
Bounds on Power Savings Using Runtime Dynamic
Voltage Scaling: An Exact Algorithm and a Linear-time

Heuristic Approximation

Fen Xie
Dept. of Electrical Engineering

Princeton University
Princeton, NJ

fxie@princeton.edu

Margaret Martonosi
Dept. of Electrical Engineering

Princeton University
Princeton, NJ

mrm@princeton.edu

Sharad Malik
Dept. of Electrical Engineering

Princeton University
Princeton, NJ

sharad@princeton.edu

ABSTRACT
Dynamic voltage/frequency scaling (DVFS) has been shown to be
an efficient power/energy reduction technique. Various runtime
DVFS policies have been proposed to utilize runtime DVFS oppor-
tunities. However, it is hard to know if runtime DVFS opportuni-
ties have been fully exploited by a DVFS policy without knowing
the upper bounds of possible energy savings. We propose an ex-
act but exponential algorithm to determine the upper bound of en-
ergy savings. The algorithm takes into consideration the switching
costs, discrete voltage/frequency voltage levels and different pro-
gram states. We then show a fast linear time heuristic can provide
a very close approximate to this bound.

Categories and Subject Descriptors
I.6.4 [Computing Methodologies]: Simulation and Modelling—
Model Validation and Analysis

General Terms: Design, Algorithms

Keywords: Low Power, Dynamic Voltage Scaling, Bounds on En-
ergy Savings, Linear Time

1. INTRODUCTION
With aggressive CMOS technology scaling, high power/energy

consumption has become a limiting factor in our ability to develop
designs not only for battery-operated mobile systems but also for
server and desktop systems due to exorbitant cooling, packaging
and power costs.

In CMOS systems, dynamic power dissipation varies linearly
with frequency and quadratically with supply voltage as given by
the equation Power ∝ αCLV 2

DDf , where α is the switching ac-
tivity factor, CL is the load capacitance, VDDis the supply voltage
and f is the clock frequency. Considering that most applications do
not need to continuously maintain peak performance, dynamic volt-
age/frequency scaling (DVFS) trades off performance for energy
savings by scaling down the voltage/frequency when peak perfor-
mance is not required. As an efficient energy reduction technique,
DVFS has been implemented in several contemporary micropro-
cessors such as Intel Xscale [6] and Transmeta Crusoe [14].

Various policies have been proposed to use DVFS techniques to
reduce energy consumption. These policies can be classified as
compile-time policies [17] and runtime policies [10, 8, 11, 15,
13, 16, 4] based on when the decisions to switch voltage/frequency
are made. Runtime DVFS policies have received more research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’05, August 8–10, 2005, San Diego, California, USA
Copyright 2005 ACM 1-59593-137-6/05/0008 ...$5.00.

attention because of the ability to reduce energy consumption in
response to variations in workload. Hence, the study of theoret-
ical bounds for energy savings by runtime DVFS is important in
the sense of guiding the development of an efficient runtime DVFS
policy or assessing a particular policy.

In this paper, we are interested in providing the upper bounds on
energy savings (or lower bounds on energy consumption) given a
DVFS-enabled processor and a particular workload. Several mod-
els have been studied in the past to provide the upper bounds of en-
ergy savings by runtime DVFS. Unfortunately, those models often
make unrealistic assumptions that limit their value. For example,
they assume no cost for switching voltage/frequency [7], they re-
quire continuous voltage scaling [18], or they assume linear scaling
with CPU speed, ignoring non-scalable factors like off-chip mem-
ory accesses or I/O [12, 7].

The primary contributions of this paper are:
• We propose a realistic model to study the upper bounds on

energy savings of runtime DVFS. The model includes a re-
alistic DVFS-enabled processor with discrete voltage levels
and switching overheads due to voltage/frequency scaling.
The model also considers non-scalable program behavior in-
cluding off-chip memory accesses and I/O service.
• We propose an optimal algorithm to provide the exact upper

bound, which works efficiently for problems with up to thou-
sands of computation segments that can be independently
scaled (referred to as scaling units).
• We provide a linear-time heuristic algorithm to very closely

approximate the upper bound, which makes our model work
for large problems. For example, our method can generate
a bounded near-optimal value for a 300 billion instruction
problem in seven minutes.

The rest of paper is organized as follows: Section 2 describes the
model including model assumptions and notation. Section 3 in-
troduces an exact algorithm and discusses the complexity of the
algorithm. Section 4 presents the linear-time heuristic algorithm
and compares the results with the exact algorithm. Section 5 com-
pares energy bounds predicted by an optimistic analytical model
and energy bounds by runtime DVFS with the energy results using
an optimal compile-time DVFS policy. Finally, Section 6 summa-
rizes the contributions of our work.

2. PROBLEM STATEMENT
We define scaling points to be a series of events such as timer

interrupts and cache misses where voltage/frequency scaling can
occur. Consider a run of a program on a given data input. The
trace of instructions is sliced at scaling points into M units labelled
1,2,...M by scaling points. These M units are referred to as scaling
units, each of which can be scheduled to a specific V/f level. Con-
sider this sequence of scaling units running on a DVFS-enabled
microprocessor with N discrete voltage/frequency levels. Our goal

Unit (t,e) at V1/F1 (t,e) at V2/F2

1 (2,1) (1,4)
2 (2,1) (1,5)
3 (2,1) (1,4)
4 (2,1) (1,4)

Table 1: A simple example with four scaling units and two scal-
ing levels. (t,e) indicate the execution time and energy at each
scaling unit.
is to find a set of V/f assignments (x1, x2, ... ,xM) such that the
energy consumption using this set of V/f assignments is minimized
while meeting the performance requirements expressed in the form
of a deadline. If the scaling units can be made arbitrarily fine, then
this method determines the upper bound on energy savings of any
possible DVFS policy that can be applied for this program trace.
It can be shown that this problem is a NP-hard combinatorial op-
timization problem (an instance of multiple-dimensional knapsack
problem) and can be solved by searching feasible solutions in the
solution space. In this paper, we present the exact upper bounds
of possible energy savings by an optimal assignment and then in-
troduce a linear-time heuristic algorithm to approximate the exact
upper bounds. We first introduce the assumptions and notation used
in the paper.

2.1 Assumptions and Notations
2.1.1 System assumptions

There are N voltage/frequency scaling levels, namely V1/F1,
V2/F2, ... and VN/FN where VN/FN denotes the highest volt-
age/frequency level. The energy and time overheads for one volt-
age/frequency scaling from Vi/Fi to Vj/Fj are denoted by SE and
ST . In this paper, we use equations taken from [2] to calculate the
overheads:

SE = (1− u) ∗ c ∗ |V 2
i − V 2

j | (1)

ST =
2 ∗ c

IMAX

|Vi − Vj | (2)

where c is the capacitance of the voltage regulator, u is the en-
ergy efficiency of the power regulator and IMAX is the maximum
allowed current. To model leakage energy, the CPU consumes a
portion of its power even when it is idle due to off-chip accesses.
2.1.2 Notation

Let Tij and Eij denote the execution time and energy consump-
tion of the ith scaling unit ui running at the jth V/f level. Tupper

refers to the total execution time of all scaling units running at the
highest frequency VN/FN .

xi is the V/f level assigned to the ith scaling unit. We use the
tuple (x1,x2,...,xi) to represent a set of V/f assignments for the first
i scaling units and define SET (x1,x2,...,xi) to be the sets of V/f
assignments for the the first i scaling units. Tuples are referred to
as partial solutions when i is less than M . t(x1,x2,...,xi) refers
to the execution time using the partial solution for the first i scal-
ing unit, which includes time overheads if switching occurs (i.e. if
xj 6= xj+1). Similarly, e(x1,x2,...,xi) refers to the total energy
consumption using the partial solution for the first i scaling unit
including energy overheads for switchings.

Tuples of length M (x1,x2,...,xM) represent the complete schedul-
ing solutions. Feasible solutions refer to a subset of solutions that
satisfy the deadline requirements.

3. OPTIMAL ALGORITHM
The standard way to solve the optimal DVFS problem is to search

the solution space until an optimal solution has been found and
confirmed. Considering the succession of scaling units, we use
breadth-first search that generates partial solutions along with the
input sequence. The algorithm enumerates all possible V/f levels
for the first scaling unit and generates partial solution set (x1) after
considering the first scaling unit. Then for each (x1), it enumerates

all possible V/f levels for the second scaling unit and generates all
partial solutions (x1,x2) after considering the second scaling unit.
This process repeats until complete solutions have been generated
(x1,x2,...,xM) after considering the last scaling unit.

We can visualize the process as building a state space tree such
as the one shown in Figure 1. Each node in the tree represents a
problem state and the path from the root node to a level i node rep-
resents a solution state that defines a partial solution (x1,x2,...,xi).
Starting from a root node, the algorithm branches on possible V/f
levels for the first scaling unit and generates level 1 nodes, each of
which represents a partial solution (x1). Then for each node at level
1, it branches on all possible V/f levels for the second scaling unit
and generates level 2 nodes representing partial solutions (x1,x2).
It continues branching from higher level nodes until reaching level
M nodes. The naive algorithm would result in N i+1 nodes at level
i for the general case of N choices per level.

Due to the deadline and the optimality requirements, branching
from unpromising nodes that generate infeasible solutions or non-
optimal solutions should be avoided. There are two circumstances,
referred to as pruning conditions, in which branching from a certain
node will be discontinued.

Suppose the partial solution defined by node k is (x1,x2,...,xi).
We define t(x1,x2,...,xi) and e(x1,x2,...,xi) as the execution time
and energy consumption of the node. The shortest remaining time
(SRT) of node k is defined as the execution time running the re-
maining scaling units at the highest frequency, i.e. t(xi+1 = N ,...,
xM = N).

If node k satisfies one of the following conditions, the branching
from node k will be discontinued:

1. The sum of the execution time and the shortest remaining
time of node k is greater than the deadline, i.e.

t(x1, x2, ..., xi) + t(xi+1 = N, ..., xM = N) > deadline

The inequality means the partial solution will not meet the
deadline by running the remaining scaling units at the high-
est frequency. Thus any solutions generated from this node
are infeasible solutions. Nodes satisfying this condition are
called infeasible nodes because they generate infeasible so-
lutions.

2. There exists a level i node l (b1,b2,...,bi) such that:

bi ==xi

t(b1, b2, ..., bi) ≤ t(x1, x2, ..., xi)

e(b1, b2, ..., bi) ≤ e(x1, x2, ..., xi)

In this case node l uses both less energy and less time than
node k and can always be used instead of node k to generate
a better solution without additional switching of V/f levels.
Since our goal is to find a feasible solution with the low-
est energy consumption, if a node is confirmed to generate
non-optimal solutions, branching from this node should be
stopped to reduce unnecessary node generation. The exis-
tence of node l declares that node k will not generate the op-
timal solution since the best feasible solution generated from
node l will always consume less energy consumption than
the best feasible solution generated from node k. Node l is
referred to as the dominating node.

Nodes satisfying either condition 1 or 2 are referred to as dead
nodes. We use the function PRUNE to check the status of nodes.
If PRUNE (x1,x2,...,xi) returns true, the node is a dead node and
there is no need to branch from that node. Otherwise, the node is
live and further branching is possible.

Let us look at a simple example. Suppose there are four scaling
units running on a processor with two voltage/frequency levels as
shown in Table 1. Assume the initial V/f level is V2/F2 and dead-
line is 7. We also assume the switching time overhead is 1 and
energy overhead is 1. The generated state space tree is shown in

0,01 2

1 2

3,2

5,8

2

5,3

7,87,4

1 2

6,128,10

1 2

1,4

2,9

1 2

4,6

6,116,7

1 2

3,135,11

x1

x2

x3

0

1 2

3 4 5 6

Level
0

1

2

3

7 8 9 10

11 12 13 14

11

1 2

8,128,9

1 2

7,159,13

1 2

4,176,157,167,12

x42 1

15 16 17 18 19 20 21 22

4

Figure 1: The state space tree constructed from the four scaling
unit example.

Figure 1. We start from a root node and branch on the first scaling
unit x1. Since there are 2 V/f levels, x1 can be either 1 or 2. Thus
root node generates two level 1 nodes: node 1 and node 2. Both
nodes are live nodes. We pick node 1 to branch on x2 and gener-
ate node 3 and node 4. Then we pick node 2 to branch on x2 and
generate another two level 2 nodes: node 5 and node 6. All four
nodes are live nodes, so we continue branching on x3 and generate
nodes 7-14. Node 7 satisfies pruning condition 1 since the deadline
is 7 and the execution time of node 7 plus the SRT is 7 + 1 = 8
exceeding the deadline. Thus node 7 is a dead node. For the same
reason, node 8 and node 9 are dead nodes. Node 10 is dead be-
cause node 10 consumes more energy than node 12 while having
the same execution time and assignment for x3. We branch on x4

from node 11 to node 14, which are live nodes, and generate node
15 to node 22 where solid-lined nodes (node 18 to node 22) repre-
sent feasible solutions and dot-lined nodes (node 15, node 16 and
node 17) are infeasible solutions. Node 19 represents the optimal
solution (2,2,1,1) with the minimum energy consumption 12.

The pseudo-code of the optimal algorithm is given as the proce-
dure BRANCH-PRUNE in Algorithm 1.

3.1 Practical Complexity
In this section, we will discuss the practical complexity of the

optimal algorithm. We first discuss the impact of deadlines on the
complexity. Then we will show the optimal algorithm needs expo-
nential runtime with respect to the number of scaling units.

We consider a DVFS-enabled processor with five voltage/frequency
levels similar to some of the voltage-frequency pairings available
in Intel’s XScale processors [5]: 0.7V/200MHz, 0.99V/400MHz,
1.3V/600MHz, 1.65V/800MHz and 2.05V/1GHz. We use c =
10µf, IMAX = 1A, u = 90% in Equation (1-2) to calculate switch-
ing overheads, which generates switching time of 12 µs and switch-
ing energy of 1.2µJ for a transition from 600MHz to 200MHz.
Note that those settings are parameters and can be changed easily.
We consider the size of a scaling unit to be 106 instructions. Four
benchmarks from MediaBench [9] are used to generate energy/time
profiles using SimpleScalar [3] with Wattch [1]. The number of
scaling units for each benchmark is listed in Table 2 that includes
the execution time and energy consumption using five V/f levels
for each benchmark. Six deadlines for each benchmark are picked
from tight to loose as shown in Figure 2. Deadline1 sits at the
middle of the execution time using 1GHz and the execution time
using 800MHz. Deadline2 sits at the middle of execution times
using 800MHz and 600MHz. Deadline3 sits at the middle of exe-
cution times using 600MHz and 400MHz. Deadline4 to deadline6
sit evenly between execution times using 400MHz and 200Mhz.

We first examine the impact of different deadlines on the algo-
rithm complexity. Figure 3 shows the number of nodes generated at
each level using six different deadlines for benchmark gsm. Figures
for other benchmarks are similar in shape to Figure 3.

1GHz 800MHz 600MHz 400MHz 200MHz

deadline1 deadline2 deadline3 deadline5 deadline6deadline4

Figure 2: The positions of deadlines with respect to the execu-
tion times using single frequency.

0 200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6
x 10

5

N
um

be
r

of
 n

od
es

Level of the state space tree

deadline1
deadline2
deadline3
deadline4
deadline5
deadline6

tight

loose

Figure 3: The number of nodes generated at each level for
benchmark gsm (1380 scaling units) by the exact algorithm us-
ing six deadlines from tight to loose.

Note that the number of nodes generally increases at first as the
level increases, and then decreases when approaching the end. This
is because at the beginning, few nodes satisfy the first deadline
pruning condition. Nodes compete with each other for optimality
and only the second pruning condition is responsible for remov-
ing non-optimal nodes. As the level grows, the execution time of
nodes approach deadlines. Then more nodes are killed by the first
deadline pruning condition.

We notice that the middle deadlines generate more nodes than
tight deadlines (deadline 1 and deadline 2) and loose deadlines
(deadline 5 and 6). This reflects the fact that the solution space
shrinks when the deadline approaches the upper bounds and lower
bounds of execution time. However, the reasons for the reduced
number of nodes are different. For tight deadlines, significant num-
ber of nodes are taken out by the first pruning condition because of
infeasibility. For loose deadlines, most nodes are killed because of
the confirmed non-optimality by the second pruning condition.

Next, we will examine the relationship between the number of
total nodes generated in the state space tree and the number of scal-
ing units. Table 3 shows the total number of nodes for benchmarks
using six deadlines.

The adpcm benchmark has 82 scaling units and requires 396055
nodes for deadline3. The epic benchmark has 646 scaling units and
required nodes increase to 5.1 ∗ 107, which is 1000 times larger.
For the mpeg benchmark, which has 2179 scaling units, the num-
ber rises to 2.1∗109 , which is 5∗104 times larger than adpcm. The
results demonstrate that the number of nodes grows exponentially
as the number of scaling units gets larger. Table 3 also shows the
runtime using the exact algorithm. The algorithm works efficiently
for small scaling unit sets. epic and gsm take seconds while mpeg
takes around 1 minute. However, the runtime increases quickly as
the number of scaling units increases. In fact, it takes hours to find
the optimal solution when the number of the scaling units rises to
thousands. Thus the exact algorithm is impractical for analyzing
large problems with tens of thousands scaling units. This motivates
our linear-time heuristic algorithm to approximate the bounds pro-
vided by the optimal algorithm.

4. LINEAR-TIME HEURISTIC ALGORITHM
The pruning function in the optimal algorithm does a good job

of removing unpromising nodes and thus significantly shrinking
the search paths. However, a vast majority of solutions (partial
solutions) must be enumerated before optimality can be confirmed

(t,e)@200Mhz (t,e)@400Mhz (t,e)@600Mhz (t,e)@800Mhz (t,e)@1000Mhz M scaling units
adpcm 55.9, 10.3 28.0, 15.5 18.6, 24.2 14.0, 37.3 11.2, 56.3 82
epic 422.0, 82.5 212.8, 126.3 142.0, 199.1 106.6, 308.0 85.3, 465.4 646
gsm 1064.2, 183.4 532.2, 276.1 354.8, 433.0 266.1, 668.0 212.9,1007.6 1380

mpeg 1525.8, 285.0 763.2, 430.4 509.1, 676.0 382.0, 1043.8 305.7,1575.3 2179

Table 2: Basic information for benchmarks.

number of nodes runtime
adpcm epic gsm mpeg adpcm epic gsm mpeg

deadline1 0.6 × 105 0.8 × 107 0.9 × 108 0.3 × 109 0.05s 22s 5m5s 12m
deadline2 3.0 × 105 2.9 × 107 2.1 × 108 1.0 × 109 0.74s 88s 12m41s 41m
deadline3 4.0 × 105 5.1 × 107 2.5 × 108 2.1 × 109 1.06s 165s 11m15s 94m
deadline4 3.0 × 105 2.4 × 107 1.8 × 108 1.7 × 109 0.76s 76s 7m5s 75m
deadline5 1.9 × 105 1.7 × 107 1.5 × 108 1.6 × 109 0.39s 54s 5m35s 69m
deadline6 0.9 × 105 0.9 × 107 0.6 × 108 0.7 × 109 0.14s 27s 2m19s 25m

Table 3: The number of nodes and runtimes for benchmarks using six deadlines

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

x 10
5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Execution Time (us)

E
ne

rg
y

C
on

su
m

pt
io

n
(u

J)

4.82 4.825 4.83 4.835 4.84 4.845

1.682

1.684

1.686

1.688

1.69
x 10

5

Figure 4: The energy-delay relationship for all nodes at the
same level.

in the worst case for the optimal algorithm. We are looking for a
mechanism to further shrink the search scope in the solution space
by removing unpromising nodes.

Figure 4 shows the energy consumption and execution time of
nodes at the same level for benchmark mpeg in the state space tree
using the same V/f assignment where each dot represents a node.
First, we notice that the trend of the dots is monotonically decreas-
ing. This is due to the second pruning condition. Second, we no-
tice that instead of scattering randomly, nodes are clustered. This is
due to the discrete voltage/frequency levels. Those clustered nodes
have close energy consumption and execution time as shown in the
embedded figure window. Thus the best solutions generated from
these clustered nodes also have close energy consumptions. If one
of them leads to the optimal solution, then the solutions generated
from other nodes produce near-optimal results. If we choose one
of them and remove the others, we might remove the optimal node
but we can still get a near-optimal solution. If none of the nodes
leads to the optimal solution, then there is no harm to keep one
and remove others. This way, we can reduce the number of nodes
greatly.

We create bins by dividing the energy axis (y axis) evenly into
nbins number of ranges. Suppose the energy consumption of the
leftmost node is Emax and the rightmost node is Emin. Then the
energy difference between nodes within the same bin is less than
(Emax−Emin)/nbins. We keep one node in each bin and remove
the others. Hence the number of nodes at each level is controlled to
be at most nbins.

Now we need to decide which node to keep. Considering hard-
ware complications from voltage/frequency scaling such as pipeline
flushing, fewer switches are usually preferred. Thus we pick the

node with the lowest switching count. If there are multiple nodes
with the lowest switching count, we choose the one with the lowest
energy-delay product since using energy (or delay) as the metric
alone will favor solutions with low frequency (or high frequency).

As shown in Algorithm 1, the heuristic algorithm is built on
the exact algorithm. After generating all nodes by the BRANCH-
PRUNE procedure, instead of proceeding to the next level, the
heuristic traverses the nodes and keeps one node for each bin. This
screening procedure is described in Procedure SELECT that selects
one node with the lowest energy-delay product from the nodes with
the lowest switching count and removes other nodes in each bin.

4.1 Algorithm Complexity
Suppose the major costs of statements are C1,C2,C3 and C4 as

shown in Algorithm 1. There are at most nbins nodes at each
level. For procedure BRANCH-PRUNE, the first FOR loop needs
nbins∗N ∗C1 steps in the worst case. The second FOR loop needs
nbins ∗ N ∗ C2 steps in total. Thus the total cost for procedure
BRANCH-PRUNE is nbins∗N ∗ (C1 +C2). Procedure SELECT
needs nbins∗N ∗C3+nbins∗N ∗C4. Therefore, the total cost for
building nodes for one level is nbins ∗N ∗ (C1 + C2 + C3 + C4)
in worst case. Let Clevel = C1 + C2 + C3 + C4. Since there
are M scaling units in total, the total runtime cost is bounded by
M ∗ nbins ∗N ∗Clevel, which is linear in M when nbins and N
are fixed.

Figure 5 shows the number of generated nodes for four bench-
marks using six different deadlines for 100 bins. The node number
is normalized to the number of nodes generated by the exact algo-
rithm. For small programs such as the adpcm benchmark, the node
reduction is not effective. As the number of scaling units increases
such as for the mpeg benchmark, the number of nodes is reduced
significantly.

4.2 Discussion
In this section, we will compare the energy results using the

heuristic algorithm with the results using the exact algorithm de-
scribed in Section 3.

The energy results generated by the exact algorithm and the heuris-
tic are shown in Figure 6. Energy consumption is normalized to the
energy consumption using the exact algorithm. As shown in the
figure, the heuristic generates higher “minimum energy”. However,
the energy difference is very small especially when the number of
bins is big. When using 100 bins, i.e. at most 100 nodes at each
depth, the results from the heuristic algorithm are very close to the
optimal results for adpcm, epic, gsm and mpeg. The energy differ-
ence is less than 1% for all benchmarks.

It is not surprising that the heuristic algorithm produces near-
optimal results. As shown in Figure 4, there exist many near-

Algorithm 1 the Heuristic Algorithm

1: procedure BRANCH-PRUNE(SET (x1, .., xi−1), , E(i), T (i))
2: for each (x1, .., xi−1) ∈ SET do
3: for j ← 1 to N do . Worse-case cost for one iteration C1

4: SRT [i]← SRT [i− 1] − T [i, N]
5: t(x1, .., xi)← t(x1, .., xi−1) + T (i, j)
6: e(x1, .., xi)← e(x1, .., xi−1) + E(i, j)
7: if PRUNEDEADLINE(x1, .., xi) == False then . Pruning Condition 1
8: Insert (x1, .., xi) in SET (x1, .., xi) based on energy
9: end if

10: end for
11: end for
12: for each (x1, .., xi) ∈ SET (x1, .., xi) do . Worse-case cost for each iteration C2

13: if PRUNEOPTIMALITY (x1, .., xi) == TRUE then . Pruning Condition 2
14: Remove (x1, .., xi) from SET (x1, .., xi)
15: end if
16: end for
17: end procedure
18:
19: procedure SELECT(SET,nbins)
20: distribute nodes (x1, .., xi) ∈ SET into nbins bins . Cost Length(SET) ∗ C3

21: for i← 1 to nbins do . Worst-case cost for one iteration C4

22: tran← the nodes with the lowest transition counts in the bin
23: min← the node with the lowest energy-delay product in tran
24: Remove nodes other than min, the first node and the last node in the bin
25: end for
26: end procedure

adpcm epic gsm mpeg
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N
o

rm
al

iz
ed

 N
o

d
e

C
o

u
n

ts
 (

 t
o

 t
h

e
ex

ac
t

al
g

o
ri

th
m

) deadline1
deadline2
deadline3
deadline4
deadline5
deadline6

Figure 5: The number of total nodes generated by the heuristic
for MediaBench benchmarks using 100 bins. The numbers are
normalized to the nodes generated by the exact algorithm.
optimal solutions. This is because many scaling units are similar
in terms of the scalability of the execution time and energy with re-
spect to frequency. Suppose that at one step, the node leading to the
optimal solution is removed and another node with smaller energy-
delay product is kept. If we define error to be the energy difference
between node leading to the optimal solution and the chosen node,
then error is introduced here. However, error is not cumulative with
the growth of levels. For example, if the execution time of the cho-
sen node is less than the optimal node (the energy consumption of
the chosen node is higher than the optimal node), then a short pe-
riod of slack is introduced. This period of slack can be reclaimed
by slowing down some scaling units later on, which reduces the
energy difference and thus the error. For large programs, this error
adjustment occurs more often. The worst case is the chosen node
leads to infeasible solutions that exceeds the deadline. In that case,
the solution generated from the node in the neighboring bin with
higher energy (shorter execution time) will be chosen. However,
this error is still bounded by the energy difference between bins.

adpcm epic gsm mpeg
0.8

0.85

0.9

0.95

1

1.05
N

o
rm

al
iz

ed
 E

n
er

g
y

(t
o

 t
h

e
ex

ac
t

al
g

o
ri

th
m

)

deadline1
deadline2
deadline3
deadline4
deadline5
deadline6

Figure 6: The energy consumption by the heuristic using 100
bins for MediaBench benchmarks. Energy is normalized to en-
ergy of the exponentially-complex exact algorithm.

We show the runtime of MediaBench [9] benchmarks using heuris-
tic algorithm with 100 bins in Table 4. The heuristic algorithm
takes significantly less time than the exact algorithm. For bench-
mark mpeg, the runtime is only about 2 seconds instead of hours
using the exponentially-complex exact algorithm. The speedup is
up to 1000X while the energy difference between the heuristic and
the exact algorithm is less than 0.5%. Also the runtime differences
between different deadlines are not as dramatic as the exact case.
5. COMPARISON OF BOUNDS

In this section, we compare the lower bounds of energy con-
sumptions using the optimistic analytical model from [17] that con-
siders the ideal case where the V/f may be switched at no cost af-
ter every instruction, the possible minimum energy consumption
for runtime DVFS using the exact algorithm presented in the pa-
per with the actual energy consumption using an optimal compile-
time DVFS policy [17]. Six different deadlines are used from tight
(deadline1) to loose (deadline6). The energy results are shown in 7.
The energy is normalized to the energy using the best single fre-
quency (the lowest frequency that can meet the deadline).

deadline adpcm epic gsm mpeg
1 0.01s 0.48s 1.30s 2.06s
2 0.04s 0.56s 1.35s 2.27s
3 0.04s 0.58s 1.36s 2.20s
4 0.04 0.53s 1.25s 2.27s
5 0.03s 0.44s 1.21s 1.95s
6 0.02s 0.43s 1.11s 1.97s

Table 4: Runtime for MediaBench benchmarks using the
heuristic with 100 bins.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
adpcm

deadlines

N
or

m
al

iz
ed

 E
ne

rg
y

1 2 3 4 5 6

epic

deadlines

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
gsm

deadlines
1 2 3 4 5 6

mpeg

deadlines

analytical
runtime
compile−time

Figure 7: The minimum energy consumption predicted by an
ideal analytical model, the lower bounds of energy consump-
tion from runtime DVFS and the actual energy consumption
achieved by a compile-time DVFS policy for six deadlines. En-
ergy consumption is normalized to the best single frequency.

As expected, the analytical model predicts more energy savings
than runtime DVFS and compile-time DVFS can possibly achieve.
This is because the analytical model assumes no switching costs.
Note also that the DVFS method comes quite close to the optimistic
analytical model, indicating the usefulness of that model despite its
simplicity.

The possible minimum energy for runtime DVFS provided by
the exact algorithm is lower than the actual energy using an optimal
compile-time policy. For adpcm, there is no energy saving using
compile-time DVFS while the savings might be up to 18% using
runtime DVFS. Except for certain deadlines, epic, gsm and mpeg
also show runtime DVFS possibly can achieve more energy sav-
ings than compile-time DVFS. This motivates the need for runtime
DVFS even in cases of complete program knowledge. The reason
is that runtime DVFS can assign different V/f levels to the same
piece of static code at different runs while compile-time DVFS is
usually confined to static code structure where the piece of static
code is assigned to run using same frequency at different runs.

6. CONCLUSIONS
We have demonstrated the ability of the algorithm to provide ex-

act upper bounds of energy savings for small to medium problems
given a DVFS-enabled processor. We also proposed a linear-time
heuristic to approximate the upper bounds for large problem where
exact bounds are computationally expensive to get. This model can
be used widely to analyze the energy savings from runtime DVFS.

We believe that the model is a powerful tool to guide the devel-
opment of runtime DVFS policies. We have successfully investi-
gated the impact of scaling granularity, program behavior variation
and memory system on the energy savings from runtime DVFS us-
ing this model. The development of this model leads to our current
work: developing a fast runtime DVFS policy to achieve the energy
savings corresponding to these upper bounds.

7. REFERENCES
[1]D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A

framework for architectural-level power analysis and

optimizations. In Proceedings of the 27th International
Symposium on Computer Architecture, June 2000.

[2]T. Burd and R. Brodersen. Design issues for dynamic voltage
scaling. In Proceedings of International Symposium on Low
Power Electronics and Design (ISLPED-00), June 2000.

[3]D. Burger, T. M. Austin, and S. Bennett. Evaluating future
microprocessors: the SimpleScalar tool set. Tech. Report
TR-1308, Univ. of Wisconsin-Madison Computer Sciences
Dept., July 1996.

[4]K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic
voltage and frequency scaling for precise energy and
performance tradeoff based on the ratio of off-chip access to
on-chip computation times. pages 18–28, Jan 2005.

[5]L. Clark. Circuit Design of XScale (tm) Microprocessors,
2001. In 2001 Symposium on VLSI Circuits, Short Course on
Physical Design for Low-Power and High-Performance
Microprocessor Circuits.

[6] Intel Corp. Intel XScale (tm) Core Developer’s Manual, 2003.
http://developer.intel.com/design/intelxscale/.

[7]T. Ishihara and H. Yasuura. Voltage scheduling problem for
dynamically variable voltage processors. In International
Symposium on Low Power Electronics and Design
(ISLPED-98), pages 197–202, August 1998.

[8]R. Jejurikar and R. Gupta. Energy aware task scheduling with
task synchronization for embedded real time systems. In
Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, pages
164–169, 2002.

[9]C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communication Systems. In Proceedings of
the 30th International Symp. on Microarchitecture, Dec. 1997.

[10] J. Lorch and A. Smith. Improving dynamic voltage algorithms
with PACE. In Proceedings of the International Conference
on Measurement and Modeling of Computer Systems
(SIGMETRICS 2001), June 2001.

[11]P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for
low-power embedded operating systems. In Proceedings of
the 18th ACM Symp. on Operating Systems Principles, 2001.

[12]G. Qu. What is the limit of energy saving by dynamic voltage
scaling? In Proceedings of the International Conference on
Computer Aided Design, 2001.

[13]A. Sinha and A. Chandrakasan. Dynamic voltage scheduling
using adpative filtering of workload traces. In Proceedings of
the 14th International Conference on VLSI Design, Jan 2001.

[14]Transmeta Corporation. Crusoe processor documentation,
2002. http://www.transmeta.com.

[15]M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling
for reduced CPU energy. In the 1st Symposuim on Operating
Systems Design and Implementation (OSDI-94), pages 13–23,
1994.

[16]A. Weissel and F. Bellosa. Process cruise control:
event-driven clock scaling for dynamic power management.
In CASES ’02: Proceedings of the 2002 international
conference on Compilers, architecture, and synthesis for
embedded systems, pages 238–246, 2002.

[17]F. Xie, M. Martonosi, and S. Malik. Compile-time dynamic
voltage scaling settings: Opportunities and limits. In
Proceedings of ACM SIGPLAN Conference on Programming
Languages, Design, and Implementation (PLDI’03), June
2003.

[18]F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced CPU energy. In Proceedings of the 36th Annual
Symposium on Foundations of Computer Science (FOCS’95),
page 374. IEEE Computer Society, 1995.

