
Temperature-Aware Design Issues for SMT and CMP Architectures

James Donald and Margaret Martonosi
Department of Electrical Engineering
Princeton University, Princeton, NJ
{jdonald,martonosi}@princeton.edu

Abstract

With increasing power density in modern
processors, management of on-chip temperature is fast
becoming a bottleneck for chip designers. To address
this, beyond conventional power and energy analysis it
is necessary to apply temperature-aware analysis. In
this paper we present thermal-aware experiments on
simultaneous multithreaded (SMT) and chip multi-
processor (CMP) architectures. Both SMT and CMP
have been shown to improve ILP as well as energy
efficiency, but in our experiments we also examine the
temperature consequences of such multithreaded
architectures. We use the SimpleScalar tool set
combined with Wattch for power measurement in
conjunction with the HotSpot thermal modeling tool.
We begin with models for different processors using
roughly equal silicon resources and develop
parameters and floorplan layouts for each of these
cases. Our findings show that large temperature
gradients are prominent with either multithreading
technique, but both architectures show promise as a
basis for temperature-aware enhancements to mitigate
the problem. We examine several techniques for
managing peak temperature problems and find that
allowing hot functional blocks to be allocated more
die area can reduce our processors’ hottest unit
temperatures by as much as 12° Celsius. We scale our
processors up to 4 contexts or 4 processor cores and
find that these same temperature trends continue.

1. Introduction

Simultaneous multithreading and chip multi-
processing were originally proposed as methods to
increase microprocessor performance [10, 26].
Recently, studies have also shown that both techniques
are capable of reducing overall power consumption [20,
21]. Until now, however, there has yet to be done an

analysis comparing how each design methodology
fares in the area of temperature-aware design.

With increases in density of digital circuits without
commensurate reduction in density of power
consumption, heat dissipation is fast becoming the
limiting factor in microprocessor performance [24]. In
order to examine specifics of this problem, temperature
analysis brings in the requirement of understanding
how the output heat is spatially distributed across a die
to result in temperature gradients.

Microarchitectural methods to increase ILP have
begun to involve steering toward multithreaded
processors in the form of SMT and CMP, instead of
continually increasing superscalar issue width.
Because of the growing prominence of multithreaded
processors, we perform an in-depth temperature
analysis to examine the long term effects as processors
move towards processing a greater number of threads.
Some critical questions we wish to answer are:
• Does either of the two processor design paradigms

inherently give better thermal management
alongside performance and power efficiency
consequences?

• With multithreading will thermal hotspots become
even more of a problem?

• And do thermal management techniques such as
migration of computation retain their utility as we
continue to scale up the number of threads or
processor cores?

In the next section we give brief overviews of the
SMT and CMP concepts. Section 3 describes our
simulation tools, benchmarks, and methodology.
Section 4 summarizes our experiment results. Section
5 discusses future work, and Section 6 concludes.

2. Background and related work

Simultaneous multithreading (SMT) was first
described by Tullsen et al. as a technique by which
processor resources could be more efficiently utilized

due to issuing instructions from more than one thread
[26]. SMT requires duplication of some essential
resources such as architectural register files in order to
maintain multiple thread contexts, but the principle
theme of SMT is that performance is greatly increased
by sharing most processor resources. SMT has been
shown to be implementable by modifying existing
superscalar processors with fairly minimal changes.

Chip multiprocessing (CMP) is the concept of
placing multiple processor cores on a single chip. The
primary motivation is that instead of designing
processors as large monolithic units, they can be
broken down into simpler albeit less powerful units
[10]. By dividing up our task into smaller units the
design process is greatly simplified and through the
combination of these simplified units we may actually
increase the overall performance.

Tullsen and Seng showed that simultaneous
multithreading is capable of saving energy by reducing
energy lost through mis-speculation [21]. Recent
findings have shown CMP to be perhaps just as
beneficial for energy savings when compared to SMT,
and that in some cases chip multiprocessors are likely
to be more energy-efficient than SMT processors [20].
Although the act of combining multiple units onto a
single chip does not inherently save energy, energy
savings are due to hardware simplification
characteristic of the CMP theme.

Much work has been done on directly comparing
the two methodologies. Tullsen, et al. showed that
SMT outperforms a CMP of the same number of
contexts [26], while Hammond et al. showed that the
design simplification of CMP could in some cases
allow it to outperform an SMT [10]. For power
consumption, Kaxiras et al. demonstrated that on
mobile phone workloads an SMT processor could
outperform a CMP in terms of energy efficiency [13],
and Li et al. recently performed an in depth study of
the reasons for the energy efficiency of SMT [16].

To summarize the temperature differences across a
chip, we can compare the nominal temperature and the
hottest local temperature. The overall spatial average
temperature represents how hot our chip is on the
whole, and is likely to be consistent with values that
we could calculate from power-aware analysis without
involving spatial layout considerations. This “power
envelope” technique has been used extensively
because it serves as an accurate approximation as long
as large spatial temperature gradients are not present
[9]. However, from a temperature-aware design
perspective these gradients are important to take into
account.

3. Experimental procedure

3.1. Tools and benchmarks

We use the HotSpot temperature modeling tool
developed at the University of Virginia [24]. HotSpot
can be plugged into a power-performance simulator
such as SimpleScalar-Wattch [1]. HotSpot allows the
user to specify a processor floorplan that gives the
layout of a processor and its functional units. From this
floorplan, it creates an equivalent circuit model that
models heat transfer in a silicon processor with
specified thermal packaging. We use Wattch as our
basis to provide the power numbers to HotSpot.

We have selectively chosen eight benchmarks from
the SPEC 2000 suite. In order to rapidly simulate our
benchmarks, we used empirically derived simulation
points as described by Sherwood et al. to generate
simulation statistics representative of each
benchmark’s complete program behavior [18, 22].

We modified SimpleScalar to support simultaneous
multithreaded and chip multiprocessors. For our SMT
design, we allow complete sharing of the instruction
issue bandwidth and functional units, and shared
branch prediction. For simplicity, our current fetch
policy is Icount, as described in [26]. Our CMP
specifications require duplication of most resources for
each effective processor. Communication between
cores is done through the shared L2 cache, consistent
with modern CMP designs such as Hydra and the IBM
Power4 [10, 19]. Both our SMT and CMP simulator
are designed for running distinct programs in parallel,
although in the future we expect to add support for
cooperating threads.

3.2. Experiment parameters

Our processor parameters are designed to use

resources appropriate for a modern high performance
multithreaded processor built on 0.13 micron
technology such as had been planned for the Alpha
21464 (EV8) [7]. The EV8 sought to support 4-context
multithreading, the degree to which we experiment
with in this paper. Using 0.13 micron technology, we
have assumed features such as a clock rate of 3 GHz, a
relatively large L2 cache, and other parameters scaled
up accordingly.

Our parameters for a single-context superscalar
processor, SMT processor, and two CMP
configurations are shown in Table 1. Our models
assume the same parameters for SMT as the single-
context superscalar and CMP resources are mostly
divided proportionally.

Table 1. Processor parameters.

Single-
context
Super-
scalar

SMT

2-core
CMP
(per-
core

params)

4-core
CMP
(per-
core

params)
Clock
speed 3 GHz 3 GHz 3 GHz 3 GHz

Ifetch
queue size 16 16 8 4

Bpred table
size 4096 4096 2048 1024

Issue width 8 8 4 2
Commit
width 8 8 4 2

RUU
window
size

128 128 64 32

Ld/Store
Queue size 64 64 32 16

L1 Dcache 128 KB 128 KB 64 KB 32 KB

L1 Icache 128 KB 128 KB 64 KB 32 KB

L2 cache 4 MB 4 MB 4 MB 4 MB

Hammond et al. pointed out that a simpler core
would allow a CMP to be clocked faster [10].
However, support for this argument has not held up
according to recent findings [2, 6]. Arguably the more
complex logic of a superscalar or SMT processor can
make issue delays longer, but sensible long-term
design would result in additional pipeline stages and
not necessarily a slower clock. As such, for
comparisons of this nature we use the same clock rate
of 3 GHz for our SMT and CMP simulations even for
the smallest cores.

A number of different die area tradeoff trends have
been proposed, but it remains challenging to define fair
tradeoffs between the two paradigms. Burns and
Gaudiot have developed sophisticated models that
estimate die area consequences for both SMT and
CMP [2, 3]. In this paper we have taken a simpler
approach. For example, some resources such as the
data cache are divided evenly when separated into two
separate CMP cores. While we could attempt to
appropriate processor resources using some more
complex empirical formulas as done by [2], our overall
purpose is not to do a strict head-to-head comparison.
Instead, we are aiming to find the long-term
temperature-aware trends seen for SMT and CMP and
to identify solutions to such arising thermal problems.

3.3. Floorplans

HotSpot requires sketched floorplans to specify the
relative physical locations of processor functional
units. Our base floorplan and a floorplan derived from
it are shown below in Figure 1 (a). Chip
multiprocessors are formed using a script to duplicate,
scale, and place new cores based on a starting
floorplan while maintaining the same size L2 cache.

(a) The basic floorplan we use for an SMT or

single-context superscalar processor.

(b) Floorplan of our basic 2-context CMP.

Figure 1. Examples of two HotSpot floorplans
used in our experiments.

CMP has the benefit that almost all resources are
reduced in size approximately proportionally to the
degree of splitting. One such resource that is not sized
down in this way is the set of architectural registers.
However, since the register file did not become an
object of excessive heat output even when compressed
under our models, we used the simple approximation
of resizing the register file along with the entire core.

4. Results and discussion

To gather an understanding of temperature

characteristics, we begin by analyzing the related
performance and energy consumption.

4.1. Performance and energy efficiency

Figure 2 shows our achieved IPC on three

architectures: single-context superscalar, 2-context
SMT, and 2-core CMP. The superscalar column is
omitted for multithreaded workloads because it cannot
run them without course-grained context-switching. As
expected, both SMT and CMP achieve significantly
higher IPC when running multiple benchmarks. CMP
also carries its expected performance loss for single-
threaded benchmarks as compared to a single-context
superscalar or SMT processor.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

am
mp

ap
plu art

fm
a3

d
gc

c
gz

ip mcf
vo

rte
x

am
mp-f

ma3
d

ap
plu

-am
mp

ap
plu

-gc
c

ap
plu

-vo
rte

x

art
-gz

ip

art
-m

cf

fm
a3

d-g
cc

gz
ip-

ap
plu

gz
ip-

gc
c

gz
ip-

vo
rte

x

Benchmark mixes

IP
C

Superscalar
SMT
CMP (2 core)

Figure 2. Performance on superscalar, 2-context
SMT processor, and 2-core CMP.

The IPC of mixed workloads depends largely on

the IPC of the individual programs making up each
multithreaded workload. For example, gzip and
vortex can both sustain high ILP when running
alone, and achieve even higher IPC when
multithreaded together. On the other hand, the
workload of art and mcf shows low IPC, brought

about because mcf is a very memory intensive
benchmark. In the next section we will see a
significant correlation between high IPC and high
processor temperature, so it is relevant to know how
IPC is affected by multithreading to see the
temperature effects from mixing various programs.

For a more complete picture, consider also the
energy per instruction (EPI) metric. Energy data for all
three architectures is shown below in Figure 3. As with
IPC, we see improvement in EPI on both multithreaded
architectures.

0.00E+00

1.00E-09

2.00E-09

3.00E-09

4.00E-09

5.00E-09

6.00E-09

7.00E-09

8.00E-09

9.00E-09

ammp
applu art

fm
a3

d gccgzipmcf

vo
rte

x

ammp-fm
a3d

applu
-ammp

applu
-gcc

applu
-vo

rte
x

art-g
zip

art-m
cf

fm
a3

d-gcc

gzip
-applu

gzip
-gcc

gzip
-vo

rte
x

Benchmark mixes

En
er

gy
 P

er
 In

st
ru

ct
io

n
(J

ou
le

s/
in

st
ru

ct
oi

n)

Superscalar
SMT
CMP (2-core)

Figure 3. EPI for the three architectures. Lower
EPI values indicate better energy efficiency.

Neither the IPC nor EPI metric alone sufficiently
represents overall execution quality, so we present
both initial metrics so that we can examine the relation
between performance, energy, and then temperature.
As seen in Figure 3, both multithreading techniques
improve energy efficiency as measured by EPI. SMT
can accomplish this by reducing wasted energy due to
lower penalties from speculated instructions such as
mispredicted branches. Energy saved by CMP is
essentially due to the hardware simplification of each
smaller core. Both energy savings can be summarized
as resulting from more efficient usage of hardware.

Given the less profound difference in EPI between
different multithreaded workloads, IPC stands as a
better candidate to correlate with thermal effects, and
we shall shortly see the strong connection between
high IPC and high processor temperatures.

4.2. Temperature comparison

HotSpot allows us to find the predicted final
temperatures for an execution in the case where we
suppose that the power values from that sample of
execution would remain consistent in the limit as time

approaches infinity. These steady-state temperatures
are the primary measurements used in our experiments.
Our steady-state temperatures for all benchmarks
initially revealed large temperature gradients including
prominent hot spot; in our case result bus and
instruction window are typically the hottest units. The
coldest component is always the L2 cache, as one
would expect given its relative large size and
infrequent usage. The difference between this apparent
chip temperature and the temperature of the
processor’s hottest units ranges from 5° to 25°, and the
area-average chip temperatures for various
benchmarks differ widely as well.

0

10

20

30

40

50

60

70

80

90

100

110

120

am
mp

ap
plu art

fm
a3

d
gc

c
gz

ip mcf
vo

rte
x

am
mp-fm

a3d

ap
plu

-am
mp

ap
plu

-gc
c

ap
plu

-vo
rte

x

art
-gz

ip

art
-m

cf

fm
a3

d-gc
c

gz
ip-

ap
plu

gz
ip-

gc
c

gz
ip-

vo
rte

x

Benchmark mixes

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
)

SMT area-averaged temperature
SMT hottest-unit temperature

(a) Initial temperatures from our SMT

configuration. Single-threaded workloads
represent also represent a superscalar.

0

10

20

30

40

50

60

70

80

90

100

am
mp-fm

a3d

ap
plu

-am
mp

ap
plu

-gc
c

ap
plu

-vo
rte

x

art
-gz

ip

art
-m

cf

fm
a3

d-gc
c

gz
ip-

app
lu

gz
ip-

gcc

gz
ip-

vo
rte

x

Benchmark mixes

Te
m

pe
ra

tu
re

 (°
 C

)

Chip Area-average temperature
Hottest-unit temperature

(b) Initial temperature data from our CMP 2-

core configuration.
Figure 4. Nominal temperatures and hottest unit
temperatures running various workloads.

For example, multithreading gzip with vortex
on an SMT processor results in an overall quite warm
processor, registering 85.5° C as the apparent (area-
averaged) chip temperature. On the other hand, when a
low IPC benchmark such as ammp runs alone on a
single-context superscalar processor, we see a much
lower apparent temperature (63.7°) and the hottest unit
on that die registers at 72.2°. Yet despite the difference
in magnitude, we find the hottest units among each
workload are usually the same: in our case, the
instruction window and result bus. Our steady-state
temperatures including the hottest unit temperatures
and chip-area average temperatures for both our SMT
architecture and CMP architecture are shown in Figure
4 (a). Likewise Figure 4 (b) contains corresponding
temperature data for our 2-core CMP architecture.

The existence of similar spatial temperature profile
trends extends to even 2-core CMP chips running
different benchmarks. For example, when running
gzip and applu on two separate cores of a CMP, we
find that the core running applu is generally 6°
cooler than the core running gzip with respect to each
core’s corresponding functional block units, and yet
the instruction window and result bus are still found to
be the hottest units on both cores.

Modern processors are designed for adequate
average power consumption and then rely on various
forms of dynamic thermal management (DTM) to deal
with peak thermal constraints [4]. Although maximum
chip temperatures for typical desktop microprocessors
such as the Intel Celeron are marked at around 85-90°
C, our architectures often reach beyond this range for
SPEC benchmarks. As processors become more
thermal-limited in the future, the common operating
regime will likely come closer to the more thermal
limited cases such as the ones analyzed in our
experiments [11].

4.3. Temperature-aware design enhancements

Since the difference between the chip’s apparent
temperature and its hottest unit’s temperature is a
problem, we wish to seek techniques that reduce this
gap even if they do not necessarily lower the
temperature on the cooler locations of the processor.
Skadron et al. proposed migrating computation (MC),
whereby a single hot unit is duplicated and a backup
structure located further away could be used when the
original unit becomes too hot [24]. The motivation
behind this was that intuitively it is most desirable to
move hot units far apart from each other, but it is
preferred to do this in some way that doesn’t

significantly damage overall performance because of
communication delay.

For our first thermal improvement test, we notice
that CMP’s property of separate cores enables moving
entire cores around the processor layout. We target
CMP cores because the flexibility inherent in separate
cores makes this option most likely to have small
performance consequences. Our modified layout
reflecting relocated cores is shown below in Figure 5,
which should be compared with Figure 1 (b).

Using CMP core relocation, we ran new
simulations with the modified layout and compared
our final steady-state hottest-unit temperatures with
the original values. We find that insignificant
temperature drops are achieved as shown in Figure 5.

Figure 5. Modified 2-core CMP layout with cores
relocated to corners of the chip.

Not shown here is the area-average chip
temperature. Our new layout structure attempts to
redistribute the heat, not reduce the average quantity of
it on the die, and so there is no noticeable drop in the
nominal temperature. What is surprising, however, is
that the hottest unit temperatures as shown in Figure 6
showed a practically insignificant 1° reduction at most.

This disappointing result suggests that lateral heat
transfer perhaps does not play a significant role in
creating thermal hotspots. Since heat dissipation
appears to be much stronger through the vertical
packaging technology than through adjacent silicon,
enlarging the area of computation rather than
relocation may be the important factor.

0
10
20
30
40
50
60
70
80
90

100

am
mp-f

ma3
d

ap
plu

-am
mp

ap
plu

-gc
c

ap
plu

-vo
rte

x

art
-gz

ip

art
-m

cf

fm
a3

d-g
cc

gz
ip-

ap
plu

gz
ip-

gc
c

gz
ip-

vo
rte

x

Benchmark mixes

H
ot

te
st

-u
ni

t T
em

pe
ra

tu
re

 (°
 C

)

Original CMP
Cores moved to corners

Figure 6. Changes in hot unit temperature due to
moving CMP cores to corners of the layout.

Although somewhat larger improvements can be
obtained by selectively relocating the hottest units
themselves—which is likely to be more costly from a
design standpoint—these gains are still small
compared to what we find from our next technique.
Heo et al. have pointed out that as die thickness
reduces with respect to lateral chip dimensions that
lateral heat transfer may become even less significant
for future die technologies [11]. Since most of the heat
is dissipated vertically through the heat sink,
increasing the area of a unit could be much more
relevant than actually separating the unit into distally
located components.

MC actually causes both effects at the same time,
but in our experiment we allow a unit only to consume
extra area to see if temperature reduction might owe
simply to increased thermal contact area. Our new
layout involves increasing the size of the hot area, as
shown in Figure 7, and the results of the layout
changes are shown in Figure 8. We see a noticeable
drop in temperature owing to enlarging the hot units.
Moreover, despite the smaller sized cores of a 2-core
CMP we see approximately the same benefit.

Relocating functional units or processor cores can
result in unnecessary communication overheads. If
little temperature benefit is achieved this way,
unnecessary separation may be completely
unnecessary to combine with simple unit enlargement.

Figure 7. New core layout with increased spread
of the result bus and instruction window.

0

10

20

30

40

50

60

70

80

90

100

110

120

ammp-fm
a3d (W

indow/FP unit)

applu-ammp (F
P unit)

applu-gcc
 (W

indow/FP unit)

applu-vo
rte

x (W
indow/FP unit)

art-
gzip

 (W
indow)

art-
mcf

(LdStQ
)

fm
a3d-gcc (

W
indow/FP unit)

gzip-applu (W
in dow)

gzip-gcc (
Window)

gzip-vo
rte

x (W
indow)

Benchmark mixes (new layout's hottest unit in parentheses)

H
ot

te
st

-u
ni

t t
em

pe
ra

tu
re

 (°
 C

)

SMT original
SMT modified layout
CMP original
CMP modified layout

Figure 8. Temperatures resulting from allowing
the heating structure to take up more local area.

Although we have now seen that increasing the die

area of a particular unit can have temperature benefits,
a question that arises now is what does it exactly mean
to simply enlarge a processor unit. There are a number
of ways by which extra space can be added to such
units, and these methods along with their various costs
are discussed in Section 4.5.

4.4. Four-context/four-core processors

To see how these trends continue as the number of
threads is increased, we ran two four-benchmark
mixes. We have used two thread mixes, the first

described as all memory-intensive programs while the
second consists of four high-ILP programs as
classified by [25]. For the 4-context SMT we used the
same layout as with single-context and 2-context
executions, while the 4-core CMP was generated the
same way we expanded our initial layout to the 2-core
chip from Figure 1 (b). For the 4-thread cases, again
relocating CMP cores to the die corner proved
ineffective, so here we shall present only our results
from hot unit enlargement. The modifications shown in
Figure 7 were applied and duplicated to each core in
the CMP 4-core layout. The original hottest-unit
temperatures and improved temperatures are shown in
Figure 9.

0
10
20
30
40
50
60
70
80
90

100
110
120

ammp-applu-art-mcf fma3d-gcc-gzip-vortex

Benchmark mixes

H
ot

te
st

-u
ni

t t
em

pe
ra

tu
re

 (°
 C

)
SMT original
SMT modified layout
CMP original
CMP modified layout

Figure 9. Original and final temperatures for
four-context SMT and CMP workloads.

The improvements in the SMT configuration are
still significant (6° and 11° respectively). When
explaining the large improvement, one must also take
into account that the original temperature gap was
large as well. In the CMP configuration we see a
similar benefit. Repetitive architectures have the
benefit of reduced complexity of design, and recently
these arguments have been extended to power savings
in that power-efficient design on a repeated structure
can create multiplicative power saving in reduced
design time [14], and a similar argument can be made
for temperature effects.

4.5. Detail level for area-enlarging techniques

In Sections 4.4 and 4.5 we found that enlarging hot
units could significantly reduce temperature gradients,
although it may not yet be clear what sort of a design
technique could be used to accomplish this. Deeney
has suggested that thermal hot spots can be mitigated
by placing blank silicon nearby as a very coarse-grain
method [5]. Unfortunately as we have observed and is

noted by [11], the lateral heat transfer may be so small
that we cannot expect significant transfer between the
active unit and the adjacent empty silicon.

If we place blank spots throughout the unit on a
more fine grain level, however, we can eventually
approach uniform heat distribution. To find what level
of granularity is appropriate, we used our floorplan
modeling to break the hottest units into granular blocks
and measured how fine grain the distribution must be
in order to adequately distribute heat. Since our end
results for this granularity experiment are quite
negative in terms of thermal manageability, we use as
our single workload the SMT combination of gzip-
vortex because it gives a large (111.2° down to
99.4°) temperature gap. In Figure 10 we show how
heat spreading could be distributed within the layout of
the hottest units, and the resulting thermal hot spot
temperatures from such models are shown in Figure 11.
The single-block case represents no blank silicon
patches hence ideal uniform heat distribution
throughout each unit. Breaking the hot units into two
blocks (one on and one off) is a non-ideal situation that
gives very little benefit over the original non-spread
configuration that registered 111.2°. Increasing the
granularity of spreading to 441 pieces for both the
instruction window and result bus does improve heat
spreading, but even at this level there is still a 5°
difference between the average of the “on” and “off”
spots. Exponentially increasing the number of pieces in
our model is not feasible because the execution time of
HotSpot is tied to the number of layout block units.

Figure 10. Sample (n = 9) core layout to find the
granularity necessary for sufficient temperature
distribution.

85

90

95

100

105

110

115

120

1 2 9 25 81 169 289 441

Number of on-off granular pieces in hottest units

Te
m

pe
ra

tu
re

 (°
 C

)

Hottest location (a s ingle piece of the instruction w indow)
Average of active pieces in instruction w indow
Average of blank pieces in instruction w indow

Figure 11. Temperatures of hottest unit
(instruction window) for gzip-vortex under
SMT with granularly enlarging hot units. At an
infinite number of pieces, the averages of the
active pieces and blank pieces should both
converge to the single-piece temperature.

Disappointingly, here we have found that spreading

a block must be done very finely in order to reduce its
likelihood of it being a set of hot spots.

Fortunately, we need not restrict ourselves to
designs that consist only of a component’s original
structure alongside blank silicon. MC is performed
instead by creating only two duplicate units and
alternating calculation between the two. Somehow the
units must be able to copy over any stored data when
switching between the two duplicate units. Since this
copying operation may be expensive, it is important to
limit how often this occurs. Heo et al. showed that this
activity migration could be performed on the level of
microseconds and achieve its desired effect [11].
Under the various methods presented, expanding of
units can incur costs in terms of die area and timing
difficulties, and these tradeoffs must be taken into
consideration.

The granularity experiment presented in this section
also gives us an idea of how precise our floorplan
modeling scheme is. We have used strong assumptions
that various blocks are monolithic units with a single
temperature. Here we see evidence that we may need
to model at a much more precise level for accurate
temperature effects because assumptions of simple
“spreading” may be too strong for large units with a
heterogeneous structure.

4.6. Performance and thermal tradeoffs

When compared to SMT, the primary weakness of
CMP is poor single-threaded performance. From the
temperature-level design perspective, we see that this
problem worsens. Because most heat dissipation is
largely through the vertical heat sink directly above the
core and not through an indirect path through other
core, the heat generation of a single core is largely its
own localized problem even when the other cores are
idle. On the other hand, CMP research is largely
geared toward compiler enhancements to enable thread
level speculation and parallelize single threaded
programs to run on multi-core processors [17]. With
these enhancements, the isolation problem for single-
threaded programs can be less significant.
Furthermore, chip multiprocessors are largely geared
toward server or network environments with many
clients and so peak performance may not be a big
issue. In the single-threaded case SMT did well in
performance, but high-IPC executions often came
alongside high temperatures almost as often as with
multithreaded workloads.

For the corresponding temperature effects we saw
in the beginning that high temperatures correlated
strongly with high IPC workloads. This indicates that
any ILP gains that we have achieved through
multithreading may quickly be mitigated if we operate
within the temperature limited regime. However, if we
have methods to deal with these temperature problems
in our architectures, there is certainly promise in ways
to continue achieving improved performance. Our
layout restructuring techniques tend to give better
temperature improvements for the SMT architecture,
although we also had worse temperature gradients for
the SMT architecture to begin with. As such, it seems
both SMT and CMP are viable multithreaded
architectures amenable to thermal management
techniques.

5. Future work

The models used in this paper to specify parameters
for SMT and CMP were quite simple. Use of more
detailed transistor-count estimation tools could
automate comparative simulations [8, 23]. Their
benefit is twofold: allowing us to estimate the
microarchitecture parameters as well as providing
information to generate more accurate HotSpot
floorplans.

HotSpot’s model has been validated using
Floworks, an industry level computational fluid
dynamics tool [24], and using a thermal test chip [12].

However, now that there are existing fabricated SMT
and CMP processors, through the use of temperature
sensors we have a possible real-chip method by which
we can analyze and validate temperature-aware
simulation techniques, and we expect to do this in the
near future.

Also, all the experiments outlined in this paper were
done using the steady-state temperatures, which fail to
account for the transient nature of temperature.
Thermal management is generally quite a dynamic
problem that involves active techniques such as
dynamic frequency and voltage scaling (DVFS). And
so in the future we intend to do a temporal—not
merely steady-state—study of temperature effects and
thermal management.

6. Conclusions

Recall that this paper began with three questions:
• Does either of the two processor design paradigms

inherently give better thermal management
alongside performance and power efficiency
consequences?

Our temperature results indicate higher
temperatures and larger temperature gradients for SMT
as opposed to CMP. However we also see these
temperature problems receiving excellent improvement
from our layout restructuring experiments particularly
in the SMT case. When taking performance into
account, we saw an IPC increase due to multithreading
from both architectures, although the best IPC
improvements came alongside high temperatures. All
in all, both multithreaded architectures as a means to
improvement ILP and both show promise in that we
have ways of dealing with the ensuing thermal
problems.
• With multithreading will thermal hotspots become

even more of a problem?
While higher IPC results in overall high

temperatures, we fortunately found that there was a
high degree of predictability. Although the hot spots
become hotter, we were not likely to see new hotspots
in different locations. For the SMT case, large peak
temperature problems are often present but these
usually correspond with high IPC and the single-
threaded temperature emergencies. Having consistently
the same pattern in the sequence of hottest units, we
see that there is much predictability that makes thermal
problems manageable

In the CMP case, we have a very similar scenario.
An added difference is that here we have multiple
cores, and usually a single core sets the characteristic
peak temperature even if the other cores carry much

lower temperatures. Fortunately the simpler cores
inherent in CMP serve as somewhat of a balance to
avoid extremes, which is why we see less extreme
temperatures in CMP. Furthermore, possibly a single
core approaching high temperatures may adversely
affect other cores if we limit processor operation with
DTM. Large-scale multiprocessors such as Raw and
TRIPS use sophisticated interfaces that require
synchronized operation. On the other hand, recent
studies have shown the benefits of heterogeneous cores
within a single architecture in order to gain flexibility
[15].
• And do thermal management techniques such as

migration of computation retain their utility as we
continue to scale up the number of threads or
processor cores?

Encouragingly, our tested solution for thermal
management is increasing the size of only hot units,
and we found that this general technique retains its
utility for as many as four simultaneously
multithreaded contexts or four processor cores.

7. Acknowledgements

Zhigang Hu and Philo Juang developed the SMT
and CMP enhancements for SimpleScalar. We would
like to thank the anonymous reviewers for their helpful
comments. The authors’ power-aware micro-
architecture research is supported in part by grants
from NSF, Intel, and SRC.

8. References

[1] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A

Framework for Architectural-Level Power Analysis and
Optimizations. In Proc. ISCA-27. pp. 83-94. May 2000.

[2] J. Burns and J. Gaudiot. Area and System Clock Effects
on SMT/CMP Processors. In PACT’01. pp. 211-218.
Sept 2001.

[3] J. Burns and J. Gaudiot. SMT Layout Overhead and
Scalability. In IEEE Transactions on Parallel and
Distributed Systems, Volume 13, Issue 2. pp. 142-155.
Feb 2002.

[4] A. Cohen, L. Finkelstein, A. Mendelson, R. Ronen, and
D. Rudoy. On Estimating Optimal Performance of CPU
Dynamic Thermal Management. Computer Architecture
Letters, Volume 2. Oct 2003.

[5] J. Deeney. Thermal Modeling and Measurement of Large
High-Power Silicon Devices With Asymmetric Power
Distribution. 35th International Symposium on
Microelectronics. Nov 2002.

[6] M. Ekman and P. Stenstrom. Performance and Power
Impact of Issue-width in Chip-Multiprocessor Cores. In
ICPP’03. pp. 359-368. Oct 2003.

[7] J. Emer. Simultaneous multithreading: Multiplying Alpha
Pperformance. Microprocessor Forum. Oct 1999.

[8] M. Farrens, G. Tyson, and A. R. Pleszkun. A Study of
Single-Chip Processor/Cache Organizations for Large
Numbers of Transistors. In UC Davis Computer Science
Department Technical Report CSE-92-24. Dec 1992.

[9] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts,
A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine.
The Intel Pentium M Processor: Microarchitecture and
Performance. Intel Technology Journal, Volume 07, Issue
2. May 2003.

[10] L. Hammond, B. A. Nayfeh, and K. Olukotun. A Single-
Chip Multiprocessor. In IEEE Computer, pp. 79-85. Sept
1997.

[11] S. Heo, K. Barr, and K. Asanovic. Reducing Power
Density Through Activity Migration. In Proc.
ISLPED’03.

[12] W. Huang, M. R. Stan, K. Skadron, K.
Sankaranarayanan, S. Ghosh, and S. Velusamy. Compact
Thermal Modeling for Temperature-Aware Design. In
Proc. DAC-41. June 2004.

[13] S. Kaxiras, G. Narlikar, A. D. Berenbaum, and Z. Hu.
Comparing Power Consumption of an SMT and a CMP
DSP for Mobile Phone Workloads. In CASES ’01. pp.
211-220. Nov 2001.

[14] J. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff.
Energy Characterization of a Tiled Architecture
Processor With On-Chip Networks. In Proc. ISLPED’03.
pp. 424-427. Aug 2003.

[15] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan,
and D. Tullsen. Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power
Reduction. In Proc. MICRO-36. Nov 2003.

[16] Y. Li, K. Skadron, D. Brooks, and Z. Hu. Understanding
the Energy Efficiency of Simultaneous Multithreading.
In submission. April 2004.

[17] K. Olukotun, L. Hammond, and M. Willey. Improving
the Performance of Speculatively Parallel Applications
on the Hydra CMP. In Proc. ICS‘99, June 1999.

[18] E. Perelman, G. Hamerly, M. Van Biesbrouck, T.
Sherwood, and B. Calder. Using SimPoint for Accurate
and Efficient Simulation. In ACM SIGMETRICS. June
2003.

[19] Power4 System Microarchitecture: White Paper. IBM
website. http://www-1.ibm.com/servers/eserver/pseries/
hardware/whitepapers/power4.html. May 2004.

[20] R. Sasanka, S. V. Adve, Y. Chen, and E. Debes.
Comparing the Energy Efficiency of CMP and SMT
Architectures for Multimedia Workloads. UIUC CS
Technical Report UIUCDCS-R-2003-2325. March 2003.

[21] J. S. Seng, D. M. Tullsen, G. and Z. N. Cai. Power-
Sensitive Multithreaded Architecture. In ICCD ’00. June
2000.

[22] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically Characterizing Large Scale Program
Behavior. In Proc. ASPLOS-10. pp. 45-57. Oct 2002.

[23] U. Sigmund, M. Steinhaus, and T. Ungerer. On
Performance, Transistor Count and Chip Space
Assessment of of Multimedia-enhanced Simultaneous
Multithreaded Processors. 4th Workshop on

http://www-1.ibm.com/servers/eserver/pseries/ hardware/whitepapers/power4.html
http://www-1.ibm.com/servers/eserver/pseries/ hardware/whitepapers/power4.html

Multithreaded Execution, Architecture, and Compilation.
Dec 2000.

[24] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K.
Sankaranarayanan, and D. Tarjan. Temperature-Aware
Microarchitecture. In Proc. ISCA-30, pp. 2-13. June
2003.

[25] D. Tullsen and J. Brown. Handling Long-latency Loads
in a Simultaneous Multithreading Processor. In Proc.
MICRO-34. Dec 2001.

[26] D. Tullsen, S. Eggers, and H. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In
Proc. ISCA-22, 392-403. June 1995.

	1. Introduction
	2. Background and related work
	3. Experimental procedure
	3.1. Tools and benchmarks
	3.3. Floorplans

	4. Results and discussion
	To gather an understanding of temperature characteristics, w
	5. Future work
	6. Conclusions
	7. Acknowledgements

