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Abstract— Multiple core designs have become commonplace
in the processor market, and are hence a major focus in
modern computer architecture research. Thus, for both product
development and research, multiple core processor simulation
environments are necessary. A well-known positive feedback
property of computer design is that we use today’s computers
to design tomorrow’s. Thus, with the emergence of chip multi-
processors, it is natural to re-examine simulation environments
written to exploit parallelism.

In this paper we present a programming methodology for
directly converting existing uniprocessor simulators into par-
allelized multiple-core simulators. Our method not only takes
significantly less development effort compared to some prior
used programming techniques, but also possesses advantages by
retaining a modular and comprehensible programming structure.
We demonstrate our case with actual developed products after
applying this method to two different simulators, one developed
from IBM Turandot and the other from the SimpleScalar tool set.
Our SimpleScalar-based framework achieves a parallel speedup
of 2.2X on a dual-CPU dual-core (4-way) Opteron server.

I. INTRODUCTION

High-level simulation has been a primary means of design
and planning for all modern uniprocessor and multiple-core
processor designs. Although many multicore simulators exist
today, questions remain regarding how to best develop these
simulators to take advantage of existing platforms. Computer
design is one of the few fields with a positive feedback
property, of designing tomorrow’s computers using today’s. In
order to best utilize multithreaded and multicore processors,
these simulators should make use of parallelism.

Writing parallel programs is much more difficult and costly
than sequential programming, and architectural simulators
have not been thought of as an obvious exception [17].
Thus, many existing multicore simulators are written merely
in a conventional sequential manner. Extending uniprocessor
simulators to model CMPs had typically involved auditing
all code to convert most variables into corresponding arrays,
converting the inner simulator loop to iterate over these arrays
or even arrays of arrays, and modifying procedures that act
upon these variables in a line-by-line manner. For example,
the following branch predictor declaration in Turandot:

char bp_cond_btable[BP_COND_SIZE];

would be expanded as
char bp_cond_btable[MAX_CORES][BP_COND_SIZE];

Correspondingly, all code that references this variable is re-
quired to use an additional index, and all code calling functions
that reference this variable would have to pass in an additional
index. This process would be repeated for hundreds of such
variables across the simulator’s entire code base.

Such schemes are time-consuming and obfuscate the overall
simulator structure. To avoid inelegant array styles, using
object-oriented or structure types could keep the program
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format somewhat modular. However, with variables spread
across multiple source modules the code must first be wholly
restructured to aggregate these variables. Thus, the source code
of the final product will be dramatically modified regardless.
Aside from being tedious and inelegant, this method does not
provide any clear means to parallelize the simulator.

In this paper we propose an alternative technique that
enables multicore support and parallelization with less pro-
gramming effort. Our method creates a parallel multicore
simulator with an execution design that mirrors the parallel
nature of physical multicore processors. We accomplish this
with relatively minor modifications to uniprocessor simulators,
rather than the difficult two-stage process of first revamping
a uniprocessor simulator to support multicore modeling then
later restructuring for parallelism. Our design can be charac-
terized as follows:

• Each simulated core is represented with a single POSIX
thread containing its own main loop.

• Synchronization between these pthreads is done only
when communication is necessary, reflecting properties
of isolation in real multicore systems.

• The development process does not require an existing
multicore simulator, but can and has been directly applied
to extend uniprocessor simulators.

• The resulting simulators achieve parallel speedup on
multiprocessor platforms, while retaining compatibility
with uniprocessor environments.

Furthermore, we show this involves significantly less coding
effort than conventional methods while retaining modularity
and the majority of the codebase of the original simulator.

There has been much prior work on parallel simulation.
As one recent example, Penry et al. have demonstrated other
methods which utilize automated parallelization of a modeling
framework [17]. Their method uses a behavioral model on
a framework such as LSE [21] or SystemC [10]. Structural
and behavioral models have many uses and have already
been used for commercial processor development [7], but in
reality this is done not as an absolute replacement for fast
conventional high-level simulators. Rather, such simulators
serve as one tool in a product development timeline as a
complement to other simulators by trading speed for model
accuracy. Fast simulators written in sequential languages have
remained essential and are unlikely to disappear anytime soon.

We demonstrate our case with two usable simulators. The
first is Parallel Turandot CMP (PTCMP) which extends from
Turandot [14]. The second is based on the SimpleScalar
framework [4]. Although Turandot is trace-driven while Sim-
pleScalar is execution-driven, our methodology readily applies
to both. We believe this should encourage similar development
to other architectural simulators.

In addition to the benefits of modularity and ease of
development, our method succeeds in boosting simulation
performance, a major goal for any parallel application. We
characterize the speedup of our two simulators on a real
multicore system.
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Separate global and core-local variables
(using scope or __thread qualifiers)

uniprocessor simulator

Write thread-spawning code

Debug

parallel independent cores simulator

Set shared structures (e.g. 
thermal model, L2) back to global

Write synchronization code

parallel multicore simulator

Debug

Fig. 1. Steps to develop a parallel multicore simulator. The parallel
independent cores simulator without synchronization is a stable intermediate
for debugging purposes.

Section II gives an overview of our technique and constructs
for simulator parallelization. Section III describes the two
implementations utilizing our techniques while Section IV
characterizes their simulation performance. Section V dis-
cusses related work and Section VI concludes.

II. OVERVIEW OF TECHNIQUE

A. Parallel Structure
While writing parallel programs is generally difficult, speci-

fying a parallel structure for a multicore architectural simulator
turns out to be more natural compared to other applications.
Parallel simulation is a vast field employing countless tech-
niques, but instead of an adequate combination of methods
for all problems, various techniques are best applied only on
an application-specific basis [8]. Fortunately, the problem of
parallelizing multicore architecture simulation is reasonably
controlled in terms of symmetry and isolation. In this paper
we show it can achieve significant parallel speedup without
employing overly complex parallel programming techniques.

Our approach uses POSIX threads (pthreads) in which
a pthread is made responsible for each modeled core. The
original uniprocessor simulator effectively clones itself into
duplicate cores by calling pthread create. Each core
then runs its own simulation in parallel with other cores.
This way, the simulator code retains the same structure as
the original uniprocessor simulator. Developers focusing only
on the processor core can remain mostly unaffected by the
encapsulating parallel multicore structure.

Chidester and George demonstrate a distributed simulator
developed by parallelizing SimpleScalar with a message-
passing interface (MPI) [5]. They examine several issues for
optimizing communication costs in a distributed environment.
Our work instead parallelizes simulators to run on a shared
memory host. This avoids many of the complex issues of
parallelizing for distributed hosts and allows the programmer
to use most of the original simulator codebase while still
providing significant parallelism.

Variables may fall in the category of being core-specific or
shared. For example, since our processor model shares the L2
cache, this variable should not be cloned for each core. Core-
local variables are inherently cloned by our pthread design.
Specifically, local variables in the pthread starter function are
cloned upon thread creation. On the other hand, variables that
need not be cloned are declared in the parent function or global
storage. Lastly, in order to deal with core-specific variables that
are defined as global in the original uniprocessor simulator, we
use the technique described in Section II-C.

B. Shared Resources and Synchronization
A simple method for synchronizing resources is to use

barriers. For example, to calculate temperatures dynamically
the HotSpot [11] thermal modeling tool requires power data
at fixed intervals. This is implemented using a conventional
barrier that is invoked at coarse-grain intervals (in our case
10,000 cycles).

Even without temperature modeling, shared resources pose
a fundamental need for synchronization. Our method mirrors
sharing and isolation in physical chip multiprocessors. Ensur-
ing ordered accesses to the shared L2 cache is only required
when cores request so. This is also a barrier, but is invoked
not at fixed intervals but rather only in the event of accessing
a shared resource. In our simulators, when an L1 cache miss
occurs we impose the following check before accessing the
shared L2 cache structures:

for i = 0 to num_cores-1
if i != core_id && cycle[i] < cycle[core_id]

lock, wait, restart loop when woken
if i < core_id && cycle[i] == cycle[core_id]

lock, wait, restart loop when woken

The wake signal is sent anytime another core’s cycle count
is incremented. Ultimately, the above condition is that a core
cannot access a shared resource if any other cores have not
yet passed that timestamp. Thus, synchronization is done on a
per-cycle basis, although invoked only when shared resources
are accessed.

On a distributed environment such as a cluster utilizing
message passing, synchronization at the cycle level would be
prohibitively expensive. Chidester and George work around
this in their MPI implementation by introducing a time-slip
quantum to improve communication performance [5]. On a
shared memory platform, however, we find that cycle-level
synchronization is adequate, providing speedups as demon-
strated in Section IV, and well worth its simulation accuracy
and simplicity.

C. Thread-Local Storage

A characteristic of SimpleScalar, and many other simulators
written in sequential languages, is that much of the simulator
state is shared across global variables. Since many of these
variables should instead have multiple copies to reflect the
states of multiple cores, this poses an initial problem. Fortu-
nately, we are able to exploit a language construct known as
thread-local storage (TLS) [20].

In gcc, this feature is invoked using the __thread key-
word before the declaration of any global or static local vari-
able to instruct that it will be automatically cloned into a local
copy upon thread creation. This provides a single keyword
to manually distinguish variables that represent properties of
individual cores (local) versus variables that should be shared
among all cores. Thread-local storage is supported on many
development platforms such as gcc, Microsoft Visual C++,
Borland C/C++ Builder, and Intel C/C++ compiler [20]. TLS
is not, however, a central tenet of our methodology, but rather
a useful implementation trick specific to multithreading in
languages with global variables such as C and C++.

D. Putting It Together

Using all techniques described in this section, a stepwise
development process is shown in Figure 1. This design flow
is simpler than the general problem of converting any array-
based sequential program to use multiple threads. Specifically,
this involves cloning a program rather than partitioning, and
a stable intermediate can be debugged before implementing
synchronization.

Although debugging multithreaded programs is notoriously
difficult, our method partitions development by separating
core-specific and multicore interface variables. Bugs in the
multicore model are limited to routines acting on shared
resources guarded by the synchronization condition, while the
process of debugging core-only features can be simplified by
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running only one core. These methods also give the developer
the option to extend the parallel simulator to model other
sharing options besides the L2 cache.

III. IMPLEMENTATIONS

A. Turandot (PTCMP)
Our first parallel multicore simulator is Parallel Turandot

CMP (PTCMP), based on Turandot [14]. PTCMP has already
been used in [6]. For power and thermal modeling, it is
integrated with Powertimer [2] and HotSpot version 2.0 [11].

The control flow of PTCMP is very similar to that of parallel
programs that run a fixed number of pthreads. One pthread for
each core is generated at startup, and all threads are joined at
the end.

The original Turandot’s characteristic program structure in-
volves storing almost all core variables on a single stack. This
allows us to conveniently take advantage of variable cloning
through the use of pthreads. As described in Section II-C, TLS
is necessary only if variables to be cloned reside in global
storage. Because each local variable in the function spawned
by calls to pthread create is already effectively cloned
per core, our latest version of PTCMP does not require any
thread-local variables hence it can be built using a compiler
without TLS support.

PTCMP also supports simultaneous multithreading, parallel
benchmarks (used in [6]), heterogeneous cores, and frequency
scaling all within its parallel framework. In terms of functional
correctness, PTCMP was written to exactly match the timing
and power statistics of Turandot CMP [12]. This is possible
because our method does not limit modeling accuracy worse
so than in sequential simulators.

The parallel benchmark support requires modeling both
synchronization and MESI cache coherency. These are handled
using the same method as for the shared L2 cache. Although
fairly large development tasks, our simple synchronization
method ensured these to be not any more difficult to develop
and debug than in the case of a sequential simulator.

Turandot is a purely trace-driven simulator. In the following
subsection, we show that our methodology can be readily
applied to an execution-driven simulator.

B. SimpleScalar
We developed a parallel version of SimpleScalar using

lessons learned from the development of PTCMP. Because
Turandot is PowerPC-based, we chose the PowerPC ISA
version of SimpleScalar [19] in order to remain consistent in
our comparisons and for compatibility with our toolchain. To
best match the synchronizing penalties used in PTCMP, we
required a thermal model, which inherently requires a power
model. Thus, we began by extending sim-outorder with
Wattch [3] and then HotSpot 2.0 [11].

A main difficulty with SimpleScalar that had not been en-
countered with PTCMP was the abundance of global variables.
Unlike PTCMP, SimpleScalar shares its variables across sev-
eral independently compiled source files. All global and local
static variables, including those in subcomponent libraries, had
to be manually located and set to use TLS if appropriate.
Although we cannot simulate multiple cores on hosts that do
not support TLS, such as Cygwin, we are at least able to
retain portability for single-core simulation support. This is
done simply by using a global build option -D__thread=
to disable TLS.

The SimpleScalar PowerPC package, containing our parallel
sim-outorder and its associated tools, is freely available to
download for noncommercial purposes using the link provided
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Fig. 2. Simulator performance when varying the number of available cores
on a 4-way Opteron server.

in Section VI. It has been tested for compatibility under Fedora
Core 4 and gcc 4.0.

IV. SPEEDUP RESULTS

We test an 8-program workload formed from the following
SPEC CPU2000 benchmarks: applu, bzip2, gap, gzip,
mesa, mgrid, swim, and wupwise. Although PTCMP sup-
ports parallel benchmarks, our parallel SimpleScalar does not,
so we have opted to examine a multiprogrammed workload. To
ensure matching instruction stream inputs to both simulators,
we actually used SimpleScalar to generate the tt6e-format
traces for Turandot. The workload is run such that at least
50 million instructions have completed on each core, totaling
about 800 million instructions due to the mix of programs with
different IPC. We simulate this on a dual-processor Opteron
server where each processor has two 1.8 GHz cores, for a total
of four virtual processors. The performance results of both
simulators measured in thousands of instructions per second
(KIPS) are shown in Figure 2. Because our design assigns
one pthread per simulated core, these simulations each spawn
8 pthreads.

We do not compare in detail the absolute speed of our
simulators to the few prior works on parallel multicore sim-
ulation because we are using different models and testing on
different host platforms. For example, both our simulators are
significantly faster than cycle-accurate multicore simulation
with LSE [17], reasonable because LSE provides more detailed
microarchitectural modeling [21].

PTCMP is the faster simulator in all cases because of
Turandot’s extensive use of predecoded information [14] and
because the overhead of functional modeling is avoided in a
trace-driven framework. However, because this simulator is
trace-driven it becomes I/O-bound when simulating a moder-
ately large number of input programs. Thus, we are able to
achieve at most 1.5X speedup and performance decreases be-
yond three nodes because of congestion in the HyperTransport
channels.

On the other hand, our parallel SimpleScalar is execution-
driven. Thus, for this we see larger speedups linear with
respect to the number of nodes. The parallel speedup achieved
when utilizing all four cores is 2.2X.

Although the results in Figure 2 are only for a sin-
gle 4-way system, we have observed parallel speedup on
HyperThreadedTMprocessors and expect greater speedups on
future many-core platforms. Our multithreaded simulators
also may run on uniprocessor hosts at baseline performance.
Thus, when the parallelism is not satisfactory, high-throughput
computing can be achieved by running several multicore
simulation jobs each using only one core. This way, if indi-
vidual simulation turn-around time is not the highest priority,
researchers can still benefit from quickly developing a robust

IEEE Computer Architecture Letters Vol. 5, 2006



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

multicore simulator. Like most sequential simulators, the base-
line single-node performance when using our method slows
down only linearly with respect to the number of simulated
cores or number of instructions executed. Furthermore, even
on uniprocessor hosts, parallel simulators may still see minor
speedup versus sequential simulators because multithreaded
applications can better overlap computation with I/O.

V. RELATED WORK

An alternative simulation method that served partly as the
motivation for PTCMP was that of Zauber [13]. Although
Zauber is a significant improvement in simulation speed com-
pared to its predecessor Turandot CMP [12], it utilizes an
approximate model for shared resources requiring a second
simulation pass. This removes cycle-accuracy in single-pass
simulation, which is necessary for experiments in inter-core
dynamic adaptive policies.

Much past work has explored the broad problem of parallel
discrete event simulation (PDES) [8], [16]. Various studies
have examined synchronization protocols, conservative vs op-
timistic synchronization, hybrid techniques, load balancing,
and many other issues. However, the consensus is that there
is no one silver bullet and various techniques are best im-
plemented on an application-specific basis. To consider some
state-of-the-art techniques, we could apply optimistic syn-
chronization to increase our simulators’ parallel performance.
However, our goal has not been to maximize parallelism at
any cost. Rather, we have sought to achieve parallelism using
relatively simple modifications to existing simulators.

Structural design methodologies can be modeled with PDES
and are able to exploit parallelism with the help of an
automating framework. This not only includes [17], but also
RTL-based and gate-level simulation. Existing simulators for
hardware description languages such as Verilog and VHDL
have been written to exploit parallelism through various PDES
techniques. However, these stages of processor design exist for
the purpose of detailed simulation, and are inherently orders
of magnitude slower than high-level simulators.

Among parallel architecture simulators, the Wisconsin Wind
Tunnel (WWT) [18] and WWT II [15] use PDES and direct
execution to simulate shared-memory target systems on a a
variety of parallel hosts. Tango Lite is another direct execution
simulator, originally written for uniprocessors but later paral-
lelized for distributed systems [9]. However, direct execution
precludes simulating architectures with an ISA different from
the host or testing microarchitectural parameters such as issue
width and pipeline depth. Chidester and George implement
a parallel version of SimpleScalar using MPI [5]. Although
they address many issues relevant for efficient distributed
processing, our work shows similar speedups can be achieved
with a simpler implementation on a shared memory host.
Barr et al. develop a parallel implementation of Asim [7] to
show how simulators built from the ground up with an object-
oriented multicore model may allow additional cores to be
simply instantiated then parallelized [1]. Their infrastructure
requires a barrier synchronization method like the one we have
presented, but no task of additional separation between core
and shared variables. Thus, such practical parallelization on
already-modular simulators can be thought of as a subset of
our technique.

VI. CONCLUSIONS

We have proposed and demonstrated a methodology for par-
allel multicore simulator construction. With successful imple-
mentations on 2 different infrastructures, we believe this shows
our techniques can readily be applied to other frameworks.

On a 4-node system we found speedups of 1.5X and
2.2X for PTCMP and SimpleScalar, respectively. This gain
is only secondary to the benefits of code structure modularity
and quick development from uniprocessor simulators without
tedious recoding.

The parallel multicore edition of Sim-
pleScalar PowerPC is available for download at
http://parapet.ee.princeton.edu/ssppc/. It may be used as
a foundation for studies in performance, power, and
temperature of multicore PowerPC architectures, or may
serve as a concrete reference point to understand and apply
this methodology to other simulators.
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