
Techniques for Multicore Thermal Management:
Classification and New Exploration

James Donald and Margaret Martonosi

Department of Electrical Engineering
Princeton University

{jdonald,mrm}@princeton.edu

Abstract

Power density continues to increase exponentially with each
new technology generation, posing a major challenge for
thermal management in modern processors. Much past work
has examined microarchitectural policies for reducing total
chip power, but these techniques alone are insufficient if not
aimed at mitigating individual hotspots. The industry’s cur-
rent trend has been toward multicore architectures, which
provide additional opportunities for dynamic thermal man-
agement.

This paper explores various thermal management tech-
niques that exploit the distributed nature of multicore pro-
cessors. We classify these techniques in terms of core throt-
tling policy, whether that policy is applied locally to a core
or to the processor as a whole, and process migration poli-
cies. We use Turandot and a HotSpot-based thermal simula-
tor to simulate a variety of workloads under thermal duress
on a 4-core PowerPCTMprocessor. Using benchmarks from
the SPEC 2000 suite we characterize workloads in terms of
instruction throughput as well as their effective duty cycles.
Among a variety of options we find that distributed control-
theoretic DVFS alone improves throughput by 2.5X under
our test conditions. Our final design involves a PI-based
core thermal controller and an outer control loop to decide
process migrations. This policy avoids all thermal emergen-
cies and yields an average of 2.6X speedup over the baseline
across all workloads.

1. Introduction
As power density has increased exponentially with Moore’s

Law, thermal cooling challenges have become a prominent
and vexing aspect of computer systems design [3, 13]. While
mechanical cooling solutions (heatsinks, fans, and so forth)
remain the front-line mechanisms for dealing with the ther-
mal wall, these approaches are costly, unwieldy, and do not
represent a complete solution to the problem.

Thermal-aware techniques at the architecture level have
gained momentum over the past five years as a means for op-
timizing processor performance while also abiding by rapidly-
worsening thermal constraints [33]. Thermal-aware archi-
tecture techniques are related to power-aware techniques [5,
19, 20, 21, 22, 24, 36, 37, 38] but are a distinct area because
of thermal-aware design’s concern both with local hotspot
constraints as well as with aggregate thermal limits.

This paper begins by dividing the CMP thermal design
space into a taxonomy of orthogonal design choices. This
taxonomy allows us to systematically and quantitatively ex-
plore the thermal design space. In some parts of the space,
we quantify the benefits of useful combinations of previously-
proposed approaches. In other parts of the space, however,
we propose novel thermal control techniques and quantify

their value. For example, one of the key novelties of the
paper lies in our use of formal control theory techniques to
propose, design, and evaluate a multi-loop control mecha-
nism that allows the operating system and the processor
hardware to collaborate on a robust, stable, and effective
thermal management policy. We know of no other architec-
ture work exploiting multi-loop formal control.

The contributions of this paper are as follows:

• Distributed DVFS provides considerable performance
improvement under thermal duress, on average im-
proving throughput by 2.5X relative to our baseline.
While the design complexity cost of multiple clock do-
mains is considerable, we show that the performance
potential is significant as well.

• When independent per-core DVFS controls are un-
available, we find that other options perform well. In
particular, a thread migration policy without per-core
DVFS can still improve performance by as much as
2X.

• These methods can be elegantly combined through
our sensor-based migration policy involving multi-loop
control. The operating system engages in coarse-grained
control and migration, while the hardware level en-
gages in a finer-grained level of formal control based
on DVFS. We find that this method offers up to 2.6X
improvements over baseline.

Overall, this paper offers insights on the combined lever-
age of DTM methods, on the value of distributed DVFS for
thermal management, and on the robustness and feasibil-
ity of formal multi-loop control via OS-processor collabora-
tions. Given the importance of thermal design in current
and future processors, these contributions represent useful
next steps for the field of thermal-aware architecture.

The remainder of this paper is structured as follows. Sec-
tion 2 presents our motivation and approach on thermal con-
trol. Section 3 describes our simulation environment and
experiment methodology to quantify the properties of these
systems. Section 4 examines implementation issues for our
formal control methods. Sections 5 through 7 show our ex-
perimental results. Section 8 discusses related work. Section
9 offers our conclusions.

2. Motivation and Design Options
Since temperature is largely dependent on power output

over time, general power-reduction techniques are typically
good first steps for temperature-aware design. In addition to
aggregate heat production, however, there can be significant
temperature variance across different regions of the die, and
thus one also must worry about more localized hot spots at
particular portions of the chip.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

benchmark category
steady-state

temperature (º C)

gzip SPECint 70
mcf SPECint 59
parser SPECint 67
twolf SPECint 67
mesa SPECfp 65
swim SPECfp 62
lucas SPECfp 63
sixtrack SPECfp 71

(a) Temperatures of stable benchmarks.

benchmark category
temperature range

(º C)

bzip2 SPECint 67-72
ammp SPECfp 58-64
facerec SPECfp 65-71
fma3d SPECfp 61-67

(b) Temperature ranges for benchmarks without a steady temperature.

Table 1: Measured processor temperatures on a
Pentium M Banias notebook.

2.1 Application Thermal Variation
Our work in large part aims to quantify the benefits of

combining heat balancing methods with heat reduction. We
do this because thermal variations are so important, and
this section demonstrates this importance using real-system
measurements. We present measurements taken from real
hardware to demonstrate the range of thermal character-
istics across different benchmarks selected from the SPEC
2000 suite [16]. We perform measurements at room temper-
ature on a notebook utilizing a Pentium M Banias 1.5 GHz
processor and running Red Hat Linux 7.3 with its kernel up-
graded to version 2.6.11. Using the Advanced Configuration
and Power Interface (ACPI) we read the temperature off a
single thermal diode at the edge of the processor [1]. Due to
interface restrictions all measurements are rounded to the
nearest degree Celsius.

We first compile all benchmarks with base settings using
gcc version 2.96 for C programs and Intel Fortran Compiler
version 9.0 for Fortran programs. Before running any bench-
mark we allow the computer to sit idle briefly and confirm
that it has reached its idle temperature. Once we launch
a benchmark run, we wait one minute, and then poll the
processor temperature repeatedly. Most programs reach a
relatively-stable steady-state temperature, and these per-
program, steady-state temperatures are shown in Table 1
(a). Not all benchmarks gravitate towards a single-steady
temperature, however, and Table 1 (b) lists the programs
where temperatures continually rise and fall throughout ex-
ecution. As shown, processor steady-state temperatures for
such benchmarks can differ by as much as 12◦.

Our real-system findings are consistent with simulation
work by other sources. For example, gzip and bzip2 are two
of the hottest integer benchmarks [9] and sixtrack is one of
the hottest floating point benchmarks [15, 29]. Also, mcf is
by far the coolest due to its memory-bound execution. Both
its overall IPC and temperature are relatively kept low when
a limited L2 cache is provided [23], as in this case where the
Banias processor provides only 1 MB.

Overall, these real-system measurements show first that
applications have quite distinct thermal profiles, and second,
that the time-varying nature of applications and workloads

Stop-go DVFS Stop-go DVFS Stop-go DVFS

Global Stop-go Global DVFS
Stop-go +

counter-based
migration

Global DVFS +
counter-based

migration

Stop-go +
sensor-based

migration

Global DVFS
+ sensor-based

migration

Distributed Dist. stop-go Dist. DVFS
Dist. stop-go +
counter-based

migration

Dist. DVFS +
counter-based

migration

Dist. stop-go +
sensor-based

migration

Dist. DVFS +
sensor-based

migration

No migration Counter-based migration Sensor-based migration

Table 2: Thermal control taxonomy, forming 12 pos-
sible thermal management schemes.

warrants truly dynamic approaches to thermal management.
While we cannot physically measure the spatial thermal
variations within a core, we can surmise that CMPs run-
ning multiprogrammed combinations of these applications
will show spatial variations at the core level at least, and
likely within the core as well.

2.2 Thermal Control Taxonomy
For controlling hot spots, one can either (a) reduce heat

production, or (b) balance heat production. Under this rea-
soning, our work seeks to classify DTM schemes in a sys-
tematic manner so that we can characterize and quantify
their design tradeoffs taken both individually and in combi-
nations.

Our taxonomy is depicted in Table 2. We regard our pol-
icy decisions as a set of orthogonal axes. One axis refers to
the type of low-level control employed. Among the choices
we explore are that of a stop-go policy (turn off a core
or the whole chip when thermal management indicates the
temperature should be reduced) and DVFS (apply voltage-
frequency scaling to reduce temperature). Our second axis
is that of deciding whether to use a global controller for
all cores, or whether to use distributed per-core approaches.
Per-core decisions may require more complex hardware, but
in turn will let us respond more individually to the needs of
different applications running on each core. Our final axis
regards a process migration policy, which acts on a more
coarse-grain time scale. Options here are to never migrate
threads (the base case) or to migrate threads in response
to either thermal-sensor readings, or counter-based thermal
proxies. We explore these 12 options in different combina-
tions in the sections that follow. Inevitably, there are always
further axes one might consider. (For example, simultaneous
multithreading and heterogeneous cores are two other axes
which impact thermal issues). Nonetheless, we feel that this
taxonomy helps guide us through many interesting and use-
ful combinations of thermal design features for CMPs.

2.3 Stop-go vs. DVFS
One of the most basic forms of dynamic thermal man-

agement is known as global clock gating [5] or “stop-go”.
This involves freezing all dynamic operations and turning
off clock signals to freeze progress until the thermal emer-
gency is over. When dynamic operations are frozen, pro-
cessor state including registers, branch predictor tables, and
local caches are maintained, so much less dynamic power is
wasted during the wait period. Thus stop-go is more like a
suspend or sleep switch rather than an off-switch.

Our stop-go mechanism is a coarse-grain operation sig-
naled by the processor and carried out by the operating sys-
tem. Once a thermal sensor reaches the designated thresh-
old, a thermal trap is signaled and processes are frozen for 30
milliseconds. After lowering the temperature a few degrees
through stalling, the processor can resume. We choose this
interval to be coarse-grain in part because it reflects the

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

slow heating and cooling time constants of thermal varia-
tions (milliseconds [12]), and in part because it leads to a
relatively simpler implementation.

The DVFS policy involves more of a continuous adaptive
scheme. By enabling a continuous range of frequency and
voltage combinations we can predictively use these to reduce
power consumption. Thus our DVFS policy is not as simple
as the stop-go mechanism, but we leverage on past control-
theoretic work to systematically obtain suitable parameters.
We use a setpoint slightly below the thermal threshold and
use a PI controller to adaptively control the frequency and
voltage levels to aim towards this target threshold. Our
DVFS mechanism has a higher design cost than the rudi-
mentary stop-go mechanism due to the complexity of imple-
menting a flexible phase-lock loop (PLL) and voltage scaling
capabilities.

2.4 Distributed Policies vs. Global Control
While our first axis of classification in Table 2 focuses

on the decision of stop-go vs DVFS policies, our second axis
designates the scale on which these policies are applied. One
possibility (“global”) is to implement a stop-go or DVFS
policy regarding the entire chip as a single unit. This has
been the method used primarily in the first generation of
commercial multicore processors, due to its reduced design
complexity. In the case of DVFS, this avoids communication
difficulties that would arise with multiple clock domains.
Furthermore, if all cores are likely to heat at the same rate,
a policy which cools all cores in sync could be sufficient.

While global control policies work well for workloads that
heat the chip uniformly, our real-system measurements in
the following section show that this uniformity is relatively
unlikely. “Performance asymmetry” is the characteristic of
workloads to show very different performance characteristics
depending on the choice of applications, and it is a clear
characteristic of emerging multicore applications [2]. If a
global policy is used, a single hotspot on one of the cores
could result to unnecessary stalling or slowdown on all cores.
The more cores on the chip, the more potential performance
is lost due to the single hotspot. Distributed policies, such
as “Dist. DVFS” and “Dist. stop-go” as labeled in Table
2, instead allow each core to independently handle its own
thermal management to a good extent. This paper shows
that for thermal purposes, choosing a distributed policy may
be well worth the necessary added design complexity.

2.5 OS-based Migration Controllers
The final axis we consider regards the migration policy.

Migration can help balance heat production across all cores.
All the previously-mentioned policies—and combinations of
them—can still have remaining thermal imbalances which
can be further remedied through migration. Consider for
example a common case: in a 2-core system managed by
a DVFS policy, the integer register file could be the limit-
ing hotspot on one core, while the floating-point register file
might be the limiter on the other core. For example, we see
this case when running the gzip-twolf-ammp-lucas work-
load in our tests. Judiciously migrating threads can allow
the system to achieve better performance than DVFS-based
methods alone.

We consider migration policies managed by the operating
system. Timer interrupts from a typical OS happen on the
order of a millisecond apart, and this is actually more than
enough to get sufficient potential from migration. Particu-
larly in our best cases of distributed DVFS combined with
migrations, the hotspot “drift” is much slower than a typical

G(s): PI controller

Records temperature
average and derivatives
when stable.

core thermal system

Consequent operation and
resultant core hotspot
temperatures.

+ -

migration
controller

Matches core
temps to thread
thermal activity.

chip thermal system

Consequent multicore
operation and resultant
per-run temperature data
for entire processor.

performance
requirements

migration
decision

Thermal sensors

Watches core hotspots.

temperature
setpoint

Thread-core thermal trend data

Dumped from per-core PI controllers.

Figure 1: Feedback control system involving inner
loop for local control and outer loop for coarse-grain
migration decisions. The sets of four thick lines rep-
resent sets of data from each core.

temperature gradient in the more thermally-chaotic stop-go
policy. Given this time scale, when migration is used on top
of control-theoretic DVFS, we can model our overall system
as a two-loop structure as shown in Figure 1. The inner
loop is the DVFS policy, while the outer loop is the migra-
tion policy. The migration policy depends to a great extent
on data gathered by the PI controller in the inner loop.

We study two migration mechanisms in this paper. The
first one is based on performance counters used to determine
the resource intensities of various threads. We draw some
of these ideas from [10] and [29], which describe concepts
of mixing complementary resources based on profiled infor-
mation. Our second mechanism is known as sensor-based
migration. The purpose of this mechanism is to avoid re-
liance on performance counter proxy data which may be too
abstract at times. Although both migration mechanisms,
as well as all DTM policies in our study, rely on thermal
sensors to make proper decisions at the correct times, the
difference between the counter-based and sensor-based mi-
gration policies is that the latter uses sensors over time to
track thermal properties of all processes. An elegant prop-
erty of the sensor-based approach is that it depends directly
on data gathered from the inner control loop as depicted in
Figure 1.

3. Experimental Methodology
This section details our architectural, power estimation,

and temperature modeling infrastructure. Figure 2 shows
the overall flow. This section describes each of the illustrated
levels of modeling, our modifications for thermal control, our
test benchmarks, and metrics used.

3.1 Turandot and PowerTimer Processor Model
Using Turandot [27] we model a 4-core processor as de-

tailed in Table 3. Most internal core parameters are similar
to those used in [10] and [23], although for example, we use
a larger 4 MB L2 cache.

PowerTimer [4] is a parameterizable power estimation tool
which operates in conjunction with Turandot. Its hierarchi-
cal power models are derived through empirical circuit-level
simulations and calibrated according to technology param-
eters. Component power across simulation intervals is then
calculated by scaling according to the counts of various ar-

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

…Simpoint-generated
500M instructions each

…

28 �s intervals

Thermal/Timing
Simulator

floorplan

instruction
trace #1

Turandot +
PowerTimer

instruction
trace #4

power
trace #1

power
trace #4

Turandot +
PowerTimer

DTM policy

HotSpot

dynamic
leakage

control/timing

power

temperature

power
trace #2

power
trace #3

Figure 2: Power trace-based simulation method in-
volving interdependence between Turandot, Pow-
erTimer, leakage modeling, HotSpot, and thermal
management policies.

Global Design Parameters
Process Technology 90 nm

Supply Voltage 1.0 V
Clock Rate 3.6 GHz
Organization 4-core + shared L2 cache

Core Configuration
Reservation Stations Mem/Int queue (2x20), FP queue (2x5)
Functional Units 2 FXU, 2 FPU, 2 LSU, 1 BXU
Physical Registers 120 GPR, 108 FPR, 90 SPR
Branch Predictor 16K-entry bimodal, 16K-entry gshare,

16K-entry selector
Memory Hierarchy

L1 Dcache 32 KB, 2-way, 128 byte blocks,
1-cycle latency

L1 Icache 64 KB, 2-way, 128 byte blocks,
1-cycle latency

L2 cache 4 MB, 4-way LRU, 128 byte blocks,
9-cycle latency

Main Memory 100-cycle latency
DVFS Parameters

Transition penalty 10 μs

Minimum freq scale 20% (720 MHz)
Minimum transition 2% of range

Migration Parameters
Migration penalty 100 μs

Table 3: Design parameters for modeled CPU and
its four cores.

chitectural events. As shown in Figure 2, we use Turan-
dot and PowerTimer to generate power traces to be used
as inputs to our thermal simulator. Using SimPoint [31],
we simulate representative traces of 500 million instructions
from each program. These produce long (hundreds of mil-
liseconds) output traces of power behavior containing data
samples every 100,000 cycles (28 μs).

Leakage power is becoming a significant component of to-
tal power, especially with more aggressively-scaled technolo-
gies. We cannot rely on PowerTimer, however, for leakage
values since these numbers are dependent on temperature,
whose calculation comes later in our toolflow. Therefore,

we describe our leakage power modeling approach below, as
part of the thermal/timing approach.

3.2 HotSpot Thermal Model
As a component of our thermal/timing simulator, we use

HotSpot version 2.0 [18, 33] which uses parameters that have
been calibrated against a real chip as well as a power-trace-
driven simulation capability. HotSpot calculates tempera-
tures by modeling physical traits in a thermal system us-
ing a method analogous to calculating voltages in a circuit
made up of resistors and capacitors. Required input to our
thermal simulator includes a floorplan designating the loca-
tions and adjacencies of various processor components. The
model also includes the heatsink, fan (convection), and ther-
mal interface material.

We use a floorplan similar to that used in [23], except
we have extended our layout for 4 cores and reduced the
core size accordingly. Each of these cores has its various
components necessary for an out-of-order pipeline and the
four cores are connected through a shared L2 cache and
interconnect.

HotSpot supports calculating transient temperatures as
well as estimating steady-state temperatures. A number of
past works [9, 11, 14, 33] have focused on steady-state. One
advantage of steady-state temperatures is the ability to es-
timate long term temperatures from only a short simulation
interval. Our experiments in adaptive control, however, re-
quire our simulator to know how temperatures change across
time. Hence we focus on transient temperatures.

3.3 Thermal/Timing Simulator for DTM
As depicted in Figure 2, our thermal/timing simulator

tests our thermal management policies in order to collect
timing, power, and temperature data for any of our multi-
programmed workloads. The thermal/timing simulator uses
power traces as inputs to its thermal control simulations.
The simulator uses these recorded power values, controls
the rate of progression through the trace, and scales power
values in response to thermal control decisions. With DVFS,
for example, it adjusts the time and energy calculations for
that core (or for the whole chip) to account for the new volt-
age/frequency setting. Because DVFS dynamically changes
the length of a cycle, and because in some of our meth-
ods each core may be operating with a different cycle time,
the thermal/timing simulator framework tracks progress in
terms of “absolute time” rather than cycles.

When a power trace for a particular benchmark is com-
pleted before the end of the simulation, that trace is restarted
at the beginning and this process is continued until total
of 0.5 seconds of silicon time has elapsed. For calculating
leakage dynamically, we use the temperatures reported by
HotSpot as input to a leakage model based on an empirical
equation from [17].

In order to model shared structures such as the L2 cache
with this trace-based method, the single-threaded simula-
tions with Turandot actually are capacity-limited to use
only one quarter of the L2 cache, while retaining pessimistic
power costs of the full-size cache. This likely overestimates
cache power, but the cache is never a hotspot. Another
pessimistic approximation result of our methods is that for
a DVFS mechanism. A memory-bound application can ex-
ploit CPU-memory slack [37], which our traces will not show.
Thus, it is likely to gain more energy savings from DVFS
compared to performance loss than a CPU bound applica-
tion.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

workload name benchmarks
properties (integer / floating

point)
workload1 gcc, gzip, mcf, vpr int, int, int, int
workload2 crafty, eon, parser, perlbmk int, int, int, int
workload3 bzip2, gzip, twolf, swim int, int, int, fp
workload4 crafty, perlbmk, vpr, mgrid int, int, int, fp
workload5 gcc, parser, applu, mesa int, int, fp, fp
workload6 bzip2, eon, art, facerec int, int, fp, fp
workload7 gzip, twolf, ammp, lucas int, int, fp, fp
workload8 parser, vpr, fma3d, sixtrack int, int, fp, fp
workload9 gcc, applu, mgrid, swim int, fp, fp, fp
workload10 mcf, ammp, art, mesa int, fp, fp, fp
workload11 ammp, facerec, fma3d, swim fp, fp, fp, fp
workload12 art, lucas, mgrid, sixtrack fp, fp, fp, fp

Table 4: Four-process workloads of interest and re-
spective mix types of SPEC benchmarks.

Overall, the benefits of this coarse-grain power trace meth-
od are (i) that it simulates dynamic thermal variations and
(ii) that it allows us to apply our control methods on the long
time scales appropriate for observing temperature changes.

3.4 Workloads
Our simulated workloads are formed by selecting among

22 benchmarks including 11 SPECint benchmarks and 11
SPECfp benchmarks to mix into designated four-process
workloads as shown in Table 4. The benchmark type is
especially relevant to our study on overheating specific re-
sources. Integer benchmarks are most likely to have their
prime hotspot in the integer register file unit and its asso-
ciated logic while floating point benchmarks are likely to
stress the floating point register unit. Thus, we list the cor-
responding benchmark suite categories for all elements of
each workload.

The type of benchmark alone—whether integer or floating
point—does not completely categorize its resource intensi-
ties. Integer benchmarks in the SPEC suite have varying
degrees of IPC. Furthermore, all floating point benchmarks
make use of integer registers to some extent. It is thus pos-
sible that some floating point benchmarks even have higher
integer register intensities than various integer benchmarks.
Nonetheless the general categorization is a helpful guide in
understanding how such workloads might behave subject to
varying forms of thermal control.

3.5 Metrics
Our goal in these thermal control applications is to maxi-

mize performance subject to a fixed temperature constraint,
in our case not allowing any part of the chip to go above
84.2◦ C. Therefore one of the most natural performance
metrics is the raw instruction throughput for each workload
(Billions of instructions per second, or BIPS).

While BIPS is a good basic performance metric, it can,
however, be difficult to interpret in multiprogrammed work-
loads. This is because fairly running a low-IPC applica-
tion can lead to worse-appearing performance than unfairly
skewing execution toward the high-IPC applications in the
workload. For this reason, we also provide results on each
run’s achieved percentage of “duty cycle”. Duty cycle de-
scribes the ratio of time that useful work is being done,
relative to the total time including work period and the rest
(stop) period. For example, if a processor is in a globally-
stalled mode four times as often as it runs in active mode,
it has a duty cycle of 20%.

While duty cycle is very straightforward for stop-go sit-
uations, we also adapt it to DVFS as well. Although the
processor may attempt to do useful work at each cycle, the

varying frequencies in DVFS approaches change the effec-
tive duty cycle. For this reason, we use an adjusted duty
cycle metric as follows. When summing up the total duty
cycle, we scale the contributions accordingly by the dynamic
frequency. For example, if all cores run at 30% of maximum
speed for an entire execution this amounts to a duty cycle
of 30%. If all cores run half the time at 30% speed and the
other half of the time at 40%, this results in a duty cycle
of 35%. This adjusted duty cycle is a good indicator of the
ratio of the total work done relative to the total possible
work that could be done if all cores were run at their maxi-
mum clock frequency not subject to any thermal constraint.
Under this reasoning, overhead delays (such as that for ad-
justing the PLL under a DVFS policy) or for the context
switch penalty under a migration policy are not counted as
useful total work and thus also lower the adjusted duty cy-
cle.

4. Applying Formal Control to Thermal DVFS
The DVFS portion of our thermal-management mecha-

nisms use a control theoretic approach to determine ap-
propriate voltage and frequency settings. Here we present
some background information required to understand this
approach, before introducing the other policies and our com-
parative results.

4.1 Background: Closed-loop DVFS Control
When designing our DVFS controller we apply closed-loop

control theory. Formal feedback control has recently found
numerous applications in architecture and systems [33, 34,
36, 37, 38]. Our work is novel, however, in composing to-
gether these formal control methods along with other control
techniques in a multi-loop system.

Closed-loop control is a robust means to control complex
systems so that the controlled value rapidly converges to the
desired target output value. In our case, the measured vari-
ables are the thermal sensor values at various hotspots, and
the output actuator is the mechanism to scale the voltage
and frequency. This control loop is represented in the inner
loop of Figure 1. Some of the arrows in a typical closed-loop
diagram have been drawn as several arrows in Figure1. This
reflects that multiple temperatures are fed into a single PI
controller. Since an individual controller governs an entire
core or processor, it typically selects the hottest of the input
temperatures.

The standard PI controller equation, written in its Laplace
form, is as follows.

G(s) = Kp +
Ki

s

As shown, the two components are the proportional and
integral terms. The proportional component defined by Kp

reflects the basic gain of the controller responding to error,
while the integral term containing Ki is there to compensate
for any offsets and reduce the settling time. (A proportional-
integral-derivative (PID) controller is another option, but we
found that the derivative term has little benefit for this type
of thermal control.)

MATLAB tests similar to [32] allow us to determine set-
tling time and stability for typical thermal fluctuations. We
use constants of Kp = 0.0107 and Ki = 248.5 in all of our
tests. Owing to the robustness of PI systems and the inher-
ent stability of the thermal system under study, these con-
stants can actually deviate significantly while still achieving
the intended goals. In fact, our proportional constant is set
two orders of magnitude smaller than that used in [32], in or-

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

der to maintain control with smoother transitions. Another
issue is that of the system’s sensor delay. Fortunately, the
primary delay (thermal sensors) is quite small [8] compared
to the time scales on which temperature varies.

A benefit of formal feedback control is the ability to prove
stability. We use a root locus plot with the stability criterion
that all the poles (the frequencies at which the characteristic
function blows up to infinity) must lie to the left of the y-
axis in the Laplace space. We verified this for our controller
using MATLAB.

4.2 Thermal Control Mechanism for DVFS
The mathematical description given above proposes a con-

troller that can be applied continuously, not limited by phys-
ical constraints. In our actual experiment this controller
must be given appropriate limits and be discretized in time.
In order to convert the Laplace transform into its corre-
sponding discrete-time z-transform, we use the MATLAB
function c2d, specifying a time interval of 28 μs to match
the frequency of our thermal measurements. We then ar-
range the transform to directly specify our discrete online
equation:

u[n] = u[n − 1] − 0.0107e[n] + 0.003796e[n − 1]

The error function e[n] is simply the difference between the
measured temperature and the target temperature. The tar-
get temperature is just below the thermal threshold. Through
this, the system maximizes performance subject to the al-
lowable temperature constraints. Convenient aspects of this
controller are that despite involving an integral term, it is
relatively simple to implement in hardware as it depends
only on the previous controller output, previous error value,
and current error value.

On a real system, PI controllers are subject to certain
limits which stray from a purely linear design. One of the
most basic limits is that of clipping on the output. The out-
put, which is the specified frequency scaling factor, cannot
extend to infinity since the cores cannot run beyond their
maximum frequency as limited by the speed of transistor
gates. When a core or processor is not in thermal danger
but rather acting in a cool period, the controller will output
its maximum value which reports a frequency scaling factor
of 1.0. On the lower end, we restrict the minimum frequency
scaling factor to 0.2. In the discrete model described in the
above equation, this can be implemented fairly simply in
hardware.

Another non-ideal characteristic of real PI controllers is
that of integral windup, which describes when the integra-
tor component continually integrates only because the input
error remains unmitigated for an extended period due to
physical limits. For instance, when a core is above its target
temperature, the controller will try to cool it by lowering
the frequency. However, chip components cannot cool any
faster than the physical limitations allow. If integral windup
occurs, when the condition is finally satisfied it can take a
long time for the controller to “wind down”. Fortunately,
our discrete implementation with clipping quickly takes care
of this. The simple discrete implementation in the above
equation combined with clipping prevents a hidden integral
component from building up.

Finally, in real systems, voltage changes are not instan-
taneous. A penalty of 10 μs is assumed for each frequency
and voltage change.

5. Exploring Stop-go and DVFS in both Global
and Distributed Policies

This section covers a portion of the policy combinations
in our spectrum. In particular we examine issues of using
stop-go and DVFS, and we also consider whether to apply
each mechanism in a local or distributed fashion. Section 6
then explores migration policies largely with the intention
of comparing to the original policy combinations in this sec-
tion.

5.1 Stop-Go Policy Implementations
Compared to the formal control approaches used for DVFS

management as described in the preceding section, our stop-
go mechanism is quite simple. Each core is run at full blast
as long as it does not exceed a particular thermal trippoint.
Thermal sensors at the two register file units on each core
sense the hotspot temperatures. When one is found to be
just below the thermal threshold of 84.2◦ C, a thermal inter-
rupt is issued. The core which caused this interrupt is then
stalled for 30 ms. At this point, the hotspot will have cooled
below the threshold and the core can continue running.

5.2 Distributed versus Global Policy Implemen-
tations

In the distributed policies, stop-go and DVFS techniques
are applied to individual cores. Each DVFS controller takes
in at least two inputs since it watches two hotspots, but
the mathematical implementation goes by whichever sensor
reports to be hotter. In the distributed cases, each core op-
erates independently, without any coordination with other
cores. For the cases of global stop-go and global DVFS, a
single decision is made for all the cores on the chip. Thus,
there is effectively only a single PI controller which calcu-
lates based on the hottest of all sensors across all cores.

5.3 Results
Results for all 12 workloads are shown in Figure 3. We re-

port results relative to a baseline policy of distributed stop-
go. Global stop-go has the worst performance of the 12. Its
duty cycle is less than 20% and for this reason, we focus our
attention on the other 11 possibilities for the remainder of
the paper. Although our baseline characteristics are heavily
dependent on our processor configuration and cooling sys-
tem model, we have examined other scenarios. For example,
we found that raising the temperature threshold to 100◦ C
increased the duty cycles of these results and others pre-
sented in our paper to raise by 10 to 15%. Nonetheless, the
relative performance tradeoffs remain as presented.

We present instruction throughput for the three non-mi-
gratory configurations—global stop-go, synchronous DVFS,
and distributed DVFS—all normalized to the distributed
stop-go results. As seen in the graph, the distributed DVFS
policy does the best overall, on average more than double the
instruction throughput of the distributed stop-go policy and
four times that of global stop-go. The largest gain is due to
voltage scaling. In addition, however, the distributed DVFS
policy still gives significantly better throughput than the
global. Tabulated results showing the average throughput
and duty cycle for these policies are given in Table 5.

The overall improvement by distributed DVFS over a dis-
tributed stop-go policy is a performance improvement of
2.5X. The duty cycle numbers also reflect these improve-
ments. In particular the active time reported for distributed
stop-go is about 30% while distributed DVFS achieves more
than 80%. We also have performed other experiments con-
firming the validity of our duty cycle metric. We ran simula-

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

0

0.5

1

1.5

2

2.5

3

gc
c-g

zip
-m

cf-
vp

r (III
I)

cra
fty

-eo
n-p

ars
er-

pe
rlb

mk (III
I)

bz
ip2

-gz
ip-

tw
olf

-sw
im

 (II
IF)

cra
fty

-pe
rlb

mk-v
pr-

mgri
d (

IIIF
)

gc
c-p

ars
er-

ap
plu

-m
es

a (
IIF

F)

bz
ip2

-eo
n-a

rt-f
ac

ere
c (

IIF
F)

gz
ip-

tw
olf

-am
mp-l

uc
as

 (II
FF)

pa
rse

r-v
pr-

fm
a3

d-s
ixt

rac
k (IIF

F)

gc
c-a

pp
lu-

mgri
d-s

wim
(IF

FF)

mcf-
am

mp-a
rt-

mes
a (IF

FF)

am
mp-f

ac
ere

c-f
ma3

d-s
wim

(F
FFF)

art
-lu

ca
s-m

gri
d-s

ixt
rac

k (
FFFF)

R
el

at
iv

e
In

st
ru

ct
io

n
 T

h
ro

u
g

h
p

u
t

Global stop-go
Global DVFS
Dist. DVFS

Figure 3: Normalized instruction throughput of all
workloads relative to baseline distributed stop-go
policy.

BIPS duty cycle
relative

throughput
Stop-go 2.79 19.77% 0.62
Dist. stop-go 4.53 32.57% 1.00
Global DVFS 9.36 66.49% 2.07
Dist. DVFS 11.36 81.02% 2.51

Table 5: Average instruction throughput, effective
duty cycle, and performance relative to dist. stop-go
across all workloads for various policies.

tions with unrestricted maximum temperatures, and found
that the proportion of the achieved BIPS relative to the
non-controlled case was accurately predicted by the mea-
sured duty cycle.

The benefits seen here are consistent with past work which
has shown much benefit from DVFS policies as opposed
to primitive throttling policies. Likewise, allowing multiple
voltage levels is greatly beneficial for power [19] and hence
thermal control. The drawback of these design choices is of
course mainly in design complexity. As our results show,
for high-performance processors, the design costs of the dis-
tributed DVFS are nicely rewarded by the clear benefits of
improved performance.

6. Migration Policies for Thermal Control
The third axis in our spectrum of thermal control options

is determined by whether or not to use migration and the
choice of migration mechanism used. We explore migra-
tion mechanisms implemented via OS control for two main
reasons. First, benefits from migration policies happen on
a relatively long time scale if migration is implemented on
top of quicker policies such as stop-go and DVFS. Second,
process control and context switches are traditionally some-
thing for which the operating system has final jurisdiction.
Thus our migration mechanisms are called upon no more
than once every 10 milliseconds, which is the typical timer
interrupt setting for a Linux kernel. Both of our migration
mechanisms, counter-based and sensor-based, are affected
by the DVFS or other policies previously explored and thus
a feedback relation exists when both DVFS and a migration
policy are implemented. In this relation, the operating sys-
tem needs to keep track of timing data for all processes. Al-
though not explored in our experiments which are restricted

(1) remaining processes = processes[];

(2) sort(cores[], most hotspot imbalance)

where hotspot imbalance =

critical hotspot.temperature - secondary hotspot.temperature for core[i];

(3) foreach (cores[1..n]) { // find best matchings

matching process = least intense(remaining processes, cores[i].critical hotspot);

cores[i].assigned process = matching process;

remaining processes -= matching process;

}

(4) foreach (cores[1..n]) { // migrate if beneficial

if (cores[i].current process != cores[i].assigned process)

migrate(cores[i].assigned process, cores[i]);

}

Figure 4: Pseudocode algorithm for migration deci-
sions in counter-based migration.

to four-program workloads, in any system there can easily
be a greater number of processes than cores.

When the OS decides to migrate threads for the purpose of
thermal control, the relevant tracking information is flushed
and stored and in our simulations, each core involved takes
a penalty of 100 μs. Once this is completed, the overriding
thermal policy is the primary mechanism of thermal pro-
tection, until 10 milliseconds have passed and the involved
threads become eligible for migration again. The actual de-
cision algorithms for which threads to migrate are described
in more detail below.

6.1 Counter-based Migration: Method
We examine first a performance counter-based migration

policy, which is the simpler of the two discussed. The coun-
ters are used here to estimate the thermal intensity of a par-
ticular resource. For example, for the integer register file,
performance counters are used to keep track of the number
of accesses for individual threads. The performance counter
information used here includes cycle counts, the number of
integer register file accesses, the number of floating point
register accesses, and instructions executed. Much of the
reasoning for our mechanism is borrowed from [29], which
proposes mixing resource heat intensities with SMT. With
no frequency scaling, we are interested in the ratio of regis-
ter file accesses per cycle. When frequency scaling is used,
it becomes necessary to know the number of accesses per
adjusted cycle instead.

Our overall algorithm is shown in pseudocode in Figure 4.
Every thread’s various performance counters are recorded
throughout execution. This way the operating system is
aware of the various resource intensities of all running pro-
grams. Migration decisions are actuated when the local ther-
mal control of at least two individual cores signals that their
critical hotspots have changed. If this happens more often
than 10 milliseconds, extra requests are simply ignored since
there is little reason to enact a thermal migration on such a
short time scale. When it is time to test for eligible migra-
tions, the cores with the most critical hotspot imbalance are
considered first. Hotspot imbalance is defined as the dif-
ference in temperature between the core’s critical hotspot
and the temperature of the core’s second hottest distinct
hotspot. In order of most need for migration, the decision
algorithm searches for a suitable candidate. Each decision is
done by seeing which thread would be most able to reduce
heating of the critical hotspot on each core. In some cases,
the best candidate for a thread to migrate will be itself, in
which case a migration is not done. A set of migrations can
be as simple as a single swap, or as complex as a four-way
rotation.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

75

76

77

78

79

80

81

82

83

84

85

0.0
4

0.6
0

1.1
6

1.7
1

2.2
7

2.8
2

3.3
8

3.9
3

4.4
9

5.0
4

5.6
0

6.1
6

6.7
1

7.2
7

7.8
2

Time (ms)

T
em

p
er

at
u

re
 (°

 C
)

FP register logic
Integer register logic

lucas

gzip

lucas

ammp

(a) Temperature of hotspots on first core.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0
4

0.6
0

1.1
6

1.7
1

2.2
7

2.8
2

3.3
8

3.9
3

4.4
9

5.0
4

5.6
0

6.1
6

6.7
1

7.2
7

7.8
2

Time (ms)

F
re

q
u

en
cy

 S
ca

le
 F

ac
to

r

lucas

gzip

lucas

ammp

(b) Time-dependent frequency control output across this same interval.

Figure 5: Temperatures and DVFS control across
several migration intervals for a sample workload.

6.2 Counter-Based Migration: Results
Figure 5 shows the effects and intentions of several mi-

grations on a single core. Initially, lucas is running on this
core. As the floating-point register file heats up, gzip is cho-
sen to migrate in. This allows the FP register file to cool off
considerably. Although lucas does not immediately coun-
teract the cooling, it eventually does raise the temperature
again before being evicted by ammp. The critical hotspot
which determines the DVFS speed is the integer register
file throughout the entire run. The other hotspot tends to
“drift” depending on the imbalance in the benchmarks used.

Further complications are involved with migration when
all cores are allowed to operate at different frequencies. Since
DVFS naturally affects performance, a core prone to a dif-
ferent scaling factor has effectively different heating patterns
for its hotspots. Figure 5 (b) shows the corresponding fre-
quency changes on the single core to result in temperatures
shown in Figure 5 (a). To account for this, when DVFS is
involved the scaling factor is recorded on runs and stored
by the operating system. In this way, this combined policy
takes feedback information from the inner loop DVFS con-
trol loop. This is then used to scale the power estimations
from performance counters by a cubic relation.

Our overall results from this counter-based migration pol-
icy are shown in Table 6. When used in conjunction with
a distributed local stop-go policy, counter-based migration
provides a 2X performance improvement and sees about the
same increase in duty cycle. This means that in cases where
DVFS is not available, stop-go can be used for basic heat re-
duction, and migration provides better performance through
heat balancing. In the next section, we discuss our alterna-
tive policy that does not depend on performance counters.

6.3 Sensor-based Migration: Method
The counter-based approach is appealing because it relies

on easily-accessed hardware counters of microarchitectural

BIPS duty cycle
relative

throughput

speedup over
non-migration

Stop-go, counter-based migration 5.34 37.93% 1.18 1.91
Dist. stop-go,counter-based migration 9.15 65.12% 2.02 2.02
Global DVFS, counter-based migration 9.88 70.05% 2.18 1.06
Dist. DVFS, counter-based migration 11.62 82.42% 2.57 1.02

Table 6: Average instruction throughput and duty
cycle for performance counter-based migration poli-
cies.

activities that have intuitive meaning to hardware and soft-
ware designers. Furthermore, their values can be directly
attributed to threads and code. They are not, however, a
direct representation of thermal behaviors. Instead, they
are at best a proxy.

Here we explore instead a second migration method based
directly on reading on-chip thermal sensors. With sensor-
based policies, the mechanism is complicated significantly
by external factors. Although vertical heat conduction typ-
ically matters more than lateral heat conduction [9, 11, 33],
the lateral effects are not small enough to ignore. Our
sensor-based mechanism seeks to know the slopes of temper-
ature transitions, and these may depend on hotspots from
a neighboring unit or core. For example, a certain thread
will appear to have different temperature gradients when
running on different cores due to different external factors,
such as being located closer to the edge of the chip. Fur-
thermore, if a DVFS or stop-go policy is applied, the trend
sensing calculations must appropriately time-scale the mea-
sured temperature changes to account for this. Depending
on which core and at what time measurements are taken,
this could give different results. Because of these issues, our
design requires recording the scaling factors (as seen by the
PI controller) and using the average to scale the measured
thermal trends appropriately.

Our algorithm for the sensor-based migration is more com-
plex than the counter-based policy. Although our decision
algorithm is almost the same as that presented in Figure 4,
determining individual threads’ hotspot intensities through
thermal sensors is more complex than direct counter infor-
mation. The apparent intensity on various cores for a sin-
gle thread will appear different as each core has different
thermal situations. For instance, a core next to the cache
may have less thermal intensity due to the cache’s relatively
cool temperature. We therefore need to profile threads in
a systematic manner so that relative temperature gradients
can be used to estimate the thermal intensity of all possi-
ble thread-core combinations. The flow diagram in Figure
6 describes our steps to accomplish this. There is a grid
maintained by the operating system so that the migration
decision can be made to estimate a thread’s hotspot behav-
ior on a particular core. To estimate thread intensity, each
core needs to be run and dynamically tested with at least
two threads, and each thread needs to have recorded sensor
data from running on at least one core.

A benefit from this approach is that much of the feedback
information can be recorded in the PI hardware which does
arithmetic operations with the temperatures on a time scale
appropriate for recording the trends. As with counter-based
migration, for the distributed DVFS case, each recorded
temperature trend must be scaled down by a cubic relation
according to the recorded frequency scaling factor.

6.4 Sensor-based Migration: Results
Tabulated results comparing the sensor-based migration

policy with the non-migration and counter-based migration

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

Sufficient profiled
data to estimate
all thread-core
thermal trends?

Obtain sensor gradient and
frequency scaling data
from cores.

Set migration targets to profile
more to fill thermal table.

Calculate all threads’
estimated hotspot resource
intensities.

Set migration targets based
on algorithm in Figure 4.

kernel trap

Record in OS-managed
thread-core thermal table.

no

Migrate.

yes

thread id
0 1 2 3

0

1

2

3

co
re

 #

Figure 6: Flow chart demonstrating the steps taken
upon an OS interrupt to decide on sensor-based mi-
grations.

BIPS duty cycle
relative

throughput
speedup over
non-migration

speedup over
counter-based

migration
Stop-go, sensor-based migration 5.43 38.64% 1.20 1.95 1.02
Dist. stop-go, sensor-based migration 9.27 66.61% 2.05 2.05 1.01
Global DVFS, sensor-based migration 9.63 68.37% 2.13 1.03 0.97
Dist. DVFS, sensor-based migration 11.70 82.64% 2.59 1.03 1.01

Table 7: Average instruction throughput and duty
cycle for sensor-based migration policies.

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

gc
c-

gz
ip

-m
cf

-v
pr

(II
II)

 .
cr

af
ty

-e
on

-p
ar

se
r-p

er
lb

m
k

(II
II)

bz
ip

2-
gz

ip
-tw

ol
f-s

w
im

 (I
IIF

)
.

cr
af

ty
-p

er
lb

m
k-

vp
r-m

gr
id

 (I
IIF

)
gc

c-
pa

rs
er

-a
pp

lu
-m

es
a

(II
FF

)
bz

ip
2-

eo
n-

ar
t-f

ac
er

ec
 (I

IF
F)

gz
ip

-tw
ol

f-a
m

m
p-

lu
ca

s
(II

FF
)

pa
rs

er
-v

pr
-fm

a3
d-

si
xt

ra
ck

 (I
IF

F)
gc

c-
ap

pl
u-

m
gr

id
-s

w
im

(IF
FF

)
m

cf
-a

m
m

p-
ar

t-m
es

a
(IF

FF
)

am
m

p-
fa

ce
re

c-
fm

a3
d-

sw
im

 (F
FF

F)
.

ar
t-l

uc
as

-m
gr

id
-s

ix
tra

ck
(F

FF
F)

P
er

ce
n

ta
g

e
P

er
fo

rm
an

ce
 D

el
ta

 v
s

N
o

n
-m

ig
ra

ti
o

n
 P

o
lic

y

Dist. DVFS, counter-based migration
Dist. DVFS, sensor-based migration

Figure 7: Individual gains/losses of various work-
loads due to either migration policy in conjunction
with distributed DVFS (best-performing practical
policy of the original four).

policies are compared in Table 7. We find that the sensor-
based mechanism performs slightly better overall. For more
detail, we have plotted the individual workload performances
across migration policies in Figure 7.

Our overall results show that both migration policies are
beneficial and feasible. Sensor-based migration mechanisms
perform overall with a 2.1X speedup over the baseline stop-
go policy and an overall speedup of 2.6X with proportion-
ally the same increase in duty cycle when combined with
distributed DVFS. The best performance comes when both
mechanisms do not improve performance for every workload,
and this can be explained in the fact that they are both

Stop-go DVFS Stop-go DVFS Stop-go DVFS

Global 0.62X 2.1X 1.2X 2.2X 1.2X 2.1X

Distributed baseline 2.5X 2X 2.6X 2.1X 2.6X

No migration Counter-based migration Sensor-based migration

Table 8: Summary of all policy combinations and
their respective multiplicative increases in instruc-
tion throughput relative to distributed stop-go.

doing approximation algorithms to best estimate migration
decisions. Errors due to the algorithm assumptions can lead
to decisions that not always optimal, but on average do give
a significant performance benefit.

The options presented in this section and the previous
section present designers with several viable choices for a
total thermal management policy. In simpler designs such
as global stop-go, migration makes up for much of the ben-
efit that would be found in a system invoking DVFS. Fur-
thermore, the migration controls are mostly OS-controlled
and hence can be reconsidered and reprogrammed after chip
production.

7. Summary and Recommendations
Instead of viewing some conventional mechanisms as com-

peting alternatives, this paper has explored a combination
of orthogonal methods to determine where the most gains
are seen and which policies work best together. To summa-
rize this here, we recall our table from Section 2, and present
a similar organization except filled with the overall relative
instruction throughput for all policy combinations in Table
8.

Our basic results fortify distributed DVFS as a strong
foundation for thermal control, reflecting on average more
than 2.5X increase in throughput over our base policy of
distributed stop-go.

Both counter-based and thermal trend-based migration
policies are able to significantly increase performance through
hotspot balancing, respectively reporting 2X and 2.1X im-
provements of the baseline stop-go policy. When implement-
ing migration on top of other policies we see diminishing
returns but a net benefit on the most aggressive distributed
DVFS policy with a 2.6X speedup over baseline.

Duty-cycle measurements offer a good view of how close
we have come to full-speed execution. For example, while
simple stop-go techniques result in duty cycles below 20%,
the best multi-loop combination of migration and DVFS im-
proves the duty cycle to an average over 82%. Given the
threat of thermal emergencies, 100% duty cycle is not pos-
sible for these workloads, but values in excess of 80% are
quite close.

8. Related Work
Since reducing power density has the effect of reducing

temperature, temperature-aware approaches benefit much
from the same techniques as in power-aware design. One
key difference is that temperature-aware approaches seek
not necessarily to reduce the average temperature but also
focus on the thermal constraints of individual hot spots, as
our work does. Other differences arise in the metrics that
are most relevant. Our work uses many of these techniques
demonstrated in prior studies on processor power, but ap-
plies these mechanisms directly to the problem of thermal
control.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

With temperature control as a key limitation to processor
performance, many recent works in computer architecture
focus on issues of thermal control [9, 10, 15, 18, 22, 23, 29,
33]. In particular, some of the more closely related works ex-
plore temperature-aware design issues in multithreaded ar-
chitectures similar to ours. For example, our prior work [9]
explored temperature issues in simultaneous multithreaded
(SMT) and multicore designs and found common charac-
teristics of thermal stress. We did not, however, delve into
thermal control techniques to alleviate these problems. Ghi-
asi and Grunwald examine thermal properties of dual core
designs in particular [11]. However, their work also focuses
on steady-state temperatures for fixed configurations rather
than dynamic control. Li et al. examine general issues
of performance, power, and thermal characteristics of both
multicore and SMT processors [23]. Although they do ex-
plore a number of thermal management policies, they view
these as competing alternatives rather than taking a broad
approach like ours that includes combinations of techniques.
Li and Martinez attempt to explore methods to model per-
formance and power efficiency for multicore processors sub-
ject to thermal constraints [21], but they do not delve into
the various options of thermal management policies. Cha-
parro et al. have examined issues on designing clustered
processors and the potential for temperature improvement
through clustering methods [6, 7]. While covering many mi-
croarchitectural details for such multicore designs, this work
does not focus on the thermal control policy and uses a rou-
tine core-hopping mechanism.

Related more to our study are some other works which
focus more on the design of control policies for thermal man-
agement. For example, Shang et al. have proposed adaptive
mechanisms for thermal management by focusing primarily
on interconnect power control, but they use techniques of a
primarily power-aware nature rather than focusing on miti-
gating localized hotspots [30]. Other prior work of ours has
examined methods for thread-sensitive fetching that rely on
performance counters to adaptively control temperature for
SMT architectures [10]. Related to this is work by Hasan
et al. that attempts to protect SMT processors against the
threat of thermally constrained resources used for a denial-
of-service attack [15]. This, however, protects against a very
specific case of malicious attacks and does not generalize to
adequate control of normal processes.

Powell et al. [29] describe techniques for thread assign-
ment and migration and the intuitive nature of migrating
computation appropriately to balance temperatures [29]. Their
work uses performance counter-based information in a simi-
lar manner to our counter-based migration policy. Although
they compare their technique directly to stop-go and DVFS
policies, they do not consider the possibility of combining
such techniques as we have done.

9. Conclusions
Our work here presents a framework and methodology

for evaluating a variety of thermal control options. We
have performed real hardware measurements to quantita-
tively demonstrate aspects of the challenges in adaptive ther-
mal control. Through simulation of architectural and ther-
mal models we have examined a range of thermal manage-
ment options. We have characterized all twelve policy com-
binations both in terms of instruction throughput and effec-
tive duty cycle.

Our best performing thermal control combination includes
both control-theoretic distributed DVFS and a sensor-based
migration policy. This design represents an elegant two-loop

system allowing the migration policy to utilize feedback in-
formation from the core controllers. It also demonstrates
the value of hardware-software collaboration on the thermal
problem. Hardware performs fine-grained adjustments and
ensures that thermal emergencies are avoided, while soft-
ware uses migration to perform heat balancing and seeks to
optimize the workload’s performance.

Taken together, these studies create an overall picture re-
garding the issues and benefits of various thermal control
policies and their combinations. DVFS mechanisms require
added on-chip flexibility in the PLL and voltage modulation,
but we show them to be robust and effective. Our migra-
tion schemes are fairly lightweight in implementation; they
are designed to operate either with hardware performance
counters (available on essentially all current processors) or
feedback-involved core control.

Although we have examined our spectrum of thermal con-
trol policies as a mixture among three axes, these are not
the only possible dimensions. SMT and asymmetric cores
are two possible extensions.

Given the increasing challenges of thermal design in cur-
rent and future processors, creative combinations of effec-
tive DTM policies are likely to be the only way to truly gain
leverage on the problem. With that in mind, this paper
has offered a taxonomy of DTM techniques and has used
the taxonomy to propose and explore interesting and novel
DTM methods spanning from OS software down to control-
theoretic hardware.

Acknowledgements
We thank Gilberto Contreras, Qiang Wu, and the anony-
mous reviewers for their helpful comments. We would also
like to thank Eugene Otto for his help in obtaining hardware
thermal measurements. This work is supported in part by
grants from NSF, Intel, SRC, and the GSRC/C2S2 joint
microarchitecture thrust.

References
[1] ACPI - Advanced Configuration and Power Interface.

www.acpi.info, 2005.

[2] S. Balakrishnan et al. The Impact of Performance Asymmetry
in Emerging Multicore Architectures. In Proc. of the 32nd Intl.
Symp. on Computer Architecture, June 2005.

[3] S. Borkar. Design Challenges of Technology Scaling. IEEE
Micro, pages 23–29, July/Aug. 1999.

[4] D. Brooks et al. Power-Aware Microarchitecture: Design and
Modeling Challenges for Next-Generation Microprocessors.
IEEE Micro, 20(6):26–44, Nov/Dec. 2000.

[5] D. Brooks and M. Martonosi. Dynamic Thermal Management
For High-Performance Microprocessors. In Proc. of the 7th
Intl. Symp. on High-Performance Computer Architecture,
Jan. 2001.

[6] P. Chaparro et al. Distributing the Frontend for Temperature
Reduction. In Proc. of the 11th Intl. Symp. on
High-Performance Computer Architecture, Feb. 2005.

[7] P. Chaparro, J. González, and A. González. Thermal-Effective
Clustered Microarchitectures. In Proc. of the First Workshop
on Temperature-Aware Computer Systems, June 2004.

[8] J. Clabes et al. Design and Implementation of the

POWER5TMMicroprocessor. In Proc. of the 2004 Intl.
Solid-State Circuits Conf., Feb. 2004.

[9] J. Donald and M. Martonosi. Temperature-Aware Design Issues
for SMT and CMP Architectures. In Proc. of the 5th
Workshop on Complexity-Effective Design, June 2004.

[10] J. Donald and M. Martonosi. Leveraging Simultaneous
Multithreading for Adaptive Thermal Control. In Proc. of the
Second Workshop on Temperature-Aware Computer Systems,
June 2005.

[11] S. Ghiasi and D. Grunwald. Design Choices for Thermal
Control in Dual-Core Processors. In Proc. of the 5th Workshop
on Complexity-Effective Design, June 2004.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

[12] A. González. Research Challenges on Temperature-Aware
Computer Systems (panel). In Second Workshop on
Temperature-Aware Computer Systems. Intel Corp., June
2005.

[13] S. Gunther et al. Managing the Impact of Increasing
Microprocessor Power Consumption. Intel Technology Journal,
Q1(5), June 2001.

[14] Y. Han, I. Koren, and C. A. Moritz. Temperature Aware
Floorplanning. In Proc. of the Second Workshop on
Temperature-Aware Computer Systems, June 2005.

[15] J. Hasan et al. Heat Stroke: Power-Density-Based Denial of
Service in SMT. In Proc. of the 11th Intl. Symp. on
High-Performance Computer Architecture, Feb. 2005.

[16] J. L. Henning. SPEC CPU2000: Measuring CPU Performance
in the New Millennium. IEEE Computer, 33(7):28–35, July
2000.

[17] S. Heo, K. Barr, and K. Asanovic. Reducing Power Density
through Activity Migration. In Proc. of the Intl. Symp. on
Low Power Electronics and Design, Aug. 2003.

[18] W. Huang et al. Compact Thermal Modeling for
Temperature-Aware Design. In Proc. of the 41st Design
Automation Conf., June 2004.

[19] A. Iyer and D. Marculescu. Power Efficiency of Multiple Clock
Multiple Voltage Cores. In Proc. of the IEEE/ACM Conf. on
Computer-Aided Design, Nov. 2002.

[20] S. Kaxiras et al. Comparing Power Consumption of an SMT
and a CMP DSP for Mobile Phone Workloads. In Proc. of the
2001 Intl. Conf. on Compilers, Architecture, and Synthesis
for Embedded Systems, Nov. 2001.

[21] J. Li and J. Martinez. Power-Performance Implications of
Thread-level Parallelism on Chip Multiprocessors. In P=AC2:
IBM Conf. on Architectures, Compilers, and Circuits, Sept.
2005.

[22] Y. Li et al. Understanding the Energy Efficiency of
Simultaneous Multithreading. In Proc. of the Intl. Symp. on
Low Power Electronics and Design, Aug. 2004.

[23] Y. Li et al. Performance, Energy, and Thermal Considerations
for SMT and CMP Architectures. In Proc. of the 11th Intl.
Symp. on High-Performance Computer Architecture, Feb.
2005.

[24] Z. Lu et al. Reducing Multimedia Decode Power Using
Feedback Control. In Proc. of the Intl. Conf. on Computer
Design, Oct. 2003.

[25] J. McGregor. x86 Power and Thermal Management.
Microprocessor Report, Dec. 2004.

[26] A. Merkel, A. Weissel, and F. Bellosa. Event-Driven Thermal
Management in SMP Systems. In Proc. of the Second
Workshop on Temperature-Aware Computer Systems, June
2005.

[27] M. Moudgill, J.-D. Wellman, and J. H. Moreno. Environment
for PowerPC Microarchitecture Exploration. IEEE Micro,
19(3):15–25, May/June 1999.

[28] C. D. Patel. Smart Chip, System and Data Center: Dynamic
Provisioning of Power and Cooling from Chip Core to the
Cooling Tower (keynote). In Second Workshop on
Temperature-Aware Computer Systems. HP Labs, June 2005.

[29] M. D. Powell, M. Gomaa, and T. N. Vijaykumar.
Heat-and-Run: Leveraging SMT and CMP to Manage Power
Density Through the Operating System. In Proc. of the 11th
Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, Oct. 2004.

[30] L. Shang et al. Thermal Modeling, Characterization and
Management of On-Chip Networks. In Proc. of the 37th Intl.
Symp. on Microarchitecture, Dec. 2004.

[31] T. Sherwood et al. Automatically Characterizing Large Scale
Program Behavior. In Proc. of the 10th Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems, Oct. 2002.

[32] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-Theoretic
Techniques and Thermal-RC Modeling for Accurate and
Localized Dynamic Thermal Management. In Proc. of the 8th
Intl. Symp. on High-Performance Computer Architecture,
Feb. 2002.

[33] K. Skadron et al. Temperature-Aware Microarchitecture. In
Proc. of the 30th Intl. Symp. on Computer Architecture, Apr.
2003.

[34] D. C. Steere et al. A Feedback-driven Proportion Allocator for
Real-rate Scheduling. In Proc. of the Third Symp. on
Operating System Design and Implementation, Feb. 1999.

[35] A. Weissel and F. Bellosa. Dynamic Thermal Management for
Distributed Systems. In Proc. of the First Workshop on
Temperature-Aware Computer Systems, June 2004.

[36] Q. Wu et al. Formal Online Methods for Voltage/Frequency
Control in Multiple Clock Domain Microprocessors. In Proc. of

the 11th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, Oct. 2004.

[37] Q. Wu et al. A Dynamic Compilation Framework for
Controlling Microprocessor Energy and Performance. In Proc.
of the 38th Intl. Symp. on High-Performance Computer
Architecture, Feb. 2005.

[38] Q. Wu et al. Voltage and Frequency Control with Adaptive
Reaction Time in Multiple-Clock-Domain Processors. In Proc.
of the 11th Intl. Symp. on High-Performance Computer
Architecture, Nov. 2005.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

