankowski

at Intel for their feedback and insights around the the Iris. We thank the Khronos SPIR Memory

Model TSG, (especially Rob Simpson, Alan Baker, David Neto, Jeff Bolz, Nicolai Hähnle, Graeme

Leese, Brian Sumner) for their support and feedback on this work over the last year. The early-stage

equipment for this project was partially funded by the MacCracken Independent Work/Senior

Thesis Fund from the School of Engineering and Applied Science (SEAS) at Princeton University.

This material is based upon work supported by the National Science Foundation under Grant No.

1739674. Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

226:28 Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi

REFERENCES
Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and

John Wickerson. 2015. GPU Concurrency: Weak Behaviours and Programming Assumptions. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS). ACM. https://doi.org/10.1145/2694344.2694391

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences in Weak Memory Models. In Computer Aided
Verification (CAV). Springer. https://doi.org/10.1007/978-3-642-14295-6_25

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus: Running Tests against Hardware. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Springer. https://doi.org/10.1007/978-3-642-19835-9_5

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining

for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2 (2014), 7:1–7:74. https://doi.org/10.1145/2627752

ARM. 2011. Cortex-A9 MPCore, programmer advice notice, read-after-read hazards.

Mark Batty, Alastair F. Donaldson, and John Wickerson. 2016. Overhauling SC atomics in C11 and OpenCL. In Principles of
Programming Languages (POPL). ACM. https://doi.org/10.1145/2837614.2837637

Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. 2012. Clarifying and compiling C/C++

concurrency: from C++11 to POWER. In Principles of Programming Languages (POPL). ACM. https://doi.org/10.1145/

1926385.1926394

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In Principles
of Programming Languages (POPL). ACM. https://doi.org/10.1145/1926385.1926394

Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chlipala, and Arvind. 2017. Kami: a platform for

high-level parametric hardware specification and its modular verification. Proc. ACM Program. Lang. 1, ICFP (2017),

24:1–24:30. https://doi.org/10.1145/3110268

Nathan Chong, Tyler Sorensen, and John Wickerson. 2018. The semantics of transactions and weak memory in x86, Power,

ARM, and C++. In Programming Language Design and Implementation (PLDI). ACM. https://doi.org/10.1145/3192366.

3192373

William W. Collier. 1992. Reasoning About Parallel Architectures. Prentice-Hall. http://www.mpdiag.com/.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection: Help for the Practicing Programmer.

Computer 11, 4 (1978), 34–41. https://doi.org/10.1109/C-M.1978.218136

Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget, Kathryn E. Gray, Ali Sezgin, Mark Batty,

and Peter Sewell. 2017. Mixed-size concurrency: ARM, POWER, C/C++11, and SC. In Principles of Programming Languages
(POPL). ACM. https://doi.org/10.1145/3093333.3009839

Kshitij Gupta, Jeff Stuart, and John D. Owens. 2012. A study of persistent threads style GPU programming for GPGPU

workloads. In Innovative Parallel Computing (InPar). IEEE Computer Society. https://doi.org/10.1109/InPar.2012.6339596

Sudheendra Hangal, Durgam Vahia, Chaiyasit Manovit, Juin-Yeu Joseph Lu, and Sridhar Narayanan. 2004. TSOtool: A

program for verifying memory systems using the memory consistency model. In International Symposium on Computer
Architecture (ISCA). IEEE Computer Society. https://doi.org/10.1145/1028176.1006710

Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Benedict R. Gaster, Mark D. Hill, Steven K. Reinhardt, and

David A. Wood. 2014. Heterogeneous-race-free memory models. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 427–440. https://doi.org/10.1145/2541940.2541981

Dan Iorga, Tyler Sorensen, John Wickerson, and Alastair F. Donaldson. 2020. Slow and Steady: Measuring and Tuning

Multicore Interference. In Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE. https:

//doi.org/10.1109/RTAS48715.2020.000-6

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of Mutation Testing. IEEE Trans. Software
Eng. 37, 5 (2011), 649–678. https://doi.org/10.1109/TSE.2010.62

Khronos Group. 2015. The OpenCL Specification Version: 2.0 (rev. 29).

Khronos Group. 2019. The OpenCL Specification Version: 2.2 (rev. 2.2-11).

L. Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE Trans.
Comput. 28, 9 (1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

N. G. Leveson and C. S. Turner. 1993. An investigation of the Therac-25 accidents. IEEE Computer 26, 7 (1993), 18–41.
https://doi.org/10.1109/MC.1993.274940

Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. 2019. A Formal Analysis of the NVIDIA PTXMemory Consistency

Model. In Architectural Support for Programming Languages and Operating Systems, ASPLOS. ACM. https://doi.org/10.

1145/3297858.3304043

Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. 2016. Counterexamples and

proof loophole for the C/C++ to POWER and ARMv7 trailing-sync compiler mappings. arXiv:1611.01507 2016.

Brian Norris and Brian Demsky. 2013. CDSChecker: Checking concurrent data structures written with C/C++ atomics.

In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2013. ACM. https://doi.org/10.1145/

2544173.2509514

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

https://doi.org/10.1145/2694344.2694391
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3192366.3192373
https://doi.org/10.1145/3192366.3192373
http://www.mpdiag.com/
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1145/3093333.3009839
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1145/1028176.1006710
https://doi.org/10.1145/2541940.2541981
https://doi.org/10.1109/RTAS48715.2020.000-6
https://doi.org/10.1109/RTAS48715.2020.000-6
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/3297858.3304043
https://doi.org/10.1145/3297858.3304043
https://arxiv.org/abs/1611.01507
https://doi.org/10.1145/2544173.2509514
https://doi.org/10.1145/2544173.2509514

Foundations of Empirical Memory Consistency Testing 226:29

Nvidia. 2019. CUDA C Programming Guide, Version 10.2.

Christopher Pulte, Shaked Flur,Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. SimplifyingARM concurrency:

multicopy-atomic axiomatic and operational models for ARMv8. Proc. ACM Program. Lang. POPL (2018). https:

//doi.org/10.1145/3158107

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010. x86-TSO: a rigorous

and usable programmer’s model for x86 multiprocessors. Commun. ACM 53, 7 (2010), 89–97. https://doi.org/10.1145/

1785414.1785443

F J Sigworth and S M Sine. 1987. Data transformations for improved display and fitting of single-channel dwell time

histograms. Biophysical journal 52, 6 (Dec 1987), 1047–54. https://doi.org/10.1016/S0006-3495(87)83298-8

Tyler Sorensen and Alastair F. Donaldson. 2016. Exposing Errors Related to Weak Memory in GPU Applications. In

Programming Language Design and Implementation (PLDI). ACM. https://doi.org/10.1145/2908080.2908114

Tyler Sorensen, Alastair F. Donaldson, Mark Batty, Ganesh Gopalakrishnan, and Zvonimir Rakamaric. 2016. Portable

inter-workgroup barrier synchronisation for GPUs. In Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). ACM. https://doi.org/10.1145/2983990.2984032

Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory Consistency and Cache Coherence (1st ed.).
Morgan & Claypool Publishers. https://doi.org/10.2200/S00346ED1V01Y201104CAC016

Tuan Ta, Xianwei Zhang, Anthony Gutierrez, and Bradford M. Beckmann. 2019. Autonomous data-race-free GPU testing.

In International Symposium on Workload Characterization (IISWC). IEEE Computer Society. https://doi.org/10.1109/

IISWC47752.2019.9042019

United States Department of Energy. 2004. Final Report on the August 14, 2003 Blackout in the United States and Canada:

Causes and Recommendations.

Conrad Watt, Christopher Pulte, Anton Podkopaev, Guillaume Barbier, Stephen Dolan, Shaked Flur, Jean Pichon-Pharabod,

and Shu yu Guo. 2020. Repairing and mechanising the JavaScript relaxed memory model. In Programming Language
Design and Implementation (PLDI). ACM. https://doi.org/10.1145/3385412.3385973

John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. 2017. Automatically comparing memory

consistency models. In Principles of Programming Languages (POPL). ACM. https://doi.org/10.1145/3009837.3009838

Shucai Xiao and Wu-chun Feng. 2010. Inter-block GPU communication via fast barrier synchronization. In International
Symposium on Parallel and Distributed Processing (IPDPS). IEEE Computer Society. https://doi.org/10.1109/IPDPS.2010.

5470477

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In Programming
Language Design and Implementation (PLDI). ACM. https://doi.org/10.1145/1993316.1993532

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 226. Publication date: November 2020.

https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1016/S0006-3495(87)83298-8
https://doi.org/10.1145/2908080.2908114
https://doi.org/10.1145/2983990.2984032
https://doi.org/10.2200/S00346ED1V01Y201104CAC016
https://doi.org/10.1109/IISWC47752.2019.9042019
https://doi.org/10.1109/IISWC47752.2019.9042019
https://doi.org/10.1145/3385412.3385973
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1109/IPDPS.2010.5470477
https://doi.org/10.1109/IPDPS.2010.5470477
https://doi.org/10.1145/1993316.1993532

	Abstract
	1 Introduction
	1.1 Deficiencies of Prior Studies
	1.2 Foundations of Empirical Memory Consistency Testing

	2 Background
	2.1 Memory Consistency Models
	2.2 GPU Programming and OpenCL

	3 Tuning Parameters and Exploratory Datasets
	3.1 Memory Parameters: Stressing and Testing Locations
	3.2 Concurrency Parameters: Barrier and Occupancy
	3.3 Affinity Parameters: Id Shuffling and Oversubscription
	3.4 Parameter Summary and Datasets

	4 Initial Observations: Frequency, Rates, Stability and Effectiveness
	4.1 Sequential, Interleaving, and Relaxed Observations
	4.2 Rate Distribution
	4.3 Stationary Relaxed Behavior Observation

	5 Litmus Test Tuning
	5.1 Data Peeking on Test Tuning
	5.2 Portable Parameters
	5.3 Cross Test Correlations

	6 Testing Conformance and Consistency Properties
	6.1 Conformance Testing
	6.2 Mutation Testing
	6.3 Discussion on Conformance Testing
	6.4 SC-per-Location and Multi-Copy Atomicity

	7 Related Work
	8 Conclusion
	References

