
Leveraging Simultaneous Multithreading
for Adaptive Thermal Control

James Donald and Margaret Martonosi
Department of Electrical Engineering

Princeton University
{jdonald, mrm}@princeton.edu

Abstract

The continual increase in microprocessor transistor
densities has led to major challenges in on-chip tem-
perature management. Examining how emerging archi-
tectural paradigms scale from a thermal-aware design
perspective is critical for sustaining high-performance
computing. In this paper we explore a novel dy-
namic thermal management technique for simultaneous
multithreaded processors. Unlike prior studies, rather
than testing general-purpose thermal management tech-
niques applicable to all processor paradigms we pro-
pose to take advantage of SMT’s unique flexibility of
having multiple threads. By selectively managing the
execution of available threads we see an opportunity
to adaptively counteract and prevent hot spots. Our
work uses the Turandot simulator to model an SMT-
supporting POWER5TM-like processor and the HotSpot
2.0 tool to simulate thermal behavior. With it, we ex-
amine the performance of our SMT-specific adaptive
thread control mechanisms as compared to conventional
dynamic thermal management techniques. We find
that when multiple heterogeneous programs are avail-
able in the workload, thermal-aware issue policies pro-
vide a significant power-performance benefit; they av-
erage 44% ED2 reduction when aggressively operating
near the thermally limited region. We observe the in-
herent tradeoffs between such performance advantages
and thread fairness, and test this design as an instruc-
tion fetch policy as well as an adaptive register renam-
ing technique.

1 Introduction

As transistor densities continue to increase in
modern processors, on-chip temperature management
quickly emerges as a performance-constraining bottle-
neck. This has spawned the necessity for temperature-
aware design in addition to conventional performance-
oriented and power-aware design [24]. A number of
adaptive control methods have been proposed for tem-
perature management in uniprocessors. These include
global management techniques such as dynamic volt-

age and frequency scaling (DVFS) and global clock
gating, as well as more localized techniques such as
fetch/dispatch throttling and register-file throttling
[2, 8, 23]. While such techniques have been shown to
greatly aid thermal management, recurring challenges
involve optimizing the necessary power/performance
tradeoffs, ensuring sustained performance, and par-
ticularly dealing with hot spots—small sections of a
chip attaining temperatures significantly higher than
the chip’s overall temperature.

For examining thermal issues it is important to ex-
plore the problem in the context of prominent ar-
chitectural paradigms, thus we explore this issue in
simultaneous-multithreaded (SMT) processors. SMT
cores seek greater performance by densely packing is-
sue slots and hence can be cause for thermal stress.
Our work explores the idea of taking advantage of
SMT’s added flexibility due to the availability of mul-
tiple threads. As a localized technique, we propose
that selectively fetching among different programs can
allow thermal hot spots to be better controlled and
prevented. In our experiment we show that adaptive
thread management can tightly control temperature,
which has implications for better thermal management
and overall reliability [26]. Also, as a localized microar-
chitectural mechanism, application and design of such
adaptive control can work independently or in conjunc-
tion with global thermal management techniques such
as DVFS.

Our specific contributions are as follows:

• We characterize several benchmarks based on their
respective hot spot behaviors. We find that for our
processor configuration, each program’s hot spot
behavior can be characterized largely by its integer
register file intensity and floating point register file
intensity.

• We propose and evaluate an online adaptive fetch
algorithm to take advantage of these hetero-
geneous characteristics when threads are mixed
through SMT. We find that when operating in the
thermally limited region, our algorithm reduces
the occurrence of thermal emergencies resulting in
increased performance by an average of 30% and

1

ED2 product reduction on the order of 40%. Fur-
thermore, this is a local temperature management
policy which targets hot spots and can be used
in combination, rather than in competition, with
global thermal management such as DVFS.

• We repeat these experiments with a similar adap-
tive algorithm based on selective register naming
instead of instruction fetching. For this alter-
nate mechanism, which operates at a later stage in
the pipeline, we find correlated but comparatively
smaller performance improvements: roughly 70%
as effective.

The remainder of this paper is structured as follows.
Section 2 discusses related work and our motivation to
extend upon these studies. Section 3 presents our sim-
ulation infrastructure and methodology. In Section 4
we explain our adaptive fetch policy and show our ex-
perimental results in terms of measured performance
effects and energy savings. In Section 5 we perform
similar experiments from an adaptive register renam-
ing perspective and compare to the corresponding fetch
throttling or adaptive fetch results. In Section 6 we
conclude and discuss directions for future work.

2 Background and Related Work

Simultaneous multithreading is an architectural par-
adigm that involves issuing instructions such that mul-
tiple threads on a single core closely share resources
[29]. Various implementations of SMT are now avail-
able in several commercial processors [3, 12, 27].

A number of works have examined the power and en-
ergy properties of SMT without regard to spatial tem-
perature analysis [13, 16, 20, 21]. Interestingly these
studies tend to explore SMT in comparison to chip mul-
tiprocessing (CMP), a different architectural paradigm
that is attractive due to also achieving multithreaded
behavior. Several other works extend beyond these and
examine the thermal properties of SMT [5, 15, 19]. In
addition to characterizing SMT’s thermal behavior, a
number of thermal management techniques for SMT
processors have been proposed and studied. For in-
stance, Li et al. [15] experiment with dynamic voltage
scaling and localized throttling techniques. However,
all their tested techniques are applicable to superscalar
processors and other paradigms as well; hence, they
do not explore SMT-specific constructions. Powell et
al. [19] explore SMT thermal management in the con-
text of hybrid SMT-CMP systems and they propose
scheduling schemes for optimal scheduling on thermally
constrained designs. However, their design intervenes
only through the operating system and they do not ex-
plore more fine-grain techniques that could enable ther-
mal management without requiring context switches.

Albonesi et al. propose SMT-specific extensions
targetting another reality of physics for modern
processors—the inductive noise problem [6]. Similar

to our reasoning, they see SMT providing an opportu-
nity to exploit program diversity in order to counteract
with adaptive control.

Hasan et al. [9] propose a mechanism that strongly
relates to the design in this paper. They envision a
scenario whereby a malicious thread may cause a mi-
croarchitectural Denial of Service (DoS) attack, and
propose remedies for detecting and mitigating the ef-
fects of such attacks. However, they do not examine
how to optimize SMT operation in terms of naturally
occurring thermal stress. Our work here explores this
as a general problem to be addressed as processor de-
signs are bound to become more thermally stressed
in the future and operate under thermally constrained
conditions. Our proposed framework manages to gen-
eralize protective thermal arbitration to all programs,
including programs that could potentially be intended
for malicious attacks.

3 Methodology

3.1 Simulation Framework

We model a detailed out-of-order CPU resembling a
single-core portion of the IBM POWER4TMprocessor
with SMT support as is used in the POWER5TM. Our
simulation framework is based on the IBM Turandot
simulator as part of the Microarchitectural Exploration
Toolset (MET) [17]. Dynamic power calculations are
provided by PowerTimer, an add-on for Turandot that
provides detailed power measurements based on mac-
roblock formations derived from low-level RTL power
simulations [1]. Both Turandot and PowerTimer have
been extended for SMT support as detailed in [16]. In-
tegrated with this is the HotSpot 2.0 [11, 24] tempera-
ture modeling tool to provide spatial thermal analysis.

We model a single-core processor with SMT support
on 0.18µ technology. This design level is known to
already create significant hot spot effects, a problem
which becomes even more prominent at smaller feature
sizes. Our design parameters are shown in Table 1.
Although PowerTimer is directly parameterized based
on these options, HotSpot naturally requires additional
input to describe the processor’s spatial layout. This
floorplan is shown in Figure 1.

Since PowerTimer does not model leakage current
by default, an added modification is to model leak-
age through the area-based empirical equation in [10].
Thus the leakage power of each structure is calculated
only by its area and time-dependent temperature. Al-
though more diverse and accurate leakage models do
exist, this equation is sufficient to model the tempera-
ture dependence and quickly derive leakage estimates
for all processor structures.

3.2 Benchmarks

We analyze workloads based on ten benchmarks ob-
tained from the SPEC 2000 benchmark suite. We have

Global Design Parameters
Process Technology 0.18µ
Supply Voltage 1.2 V
Clock Rate 1.4 GHz
Organization single-core

Core Configuration
SMT Support 2 threads
Dispatch Rate 5 instructions per cycle
Reservation Stations mem/int queue (2x20), fp queue (2x5)
Functional Units 2 FXU, 2 FPU, 2 LSU, 1 BRU
Physical Registers 120 GPR, 90 FPR
Branch Predictor 16K-entry bimodal, 16K-entry gshare,

16K-entry selector
Memory Hierarchy

L1 Dcache 32 KB, 2-way, 128 byte blocks,
1-cycle latency

L1 Icache 64 KB, 2-way, 128 byte blocks,
1-cycle latency

L2 I/Dcache 2 MB, 4-way LRU, 128 byte blocks,
9-cycle latency

Main Memory 77-cycle latency

Table 1. Design parameters for modeled CPU.

Figure 1. Floorplan input to HotSpot 2.0, as
also used in [15].

chosen five programs from the integer-based SPECint
portion and the other five are from SPECfp, as depicted
in Table 2.

For outcomes of mixing different programs through
simultaneous multithreading it has been shown that
the end performance effects can be predicted some-
what based on characteristics of the individual appli-
cations [15, 28, 25]. Thus we also characterize our
individual test programs before deciding upon which
combinations to mix through multithreading. While
hot spots can be unmanageable if their locations vary
unpredictably with time, various simulation results
[5, 7, 15, 24] have indicated that for particular proces-
sor designs hot spots predictably tend to occur in a
handful of locations.

In our design, we find that almost universally the
hottest portion of the chip is either the fixed-point ex-
ecution (FXU) register file or the floating point (FPU)
register file. Thus each of the benchmarks are mea-
sured in terms of their thermal intensity for these two
chip locations. This measurement is done in advance
by executing the programs without thermal control and
examining the steady-state and final temperatures on

these units. Programs that showed steady-state tem-
peratures above 93◦C on units have been marked as
such in the two rightmost columns of Table 2. For our
dynamic policy, later described in Section 4.1, it shall
be necessary to know the heating characteristics of the
running programs. For this, we observe a direct cor-
relation between each program’s register file heating
characteristics and the number of register file accesses
recorded, and we are able to universally use this ob-
served ratio in our dynamic policy when applied to any
workload.

We then use this data in deciding how to appropri-
ately create a set of ten SMT-based workloads. First,
we would like to mix programs which show opposite
thermal behaviors since these give the greatest poten-
tial for adaptive thermal control. These include mixing
integer intensive programs with floating-point intensive
programs. For the other end of the spectrum, we also
include several test cases which lack thermal hetero-
geneity, such as pairs of floating point benchmarks and
pairs or integer-only benchmarks. In such scenarios
we might not expect a significant benefit from thread-
sensitive thermal control, but it is important to show
that our algorithm can at least be ensured not to be
detrimental in these cases. A list of these chosen work-
loads and their corresponding qualitative characteriza-
tions can be found in Table 3.

In order to simulate only representative portions of
these programs, we use SimPoint [18, 22] with sam-
pling intervals of 100 million instructions in order to
obtain all relevant traces executed in our experiments.
To simulate relevant temperature behavior on such a
short time interval, we choose an operating point and
thermal threshold such that thermal triggers come into
play approximately 60% of the time for most our test
workloads. This can also be described as a “duty cy-
cle” of 40% [19]. The time spent in thermal emergency
mode shall naturally decrease when applying our adap-
tive policies.

3.3 Metrics

As one measure of the performance impact of our
technique, we use the criterion of weighted speedup as
described by Snavely and Tullsen [25] shown below.

Weighted Speedup =
∑ IPCSMT [i]

IPCnormal[i]

This is intended to be a fair comparison between two
executions and prevents biasing the metric on policies
that execute unusual portions of high-ILP or low-ILP
threads. Note that the IPCSMT [i] is only a portion of
the multithreaded system’s total IPC.

In these experiments the IPCnormal[i] denominator
is measured under thermally limited conditions. To
be specific, all executions start with temperature pro-
files where both register files are just barely below the
thermal threshold of 85◦C. Under these conditions we

name benchmark suite function
FXU-reg FPU-reg
intensive intensive

188.ammp SPECfp computational chemistry N Y
173.applu SPECfp computational fluid dynamics/physics N Y
191.fma3d SPECfp mechanical response simulation Y Y
178.galgel SPECfp computational fluid dynamics Y Y
176.gcc SPECint C language compiler Y N
164.gzip SPECint compression N N
181.mcf SPECint mass transportation scheduling Y N
177.mesa SPECfp 3-D graphics library Y N
197.parser SPECint word processing N N
300.twolf SPECint lithography placement and routing Y N

Table 2. SPEC 2000 benchmarks as selected for this experiment, listed alphabetically.

workload thermal heterogeneity reason
ammp-gzip significant floating point benchmark mixed with an integer benchmark.
ammp-mcf significant floating point benchmark mixed with an integer benchmark.
applu-parser moderate can exploit parser’s extremely low IPC to cool either hot spot.
applu-twolf significant floating point benchmark mixed with an integer benchmark.
fma3d-galgel small both benchmarks are high-intensity on both register files.
fma3d-twolf small both benchmarks are integer-intensive.
galgel-mesa moderate both benchmarks are integer-intensive, but mesa is greater.
gcc-mesa small two integer benchmarks.
gcc-parser moderate two integer benchmarks, but parser’s slowness needs management.
gzip-mcf small two integer benchmarks.

Table 3. Multithreaded benchmark mixes. Pairs with a higher degree of thermal heterogeneity show
greater promise in benefitting from SMT-specific adaptive thermal management.

find that a number of workloads go into thermal arrest
about 60% of the time, and this affects the denominator
in the above equation. This method is largely different
from other works such as [5, 25, 28] where weighted
speedup is measured assuming the baseline single-
threaded executions are not thermally constrained in
any way. We believe that for the purpose of this study,
however, our baseline is more appropriate since we seek
to analyze behavior particularly in the thermally lim-
ited region. Weighted speedup is meant to qualify as
a fair raw performance metric similar to how IPC is
sometimes used in uniprocessor comparisons. While
the weighted metric is arguably more qualified for our
purposes, in most of our results the overall workload
IPC is strongly correlated to weighted speedup any-
way. However, it is clear that weighted speedup can
dramatically increase despite thread commitment poli-
cies being on the whole “unfair”. Thus, we also directly
present the ratios of thread retirement on a per-thread
basis for each of our tested workloads.

In order to appropriately measure performance from
a power-aware perspective, for our second main metric
we use the established energy·delay-squared product
(ED2). This now widely used metric realistically takes
into account tradeoffs between power and energy in the
context of DVFS, where scaling the voltage can have
a cubic effect on power reduction. Since our proposed
adaptive policy is a local mechanism, it can still be
combined with global power reduction techniques such
as DVFS, thus making this a relevant evaluation met-
ric. Since we are measuring workloads that complete
with different instruction counts and instruction mix
ratios on different parameterizations, we must normal-
ize the ED2 metric to a per instruction basis. We use

the following formula to calculate this metric from the
IPC and energy per instruction, EPI.

ED2 =
EPI

IPC2 ∗ clock frequency2

4 Adaptive Thermal Control

4.1 Adaptive Control Algorithm Overview

Our adaptive control is based on the input of tem-
perature sensors that exist in many modern com-
mercial processors. Although the exact placement of
the POWER5TMprocessor’s 24 available sensors is un-
known [3], it is reasonable to assume that at least two of
these would be allocated to the register file locations
which are primary potential hot spots. We use 85◦

C as the threshold temperature for enacting thermal
control. As modern commercial microprocessors tend
to list maximum allowable operating temperatures in
the range of 70 to 90◦ C [4] we feel this is a reason-
able choice. Utilizing the dynamically profiled thread
behavior information, our decision algorithm for adap-
tive thread selection is implemented on top of this as
follows:

For the actual adaptive technique of dynamic ther-
mal management, we modify the default round-robin
SMT fetch policy originally implemented for Turan-
dot in [16]. Our modifications target thermal con-
trol logically by avoiding integer-intensive benchmarks
when the FXU register file’s temperature appears more
likely to reach the temperature threshold, and like-
wise to reduce the execution rate of floating point in-
tensive benchmarks when the FPU register file goes

above its threshold. In order for the processor to iden-
tify whether running programs are integer-intensive or
floating point intensive, we must dynamically sample
hardware event counters. As mentioned in Section 3.2,
we are able to exploit a direct correlation between reg-
ister file accesses and the long-term steady state reg-
ister file temperature. In [19], Powell et al. also use
counter information as such to predict heating behav-
ior for key resources [19], and recent work by Lee and
Skadron has shown that hardware performance coun-
ters can be reliably used to predict temperature effects
on real systems [14].

Total Int regfile accesses

Total FP regfile accesses

Total Instructions fetched

/

/

Thermal threshold °

Int regfile temp °

FP regfile temp °

-

-

/

/

comparison

Critical
regfile

(a) Portion of our algorithm that determines which unit is in
thermal danger.

Thread1 Int regfile accesses

Thread2 Int regfile accesses

Thread2 Instructions fetched

/

/

Thread1 Instructions fetched

comparison

Priority
thread

(b) Decision algorithm for which thread is selected if the
integer (FXU) register file is judged to be in danger. The
decision process for the floating point register file is identical.

Figure 2. Block diagrams demonstrating the
calculation and decisions in our algorithm.
These also reflect the added components
used in a hardware design.

When the processor is not in thermal arrest mode,
the difference between the thermal threshold and the
integer register file’s temperature is calculated. At the
same time, from profiling we obtain the average num-
ber of integer register file accesses per fetched instruc-
tion for each of the two threads. Using a calibrated
threshold—in terms of PowerTimer’s internal access
counters—we decide whether the integer register file is
in danger of approaching our specified maximum tem-
perature (85◦). We also do all of the above for the
floating point register file and compare to see which
unit is potentially in danger. The steps necessary to
calculate and decide this are depicted graphically in
Figure 2 (a). Our adaptive policy then takes effect.
Its goal is to choose instructions from the thread that
is either likely to cool or less quickly heat the hotter

of the two register files. Once the potentially hotter
of the two units is identified, the decision as to which
thread to pick from is decided by choosing the thread
measured to be less intensive on the integer register
file—or floating point register file, if applicable—based
on the threads’ dynamically profiled measure of reg-
ister file accesses per issued instruction. This second
stage of the decision process is depicted in Figure 2 (b).
These calculations are done only once per temperature
measurement cycle, and are precalculated with delay
in such a way that it does not affect the fetch logic’s
critical path.

Fetch priority adjustment is in many ways an exten-
sion of basic fetch throttling on a uniprocessor. Also
known as toggling, throttling involves simply disabling
instruction fetch whenever a section of the processor
surpasses the specified thermal threshold [2]. Once
this mechanism has been triggered, ideally the proces-
sor would quickly cool down until it goes below the
thermal threshold and can continue normal operation.
Fetch throttling thus forms the comparison baseline for
our measurements. In actuality, our fetch priority ad-
justment system is not an alternative but rather runs
in combination with fetch throttling. Since thermal
stability cannot be ensured if instructions are always
issued—as is the case when all available threads are
thermally intensive—it is necessary for our design to
have a backup policy to fall upon in order to guarantee
prevention of thermal violations. Figure 3 shows a sam-
ple of the effects of thermal management under our pro-
posed algorithm from a time-dependent perspective. In
the baseline fetch throttling example of 3 (a) one hot
spot can remain the primary performance hindrance,
while with our adaptive algorithm in 3 (b) instructions
from each thread can be issued such that the two key
hot spot temperatures remain close.

4.2 Adaptive Control Algorithm: Other Issues
and Discussion

To avoid unpredictable cases of thread starvation,
we allocate a portion of cycles where the default fetch
policy holds regardless. For our policy labeled “moder-
ate”, the first two cycles out of every four cycles default
to the standard alternation among threads (round-
robin) policy. This ensures a degree of thread fairness
fairly close to the original policy, but at the potential
expense of poorer thermal management. Our “aggres-
sive” policy allocates only the first two out of every 16
cycles for defaulting to the round-robin policy, pushing
a stronger tradeoff between thread fairness and ther-
mal management. While our current fallback policy
is round-robin, for future work we hope to extend our
framework to use more real world-applicable fetch poli-
cies including ICOUNT [29]. Such designs, which were
originally aimed for aggressive performance, may be-
come more severely penalized under thermally limited
conditions and hence would likely benefit more from
our temperature-aware policies.

�����

�����

�����

�����

�����

����	

����

�����

�����

�����

�	���

�	���

� �� ��
� �� ��� ��� ��� �
�
���������

�
�
�
	
�

�
�

�
��
��
�

�
�����������

�������������

(a) Baseline fetch throttling thermal control.

�����

�����

�����

�����

�����

����	

����

�����

�����

�����

�	���

�	���

� �� ��
� �� ��� ��� ���
���������

�
�
�
	
�

�
�

�
��
��
�

�
�����������

�������������

(b) Temperature-aware thread fetch policy.

Figure 3. Transient hot spot temperatures for
fma3d-twolf workload under our baseline and
adaptive policy. Swings as depicted in (a) are
extrapolated to longer time intervals amount
to possible temperature changes on the order
of 5◦ every 10 seconds.

For identifying the heat behavior of each thread, we
must sample its execution through performance coun-
ters at runtime. Our current dynamic profiling utilizes
event counts ranging 100 temperature measurement cy-
cles (1,000,000 CPU cycles) earlier up until the point of
the most recent temperature sample. Being two orders
of magnitude larger than the temperature measure-
ment cycle, we ensure that profiling functions properly
only as uninterfered background information for the de-
cision algorithm. However, the profiling data does not
extend too far back into past execution, because ear-
lier program behavior can likely be unrepresentative of
future behavior.

We do not model sensor error, although sensor delay
is modeled as temperature is recalculated only every
10,000 cycles. At the given clock rate this amounts to
about 6 µs. Thus any hardware necessary for recal-
culating the temperature and feeding it to the control
logic cannot be expected to affect the critical path of
the pipeline, as the result is precalculated and fed in

with appropriate delay. We find under this model that
it usually takes between one and three measurement
cycles (10,000 to 30,000 CPU cycles) to fall back be-
low the thermal threshold after each thermal threshold
breach is detected. Despite thermal emergencies occur-
ring and being dealt often throughout execution, there
is no additional delay penalty for enacting thermal con-
trol. Compared to DVFS, this is a key advantage of
pure microarchitectural techniques as highlighted by
[2].

Heo et al. [10] have shown that designs enacting
thermal control on a sufficiently fine-grain interval pose
an advantage for tightly controlling temperatures al-
though they can be more costly in terms of other de-
sign factors. However, it seems feasible that this mech-
anism could be moved to the operating system level, as
Powell et al. have demonstrated that thermal fluctua-
tions happen on a sufficiently coarse grain time inter-
val adequate to be managed by the OS [19]. Hybrid
techniques involving both the microarchitecture and
OS are also a possible implementation. To be specific,
prioritized fetching and renaming can be performed by
the microarchitecture, while numerical specifications of
those process priorities can be dictated by the OS de-
pending on thermal conditions. While we focus on a
purely rapid-response microarchitectural mechanism in
this paper, the necessary granularity of operation re-
mains an open question for future study.

For implementing the control algorithm in real hard-
ware, event counters are necessary to measure (in total
as well as on a per-thread basis) integer register file ac-
cesses per cycle, floating point accesses per cycle, and
number of instructions fetched per cycle. Secondly, cal-
culation hardware is needed including adders, a divi-
sion unit, and necessary decision logic. Note that al-
though our algorithm as depicted in Figure 2 shows as
many as eight dividers, in reality only a single shared
divider is necessary since speed of calculation is not
critical. Since these calculations would be invoked only
once for every temperature measurement cycle, the en-
ergy overhead is negligible. For perspective, modern
DVFS solutions employ PID-based hardware which in-
volves even more additional gates but also has insignif-
icant energy overhead while not affecting the micro-
processor pipeline’s critical path.

4.3 Results and Observations

In this section we examine the benefits of
temperature-aware adaptive thread priority manage-
ment. Table 4 lists performance and power metrics
for all mixes under the baseline control method. The
weighted speedup for each of these mixes is small, no-
tably less than 1.0 in all cases. This signifies a cost
associated with simultaneous multithreading, and it
is primarily due to operating in the thermally lim-
ited region. It is this cost we seek to address. Al-
though all mixes have weighted speedups greater than
1.0 when operating below the thermally limited region,

the prospect of running into thermal control due to
more issued instructions makes SMT actually detri-
mental to performance in this region. For these exe-
cutions the bottleneck hot spots are still the integer
and floating point register files where one or the other
hovers at the thermal threshold of 85◦C. The overall
chip temperature as reflected by its large L2 cache re-
mains at approximately 52◦C, more than 30◦ less.

mix IPC thread
retire ratio

weighted
speedup

ED2

(J·s2
instr3)

ammp-gzip 0.820 57.8%/42.2% 0.830 2.83e-26
ammp-mcf 0.410 66.7%/33.3% 0.659 2.23e-25
applu-parser 0.527 63.5%/36.5% 0.549 9.87e-26
applu-twolf 0.486 60.6%/39.4% 0.507 1.27e-25
fma3d-galgel 0.583 43.4%/56.6% 0.375 7.48e-26
fma3d-twolf 0.716 60.4%/39.6% 0.711 4.17e-26
galgel-mesa 0.708 60.8%/39.2% 0.450 4.27e-26
gcc-mesa 0.494 53.0%/47.0% 0.485 1.22e-25
gcc-parser 0.485 62.0%/38.0% 0.543 1.30e-25
gzip-mcf 0.304 57.1%/42.9% 0.593 5.25e-25

Table 4. Baseline results for fetch toggling
based DTM without adaptive thread control.

Improving on this baseline, Table 5 lists performance
and power metrics for all mixes under adaptive thread
fetching for our moderate and aggressive-level policies.
Figure 4 pulls together the primary parameters as pre-
sented in Tables 4 and 5 and presents these results
graphically. Note that in most cases where heteroge-
neously behaved programs are mixed, we see a 30-40%
IPC improvement with a similar increase in weighted
speedup. This performance improvement is directly
caused by a corresponding reduction in the number of
thermal emergencies. The ED2 reduction is related
to this parabolically and can be exlained as follows.
Dynamic power increases proportionally with higher
IPC, but this does not significantly reduce EPI since
the amount of work performed per instruction remains
the same. Leakage power, on the other hand, remains
mostly unchanged since our overall chip temperature
remains largely unaffected, resulting in somewhat lower
energy per instruction as leakage in this model consti-
tutes only about 25% of total power. Thus the key fac-
tor causing a parabolically correlated decrease in ED2

reduction is the delay term squared.
As expected, we find that our adaptive fetch tech-

nique offers the biggest improvement in cases allowing
a high degree of thermal variety in workload mixes.
For other cases such as gzip-mcf and gcc-mesa (integer
only), we see there is actually a significant performance
potential despite the constituent programs being sim-
ilar in terms of register file usage. The exploitable
difference here is perhaps that although neither pro-
gram uses floating point operations, these programs
already possess much imbalance in terms of their fre-
quency of integer accesses. One workload, ammp-gzip,
shows a decrease in performance under our algorithm.
Although this at first seems surprising since it is a
heterogeneous workload—containing an integer bench-
mark and one floating-point benchmark—that should

�

���

���

���

���

���

���

��	

��

���

�

�

��

����

�

��

��

������

������

������

�����

�
����

������

�
����

�����

�������

���

����

���

����

������

�����
��

���������	
�

�

�
�
�

�
��
�

�
�
�

�������� !����" �"������#

������� ������$� ����"
��������$� ������$� ����"

(a) Weighted speedup for all workloads under three thermal-
aware fetch policies.

�

���

���

���

���

���

���

��	

��

���

�

���

���

���

���

���

�

��

����

�

��

��

������

������

������

�����

�
����

������

�
����

�����

�������

���

����

���

����

������

�����
��

���������	
�

�

�
��
��
�
�
�
��
��
�
�	
�
�

��
�
�

�������� !����" �"������#

������� ������$� ����"
��������$� ������$� ����"

(b) Corresponding normalized ED2 product for these work-
loads.

Figure 4. Weighted speedup and ED2 for
fetch-based dynamic thermal management.

mix IPC thread
retire ratio

weighted
speedup

ED2

(J·s2
instr3)

ammp-gzip 0.806 58.9%/41.1% 0.814 2.97e-26
ammp-mcf 0.427 68.1%/31.9% 0.674 1.98e-25
applu-parser 0.545 61.8%/38.2% 0.570 8.99e-26
applu-twolf 0.486 61.0%/39.0% 0.507 1.27e-25
fma3d-galgel 0.572 41.4%/58.6% 0.364 7.90e-26
fma3d-twolf 0.698 62.6%/37.4% 0.688 4.47e-26
galgel-mesa 0.738 60.7%/39.3% 0.469 3.79e-26
gcc-mesa 0.498 50.5%/49.5% 0.487 1.19e-25
gcc-parser 0.490 60.4%/39.6% 0.549 1.25e-25
gzip-mcf 0.314 59.0%/41.0% 0.601 4.77e-25

(a) Moderate adaptive fetch management.

mix IPC thread
retire ratio

weighted
speedup

ED2

(J·s2
instr3)

ammp-gzip 0.720 70.3%/29.7% 0.707 4.05e-26
ammp-mcf 0.498 78.4%/21.6% 0.679 1.23e-25
applu-parser 0.892 47.5%/52.5% 0.966 2.19e-26
applu-twolf 0.675 51.1%/48.9% 0.719 4.96e-26
fma3d-galgel 0.611 40.8%/59.2% 0.387 6.52e-26
fma3d-twolf 0.784 62.1%/37.9% 0.775 3.20e-26
galgel-mesa 0.936 35.6%/64.4% 0.692 1.90e-26
gcc-mesa 0.719 22.5%/77.5% 0.666 3.99e-26
gcc-parser 0.787 32.8%/67.2% 0.912 3.12e-26
gzip-mcf 0.436 72.3%/27.7% 0.725 1.83e-25

(b) Aggressive adaptive thread management.

Table 5. Complete data for workload behavior
under our adaptive thread fetching policy.

have potential for balancing, upon inspection the cause
is that the baseline case using throttling happens to be
already very balanced with starting and ending tem-
peratures for each register file remaining close to each
other. This most likely happens by chance; a larger or
different program trace for the programs are selected
the temperatures could easily imbalance without adap-
tive thread management.

The potential cost of our adaptive policy is reduced
thread execution fairness as compared to the basic
round-robin policy. Overall, we find that the moder-
ate adaptive policy performs better than the baseline
with an average of only 1% improvement in terms of
weighted speedup or IPC. Our aggressive policy per-
forms significantly better than the moderate policy
showing an average of 30% improvement in terms of
weighted speedup. The ED2 product, strongly cor-
related, averages 44% reduction under the aggressive
adaptive policy.

5 Adaptive Register Renaming

5.1 Design Description

Our second set of experiments is much like the first,
except it involves adaptive control at a later stage of
the pipeline, namely the register renaming logic. Our
adaptive rename policy is exactly the same as explained
earlier for adaptive fetch control, except instead of
being fetch-based it controls the priority at which a
thread receives the register renaming service. For de-
ciding which thread to give renaming priority to on
each cycle, we use the same decision policy as depicted
in Figure 2. When the decision to rename registers
for only a particular thread is decided on any given
cycle, the register renamer hardware maps registers
only for the selected thread, effectively stalling services
for the other thread. Likewise, instead of fetch throt-
tling serving as our baseline thermal control method,
we compare against basic rename throttling [15] in-
stead. This involves simply disabling the rename logic
when the processor appears above its thermal thresh-
old. A difference, and possible benefit from this tech-
nique, is that it operates closer to the hot spot of inter-
est, namely the register file. A clear drawback is that
throttling at a later stage of the pipeline allows instruc-
tions to enter the pipeline and consume resources.

5.2 Results and Observations

Our baseline results regarding rename throttling
without adaptive register renaming are shown in Ta-
ble 6. We find the efficacy of this alternative thermal
management technique to be on the same order of effi-
cacy as fetch throttling, a result consistent with [15].

We enact the adaptive register renaming strategy
described in 5.1. As with our other fetch-based exper-
iments, note that this is not an alternative to basic

mix IPC thread
retire ratio

weighted
speedup

ED2

(J·s2
instr3)

ammp-gzip 0.760 57.7%/42.3% 0.770 3.56e-26
ammp-mcf 0.402 66.6%/33.4% 0.647 2.41e-25
applu-parser 0.467 63.2%/36.8% 0.488 1.44e-25
applu-twolf 0.425 60.3%/39.7% 0.444 1.92e-25
fma3d-galgel 0.484 43.1%/56.9% 0.311 1.32e-25
fma3d-twolf 0.655 60.3%/39.7% 0.651 5.46e-26
galgel-mesa 0.612 60.8%/39.2% 0.389 6.64e-26
gcc-mesa 0.492 53.0%/47.0% 0.483 1.28e-25
gcc-parser 0.486 61.8%/38.2% 0.544 1.32e-25
gzip-mcf 0.302 57.1%/42.9% 0.588 5.49e-25

Table 6. Baseline results for rename-throttling
based DTM without adaptive thread-specific
renaming.

�

���

���

���

���

���

���

��	

��

���

�

�

��

����

�

��

��

������

������

������

�����

�
����

������

�
����

�����

�������

���

����

���

����

������

�����
��

���������	
�

�

�
�
�

�
��
�

�
�
�

�������� !����
� �"������#

������� ������$� ����
���
��������$� ������$� ����
���

(a) Weighted speedup for all workloads under the three
thermal-aware renaming policies.

�

���

���

���

���

���

���

��	

��

���

�

���

�

��

����

�

��

��

������

������

������

�����

�
����

������

�
����

�����

�������

���

����

���

����

������

�����
��

���������	
�

�

�
��
��
�
�
�
��
��
�
�	
�
�

��
�
�

�������� !����
� �"������#

������� ������$� ����
���
��������$� ������$� ����
���

(b) Corresponding ED2 product for these workloads, nor-
malized.

Figure 5. Weighted speedup and ED2 for reg-
ister renaming-based dynamic thermal man-
agement.

register rename throttling but rather is operating on
top of the parent policy so as to ensure thermal sta-
bility. Table 7 shows all corresponding data for the
adaptive renaming experiments, and likewise for com-
parison Figure 5 brings together the main results of
Tables 6 and 7 to compare graphically. The pattern of
measurable performance improvement in terms of ED2

is much the same as is found from our fetch-based ex-
periments. That is, we see roughly the same pattern of

performance gains in certain workloads. As mentioned
earlier, a drawback expected from throttling at the re-
name stage is that the register renamer is a later stage
of the pipeline, thus unlike fetch management it gives
more potential for unwanted instructions to enter the
pipeline and consume resources while throttled. De-
spite this possible downside, the potential for thermal
control at this pipeline stage in addition to the fetch
stage appears quite viable.

mix IPC thread
retire ratio

weighted
speedup

ED2

(J·s2
instr3)

ammp-gzip 0.751 58.4%/41.6% 0.759 3.69e-26
ammp-mcf 0.401 67.0%/33.0% 0.643 2.42e-25
applu-parser 0.477 62.7%/37.3% 0.500 1.35e-25
applu-twolf 0.419 61.3%/38.7% 0.437 2.00e-25
fma3d-galgel 0.491 40.5%/59.5% 0.311 1.27e-25
fma3d-twolf 0.645 61.3%/38.7% 0.639 5.71e-26
galgel-mesa 0.610 61.8%/38.2% 0.385 6.71e-26
gcc-mesa 0.558 47.7%/52.3% 0.543 8.83e-26
gcc-parser 0.703 56.8%/43.2% 0.792 4.55e-26
gzip-mcf 0.304 57.5%/42.5% 0.589 5.38e-25

(a) Moderate adaptive register renaming.

mix IPC thread
retire ratio

weighted
speedup

ED2

(J·s2
instr3)

ammp-gzip 0.736 62.5%/37.5% 0.737 3.88e-26
ammp-mcf 0.423 70.9%/29.1% 0.643 2.05e-25
applu-parser 0.786 46.1%/53.9% 0.856 3.19e-26
applu-twolf 0.461 61.7%/38.3% 0.481 1.51e-25
fma3d-galgel 0.526 31.9%/68.1% 0.315 1.04e-25
fma3d-twolf 0.663 64.9%/35.1% 0.649 5.24e-26
galgel-mesa 0.733 45.9%/54.1% 0.511 3.92e-26
gcc-mesa 0.733 23.4%/76.6% 0.680 3.88e-26
gcc-parser 0.788 32.7%/67.3% 0.914 3.18e-26
gzip-mcf 0.346 62.1%/37.9% 0.641 3.68e-25

(b) Aggressive adaptive register renaming.

Table 7. Complete data for workload behavior
under our adaptive register renaming policy.

6 Conclusions and Future Work

This study proposes and tests a novel form of adap-
tive DTM specific to SMT processors. We have shown
that adaptive thread fetching can predictably control
temperature of hot spots at a fine grain level. We
have found thread priority management providing a
weighted speedup performance increase over our con-
ventional fetch toggling technique by an average of
30%, and ED2 reductions averaging 44% for our test
cases. Our analogous experiments dealing with adap-
tive renaming found strikingly similar results averaging
23% weighted speedup improvement and 35% ED2 re-
duction.

Our work demonstrates a heuristic algorithm for
a simple case of two primary hot spots on an SMT
processor. Future process technologies bring greater
thermal challenges including wider gaps between over-
all chip temperature and localized hotspots, we expect
this to worsen and create increased demand for smart
thermal control applicable to varied workloads. Such
systems pose a challenge but a wider variety of hot

spots also brings potential for more advanced adaptive
control methods.

Our proposed algorithm makes a clear tradeoff be-
tween baseline thread fairness and sustaining perfor-
mance. It is most applicable in systems which allow
a wide degree of thread priority and scheduling free-
dom. This would include systems such as scientific
computing environments where many huge workloads
are queued up without strict process priorities. One
can also envision, for example, a thermally constrained
server system where one might find it more appropri-
ate to fairly allocate user time based on its thermal
cost (power) rather than direct CPU-cycle cost. A
mechanism such as this one directly enables such an
energy-guided quota. A general-purpose policy such
as this could obviate overly specific protection against
malicious thermal attacks such as described in [9].

For our future work we wish to explore these adap-
tive techniques in the context of relevant processor par-
adigms. Since SMT is now commonly coupled in CMP
systems—and such hybrid systems are supported by
this Turandot simulator—we wish to extend upon the
work here to test adaptive control in such complex sys-
tems. Furthermore, our current construction is lim-
ited to 2-context SMT and does not readily scale to
greater numbers of threads. While the logic for com-
paring two threads based on a critical resource’s tem-
perature extended to sort multiple threads, it is then
not clear how to partition multiple threads practically
in terms of allowed execution share. Other possibilities
for extending this work to test it in relevant contexts
involve combining with complex fetch policies such as
ICOUNT, and combinining these localized DTM tech-
niques with global mechanisms such as DVFS. Further-
more, the algorithm presented here is entirely heuristic
by nature, and without formal analysis this prevents
us from knowing the full potential. We hope to ap-
ply control theory to better explore ideas for hot spot
management from an analytical framework.

7 Acknowledgements

We are grateful to Yingmin Li for providing source
code modifications to integrate HotSpot with the Tu-
randot simulator. We would also like to thank the
anonymous reviewers for their helpful comments. This
work is supported in part by grants from NSF, Intel,
and SRC.

References

[1] D. Brooks, P. Bose, S. Schuster, H. Jacobson,
P. Kudva, A. Buyuktosunoglu, J.-D. Wellman,
V. Zyuban, M. Gupta, and P. Cook. Power-Aware
Microarchitecture: Design and Modeling Challenges
for Next-Generation Microprocessors. IEEE Micro,
20(6):26–44, 2000.

[2] D. Brooks and M. Martonosi. Dynamic Thermal Man-
agement for High-Performance Microprocessors. In
HPCA ’01: Proceedings of the Seventh International

Symposium on High-Performance Computer Architec-
ture, page 171, 2001.

[3] J. Clabes, J. Friedrich, M. Sweet, J. Dilullo, S. Chu,
D. Plass, J. Dawson, P. Muench, L. Powell, M. Floyd,
B. Sinharoy, M. Lee, M. Goulet, J. Wagoner,
N. Schwartz, S. Runyon, G. Gorman, P. Restle,
R. Kalla, J. McGill, and S. Dodson. Design and Im-
plementation of the POWER5TMMicroprocessor.

[4] CPU Maximum Operating Temperatures. http://
www.gen-x-pc.com/cputemps.htm. Gen-X PC, 2005.

[5] J. Donald and M. Martonosi. Temperature-Aware
Design Issues for SMT and CMP Architectures.
In WCED-5: Proceedings of the 5th Workshop on
Complexity-Effective Design, June 2004.

[6] W. El-Essawy and D. H. Albonesi. Mitigating In-
ductive Noise in SMT Processors. In ISLPED ’04:
Proceedings of the Proceedings of the 2004 Interna-
tional Symposium on Low Power Electronics and De-
sign (ISLPED’04), pages 332–337. IEEE Computer
Society, 2004.

[7] S. Ghiasi and D. Grunwald. Design Choices for Ther-
mal Control in Dual-Core Processors. In WCED-
5: Proceedings of the 5th Workshop on Complexity-
Effective Design, June 2004.

[8] S. Gunther, F. Binns, D. M. Carmean, and J. C.
Hall. Managing the Impact of Increasing Microproces-
sor Power Consumption. Intel Technology Journal, Q1,
2001.

[9] J. Hasan, A. Jalote, T. N. Vijaykumar, and C. Brod-
ley. Heat Stroke: Power-Density-Based Denial of Ser-
vice in SMT. In HPCA ’05: Proceedings of the 11th
International Symposium on High-Performance Com-
puter Architecture, pages 166–177. IEEE Computer
Society, 2005.

[10] S. Heo, K. Barr, and K. Asanovic. Reducing Power
Density through Activity Migration. In Proceedings of
the International Symposium on Low Power Electron-
ics and Design (ISLPED), Aug. 2003.

[11] W. Huang, M. R. Stan, K. Skadron, K. Sankara-
narayanan, S. Ghosh, and S. Velusamy. Compact
Thermal Modeling for Temperature-Aware Design. In
DAC: Proceedings of 41st Design Automation Confer-
ence (DAC), pages 878–883, June 2004.

[12] Hyper-Threading Technology. http://www.intel.
com/technology/hyperthread/. Intel Corporation,
2005.

[13] S. Kaxiras, G. Narlikar, A. D. Berenbaum, and Z. Hu.
Comparing Power Consumption of an SMT and a
CMP DSP for Mobile Phone Workloads. In CASES
’01: Proceedings of the 2001 International Conference
on Compilers, Architecture, and Synthesis for Embed-
ded Systems, pages 211–220. ACM Press, 2001.

[14] K.-J. Lee and K. Skadron. Using Performance
Counters for Runtime Temperature Sensing in High-
Performance Processors. In Workshop on High-
Performance, Power-Aware Computing (HP-PAC),
Apr. 2005.

[15] Y. Li, D. Brooks, Z. Hu, and K. Skadron. Performance,
Energy, and Thermal Considerations for SMT and
CMP Architectures. In HPCA ’05: Proceedings of the
11th International Symposium on High-Performance
Computer Architecture, Feb. 2005.

[16] Y. Li, D. Brooks, Z. Hu, K. Skadron, and P. Bose.
Understanding the Energy Efficiency of Simultaneous
Multithreading. In ISLPED ’04: Proceedings of the
31st Annual International Symposium on Low Power
Electronics and Design, pages 44–49. ACM Press,
2004.

[17] M. Moudgill, J.-D. Wellman, and J. H. Moreno. Envi-
ronment for PowerPC Microarchitecture Exploration.
IEEE Micro, 19(3):15–25, May/June 1999.

[18] E. Perelman, G. Hamerly, and B. Calder. Picking sta-
tistically valid and early simulation points. In PACT
’03: Proceedings of the 12th International Conference
on Parallel Architectures and Compilation Techniques,
page 244. IEEE Computer Society, 2003.

[19] M. D. Powell, M. Gomaa, and T. N. Vijaykumar.
Heat-and-Run: Leveraging SMT and CMP to Man-
age Power Density Through the Operating System.
In ASPLOS-XI: Proceedings of the 11th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 260–270.
ACM Press, 2004.

[20] R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes.
The Energy Efficiency of CMP vs. SMT for Multime-
dia Workloads. In ICS ’04: Proceedings of the 18th
Annual International Conference on Supercomputing,
pages 196–206. ACM Press, 2004.

[21] J. Seng, D. Tullsen, and G. Cai. Power-Sensitive Mul-
tithreaded Architecture. In ICCD ’00: Proceedings of
the 2000 IEEE International Conference on Computer
Design, page 199. IEEE Computer Society, 2000.

[22] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically Characterizing Large Scale
Program Behavior. In ASPLOS-X: Proceedings of the
10th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 45–57, 2002.

[23] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-
Theoretic Techniques and Thermal-RC Modeling for
Accurate and Localized Dynamic Thermal Manage-
ment. In HPCA ’02: Proceedings of the Eighth Inter-
national Symposium on High-Performance Computer
Architecture, page 17, Washington, DC, USA, Feb.
2002. IEEE Computer Society.

[24] K. Skadron, M. Stan, W. Huang, S. Velusamy,
K. Sankaranarayanan, and D. Tarjan. Temperature-
Aware Microarchitecture. In ISCA ’03: Proceedings of
the 30th International Symposium on Computer Archi-
tecture, Apr. 2003.

[25] A. Snavely, D. Tullsen, and G. Voelker. Symbiotic
Jobscheduling with Priorities for a Simultaneous Mul-
tithreading Processor, June 2002.

[26] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers.
The Case for Lifetime Reliability-Aware Microproces-
sors. In ISCA ’04: Proceedings of the 31st Inter-
national Symposium on Computer Architecture, page
276. IEEE Computer Society, 2004.

[27] M. Tremblay. High Performance Throughput Com-
puting (Niagara). keynote presentation for 31st ISCA
’04: 31st International Symposium on Computer Ar-
chitecture. Sun Microsystems, June 2004.

[28] D. Tullsen and J. Brown. Handling Long-Latency
Loads in a Simultaneous Multithreaded Processor.
In MICRO-34: Proceedings of the 34th International
Symposium on Microarchitecture, 2001.

[29] D. Tullsen, S. Eggers, and H. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In
ISCA ’95: Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, pages
392–403, June 1995.

