
The C-LINK System for Collaborative Web Usage:
A Real-World Deployment in Rural Nicaragua

Sibren Isaacman and Margaret Martonosi
Princeton University

{isaacman, mrm}@princeton.edu

Abstract
Information exchange is one of the most crucial elements of ed-

ucation and business in the modern world. Therefore, equipping
developing regions with access to the internet is becoming increas-
ingly important. Though many regions will not receive broadband,
wired connections in the near future, limited connectivity is rapidly
become available. The connectivity may come from the increasing
density of mobile devices or from novel delay-tolerant approaches.
In this paper we demonstrate a collaborative caching system we
have developed that allows for such connectivity. Further, we re-
port on our experiences deploying our system in rural Nicaragua.
We show that collaborative caching allows miss rates to drop in half
through the course of the deployment, and that user satisfaction re-
mains high despite long round trip times. Although general web ac-
cess is sometimes viewed as not amenable to collaborative caching
and prefetching, our data shows value in collaboration, with 74%
of pages accessed by more than one user.

1 Introduction
The modern internet serves as a hub of information regarding

health care, education, and other topics, and is a vital communica-
tion pathway throughout the developed world. In North America,
for instance, over 70% of the population has access to the internet’s
resources. In stark contrast, the world average is 20%, with some
areas having internet penetration rates as low as 5% [13]. Closing
this “digital divide” will become an ever more important and effi-
cient method for alleviating poverty and making developing regions
competitive on the world stage [14]. Thus, bringing technology to
developing regions is one of the “Millennium Development Goals”
named by the United Nations [21].

Though connectivity’s importance is immediately evident, diffi-
culties in bringing connectivity to these regions are daunting. The
cost and impracticality of installing wired internet access makes
ubiquitous wired connections a virtual impossibility [3]. Even wire-
less solutions, however, have been slow in adoption due to difficul-
ties in erecting towers, licensing appropriate portions of the spec-
trum, negotiating land use, and navigating bureaucracy or corrup-
tion. Despite these issues, it appears that largely-disconnected re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
NSDR’09, October 11, 2009, Big Sky, Montana, USA.
Copyright 2009 ACM ...$5.00

gions will slowly gain access to the internet with the emergence of
delay-tolerant and wireless approaches.

Nevertheless, for decades to come, we expect large numbers of
people in rural regions to be frequently disconnected or operating
on constrained bandwidth links (e.g. cellular). This paper explores
collaboration and prefetching techniques for mitigating the latency
and bandwidth constraints facing such users. In particular, we have
built a transport-layer-agnostic system for supporting cooperative
caching and prefetching of web data.

Why Collaboration? Collaboration offers several benefits over
other approaches that may be considered in developing regions.
First, by caching content collaboratively across many user ma-
chines, we reduce the reliance on any single machine. By removing
the single point of failure, we make a more robust system. This
is important since machines and even kiosks are likely to be unre-
liable and also due to the frequency with which power surges and
losses occur. The relative instability of the power supply means that
any system that is to find long term use needs to be to able adapt to
the loss of any of its components. Second, a distributed approach
allows user mobility; this is important given that cell phones and
mobile devices are becoming the dominant computing platform in
these regions. As the devices move from region to region, a dis-
tributed approach allows these users to continue to participate in
the collaborative cache. In addition, by allowing these mobile users
to participate, we provide a secondary source for content dispersal.

Having explored the potential for such a system in [9], we built
a full implementation and evaluated our design with a real system
deployment in Cinco Pinos, Nicaragua. This paper offers the fol-
lowing conclusions and contributions:

• We demonstrate that a web browser employing a collabora-
tive caching system is both very useful and enjoyable to rural
internet users, despite the high underlying latencies for web
requests that miss in the collaborative cache.

• With the collaborative cache, miss rates as low as 22% are
achievable even after only a few days of deployment.

• We show that minor changes to the definition of a cache hit
and what constitutes cachability can result in highly improved
usability.

The rest of this paper is structured as follows: Section 2 exam-
ines related work. Section 3 then describes our own system in more
detail. The deployment of the system is discussed in Section 4 and
some design decisions are discussed in more depth in Section 5.
Finally, Section 6 offers some conclusions.

2 Related Work
User Applications in Developing Regions There have been

a number of successful applications designed with developing re-
gions in mind. The CAM project [15] developed region-specific
finance and other applications for mobile phones. It demonstrated

that it is possible to effectively remove barriers to entry and bring
useful applications to rural users.

More closely related to our own project, TEK [20] allows for
disconnected Web Browsing via email. Similarly, RuralCafe [4]
attempts to perform local query refinement to reduce the number of
required trips. Each of these approaches, however, uses a large local
per-node store. By replacing these local stores with collaborative
cache, we can either improve the effectiveness of the storage, or get
the same effectiveness from a smaller store.

Delay-Tolerant Networks Typical networking applications as-
sume that at all times an end-to-end connection exists from the
client to the server. In many areas, even a low bandwidth link (e.g.,
cellular) does not exist. In such cases a DTN store-and-forward
protocol can be used such that the data is stored in intermediate
nodes until connections can be made that will allow the data to
make progress toward its destination.

In a DTN, packets can be flooded to all encountered nodes (or a
subset thereof) [11] or social networks can be learned and routing
thus deduced [15]. Though such previous work focused on custom
built hardware to forward specifically collected data, the Tetherless
Computing Lab [1] and DakNet [16] have each built a DTN upon
which more general internet traffic can move.

As deployed, C-LINK ran on top of KioskNet [1] but is flexible
enough to be used with any network layer. We envision, ultimately,
that connections between the kiosk and city may occur over hybrids
of cellular networks and DTN using protocols such as Delay Toler-
ant Link State Routing [7]. Our solution is designed with this type
of hybrid in mind.

Other early efforts at disconnected operation include the Coda
[12] and Rover [10] projects. Each of these projects uses local
caches to hide network disconnections. However, the reliance on
specialized file systems (and thereby code changes in applications
of interest) makes both these approaches unsuitable for developing
regions with heterogeneous machines. Further, these approaches do
not make use of the well-connected nature of the network that may
exist within the villages themselves.

Web Caching Another area of related work is web caching.
In the most general web-caching model, a client checks whether
a page is locally cached at that machine. If the page is not cached, a
request is sent to a proxy which in turn checks its own cache. Only
if that fails will the request be sent further upstream to the servers.
Naturally, multiple levels of proxies may exist between a client and
server and the proxies can be either explicitly-called or transpar-
ent [2]. For our disconnected village model, we do not assume the
highly-capable proxy/kiosk that would normally exist. Instead we
show that a more collaborative cache technique can be employed.
In collaborative caching, caches make requests to one another for
data [8, 17, 22]. If the data requested exists in a cache with which
the current cache is collaborating, the data can be sent from one
cache to the other, obviating the need to go further out.

Hierarchical collaborative caches such as Squid [22] are dis-
tinct from the type of collaborative caching that we propose and do
not address directly the needs of the developing world, frequently
breaking under disconnection. Squid, in particular, is known to
function poorly even in the case of intermittent connections, and not
at all in offline mode. Unlike in other hierarchical caches, we as-
sume there is only a single proxy at a time, and that the machine has
relatively low storage. Except for having an internet connection (al-
beit weak), the proxy (kiosk) is largely indistinguishable from other
participating nodes. Such assumptions do not fit typical hierarchi-
cal web caching, so we instead extend on collaborative caching and
employ a peer-to-peer model, as in DitTorrent [18]. In this model,
client peers that have the requested data can serve the data rather
then requiring a trip over a slower upstream link.

Though collaborative caching was found by Wolman et al. [23]

Web Browser

Interface

Load Manager

Web Browser

Interface

Load Manager

Notifier

Node 1

Node n

Kiosk

Village

Kioskdaemon
Network

Layer

City

City Fetch Engine

Proxy

The InternetThe Internet

Figure 1. Diagram of the system. Nodes in the village are well con-

nected (when the connection is functioning). The kiosk, in turn, is con-

nected over a high latency (or high cost) link to the city, which in turn

is connected to the internet.

to provide only limited benefits, Wolman concluded that smaller
populations (<20K users) saw the most benefits. Our system is
designed for classrooms and internet cafes in rural settings where
user counts less than 100 per village are expected. In this space, we
are the first to study the effects of collaborative caching.

3 The C-LINK System
Figure 1 is an abstract view of our system. The village is com-

posed of devices (nodes) well-connected to a router (kiosk) which is
in turn connected via a high latency or high cost link (or a combina-
tion of the two) to the city in which there is a proxy to the internet.
The name C-LINK is derived from the five programs which make
up the C-LINK system. These programs are: City Fetch Engine,
Load Manager, Interface, Notifier, Kioskdaemon.

All web requests begin when a user makes a request (either by
clicking a link or typing directing into the address bar) in a web
browser which is configured to use the Interface as a proxy. By
developing the front end as a stand-alone program that works with
arbitrary browsers, rather than as an integrated component of a spe-
cific web browser, we ensure the flexibility of the system. Any
browser can be used, so long as it is configured to connect to the in-
ternet via the C-LINK Interface. (Most modern browsers are easily
configurable to connect via a proxy.)

The Interface then contacts the Kioskdaemon, which determines
the availability of the page by consulting a mapping of hashed
URLs to nodes in the network. Any data included in a POST request
is also hashed and appended to the URL hash when the mapping is
checked. What happens next is largely determined by whether the
page exists in the cache. Section 3.1 follows a request that is found
somewhere in the collaborative cache, while Section 3.2 explores
what happens in the event of a cache miss. Section 3.3 discusses
other issues that may arise in the functioning of the system.

3.1 Example Flow: Cache Hit
When the Kioskdaemon finds the hashed URL (plus data in-

cluded in a POST request, if appropriate) in its mapping table, it
replies back to the Interface with the last known good IP address for
the machine holding the data. The Interface, in turn, contacts the
Load Manager at the given IP address. The data is then sent from
the Load Manager to the Interface and subsequently back to the web
browser. The Load Manager is also responsible for LRU tracking
on the requesting machine. Since this page is newly-accessed, it
moves to the front (MRU) of the queue.

3.2 Example Flow: Cache Miss
If the hashed URL and data are not found in the Kioskdae-

mon’s mapping table, the Interface is informed that the page is

currently not available. The Interface then returns a message to
the browser informing the user that the page will be available later.
The Kioskdaemon then makes a request to retrieve the page from
the city. The page request—a file containing the socket dump from
the browser—may be sent over any available network (e.g., cellular,
KioskNet, etc.). It arrives in the city at the City Fetch Engine which
connects to the remote servers as a proxy for the requesting user
node back in the village. The City Fetch Engine opens the file and
dumps its contents into the socket for the well-connected server to
handle. The result of this communication is then placed into a file
(another socket dump) and sent back to the requesting user.

The City Fetch Engine’s always-on, end-to-end connection also
allows the city to return more than was asked for. While the browser
has no way of knowing a priori what further web requests might
be made after this initial request, the City Fetch Engine is well-
positioned to perform predictive prefetching. Prefetching can in-
clude simple strategies such as downloading all embedded images,
following all links [5], or more complicated schemes relying on
Markov models [19].

All requested and prefetched pages arrive back at the village via
the Notifier. Because all data entering the village passes through
the Notifier, it can estimate the amount of storage space currently
being used. Using this estimate, the Notifier can decide to accept or
reject data prefetched by the City Fetch Engine. Estimating space
available in the village and acting accordingly helps maintain trade-
offs in performance and available space. All explicitly-requested
(i.e., not prefetched) data is sent to the Kioskdaemon regardless of
estimated available space. This ensures correct functioning of the
system.

Once a request has returned to the Kioskdaemon, the Kioskdae-
mon updates its mapping to indicate that the file is now available in
the village. The Kioskdaemon then sends the data to the Load Man-
ager of the original requester. The Kioskdaemon also maintains a
list of users that have also requested the file and notifies the Load
Managers on the appropriate machines. If the original requester
can no longer be contacted, the kiosk holds the file in temporary
storage and marks itself as the owner of the file. If at some point
later, an Interface indicates another request from that node user, the
temporarily-stored file is returned to the user at that time.

3.3 Additional Issues
Cachable v. Non-Cachable Pages One design decision con-

cerns the case when a request is made for a page that is in-village,
but that the Kioskdaemon knows to be “non-cachable.” In such
situations, the Kioskdaemon returns the cached (stale) data to the
Interface and makes a request for fresh data in the background. The
cachability of a page is determined once it has been returned to the
village; we simply parse the HTTP response header for fields re-
lated to cachability. Similarly, if a page contains a maximum age,
this is recorded and when the age has expired, the page is changed
in the index map from “cachable” to “non-cachable.” By handling
non-cachable content in this manner, we ensure that fresh content
is always eventually available but that stale data, which may still be
of use, can still be returned when the page is first requested.

Cache Eviction Eventually, a node’s storage may fill up, either
due to its own cached data or due to requests it is storing on behalf
of the collaborative cache. The Load Manager sets cache policies to
ensure that some nodes do not overuse the collaborative storage on
other nodes. Quotas may be fixed or may be dynamically set based
on fairness schemes or usage levels. If the local quota is exceeded
(i.e., there is too much data stored in the cache), the Load Manager
can request space in another user’s cache via the Kioskdaemon.

When the Kioskdaemon learns from a Load Manager that cache
overflow has occurred, it returns the IP address of the machine to
whom the data should be sent (or tells the Load Manager to delete

the data). In this way, users themselves need not keep any infor-
mation about the other users in the village. The Kioskdaemon has
flexibility in making its decision (e.g., emptiest, most frequently
present, etc.) and can update its mapping appropriately. A Load
Manager receiving a page from another Load Manager treats the
page as if the page were explicitly requested and returned by the
Kioskdaemon.

Node Mobility and Power Failure Nodes are free to move be-
tween sets of collaborative caches and power failures are likely to
be common. Since users are likely to cluster (such as in libraries,
schools, or community centers), multiple disconnected collabora-
tive cache groups may exist within a village—each supported by
their own kiosk. Further, nodes may move from one village to an-
other. Because the kiosks serve as DHCP servers, the nearest col-
laborative cache group can always be found by contacting a known
port at the gateway address. When moving from one collaborative
cache to another, the data on the node can become integrated into
the new collaborative cache in which the node participates.

Whenever a request is made for a page that is found locally (i.e.,
on the requesting node, rather than elsewhere in the village), the
Interface informs the Kioskdaemon that the page is locally stored.
This ensures that as nodes move from one collaborative group to
another, pages it has stored can be found by other members of the
“new” collaborative group. Conversely, if a page is requested from
a node that has left the group, the Kioskdaemon behaves as in Sec-
tion 3.2 and marks the page as pending.

Finally, the Kioskdaemon and Load Managers provide robust-
ness against power failures. The state of the mapping and LRU
queue are periodically saved in non-volatile storage (e.g., an SQL
database or flat file).

Leader Election Although many nodes may exist in the village,
each collaborative group should contain only one kiosk machine
at a time. This is done so that only one mapping table needs to
be maintained thereby removing consistency issues. Further, the
kiosk node serves as a point of contact for the many mobile nodes
that may move in and out of that village. Ensuring that there is
only one kiosk at a time allows any node entering the village to
immediately join the network, since the kiosk can act as a DHCP
server. Therefore, should the kiosk machine fail, a new kiosk is
elected from reachable nodes.

We assume that the kiosk machine is nearly identical to a generic
node in capabilities and storage. Therefore, a kiosk election scheme
such a a weighted random back-off is sufficient. In this scheme,
when a node detects that there is no kiosk available, it broadcasts
a message to all reachable nodes. Upon receiving such a message,
each node backs off backs off a random time, weighted by its ca-
pabilities (e.g., communication capabilities). We envision the best
kiosks to be under the supervision of a village leader, either in a
school or community center, but any machine is eligible by default.

During the deployment of the system in Nicaragua, our leader
election scheme was put into practice. We experienced a power
event and the dedicated kiosk went off-line but users remained able
to browse the available pages because a new Kioskdaemon was
elected and spawned on one of the user machines. Without such
a scheme in place, a power failure would have resulted in complete
disruption of service. Instead, however, no time or data was lost.

4 Deployment Experiences and Results
In May 2009, we deployed the C-LINK system in Cinco Pinos,

Nicaragua. This section discusses our experiences.

4.1 Overview
Having built and tested a prototype of our system, we brought

it to Cinco Pinos, Nicaragua in May 2009 for a full-fledged de-
ployment. Cinco Pinos is a small town (roughly 7000 residents)
in northern Nicaragua near Honduras. While portions of the town

have electricity, power failures are frequent; indeed electricity out-
ages occurred every day during our deployment and lasted from
moments to hours.

At the time we selected Cinco Pinos (due to personal contacts
there) and began planning our deployment, no cyber cafe’s were
publicly available within a one-hour drive. Subsequently, internet
connectivity arrived in town in the form of a small cyber cafe, but
with very low-bandwidth connection and high price relative to local
incomes. We deployed C-LINK in a library, although we may work
with the cyber cafe in the future.

4.2 System Setup and Usage
Our deployment consisted of 5 laptops running C-LINK clients

connected to a kiosk computer running C-LINK on top of a
KioskNet transport layer [1]. The client computers were Lenovo
Netbooks with 1.6GHz processors and 1GB RAM running Hardy
Heron Kubuntu. The kiosk computer was a Soekris box configured
using the LiveDVD provided by [1]. We stress, once again, that al-
though we used KioskNet for this deployment, our system can and
has been written to work with a variety of transport layers.

The well-connected end of our DTN transport layer was a
netbook computer and cable modem in a school in Somotillo,
Nicaragua about one hour’s drive (30 kilometers) away. Five buses
per day travel between Somotillo and Cinco Pinos, but to ease the
deployment, we drove the route ourselves once per day. Thus, our
deployment offered a one-day turnaround time on web requests not
serviced in the village.

Users of the system were teenagers and young adults engaged
in educational opportunities offered by the two U.S. Peace Corps
volunteers in Cinco Pinos. In particular, users were encouraged to
browse and search the web on a variety of topics including health
and medical issues and small business opportunities (particularly
related to cooking and sewing). In addition, users also browsed on
topics of their own choosing (with a heavy bias toward song lyrics!).
Of the top-20 sites visited, 10% of them represented pages on as-
signed topics, while the remaining 90% were either casual brows-
ing, ad sites, or pages we cannot easily categorize. Before deploy-
ment, we pre-loaded a very modest amount (<10 Mbytes) of web
information into the villages netbook caches to allow for a better
first-day experience, and we offered a home page with 16 working
links to get them started.

The system had 31 unique users over the course of 5 days of
use. Because we used a DTN with vehicular backhaul, they were
each encouraged to come twice: on their first day, requests would
be queued at the kiosk server. By their next visit, requests would
have arrived by bus or car, and so their second session was typically
about finding results of searches from the first session. There were
no weekend sessions, though the 5 day period spanned a weekend.
Therefore, for all latency calculations, the delay caused by the two
days on which the school and library were closed has been removed,
and instead a typical one day latency between days 2 and 3 is as-
sumed. 81% of the users had used the internet before, but only 19%
had used it more than 10 times in their lives.

4.3 Basic Results
Figure 2 shows the daily request count as the deployment pro-

gressed. The miss rate can been seen in the top stack of Figure 3.
There were no user sessions over the weekend as the library was
closed, so we plot only the days on which web usage (and data DTN
trips to Somotillo) occurred. Miss rate monotonically decreases
throughout the deployment, ending at 22%. Days 1, 3, and 5 mark
the first visit by a group and Figure 2 shows the correspondingly
higher numbers of requests. In contrast, as the groups returned on
Days 2 and 4, we see sharp drops in the miss rate of requested
pages as well as small numbers of requested pages while students
browsed the returned pages form the prior session. Miss rate does

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

N
 u

 m
 b

 e
 r

 o

 f

 R

 e
 q

 u
 e

 s
 t

 s

D a y o f D e p l o y m e n t

Figure 2. Total Requests per day. On a group’s first day, more re-

quests are made. The second day was spent reviewing the results of the

previous day and therefore making fewer new requests. This page re-

view then means that fewer total requests are made on the second day,

which we see in the downward spikes every other day.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

P
 e

 r
 c

 e
 n

 t

 o

 f

 A
 c

 c
 e

 s
 s

 e
 s

D a y o f D e p l o y m e n t

Miss

Collaborative Hit

Local Hit

Figure 3. Breakdown of page request results. Day by day the hit rate

increases as more information is collaboratively available in the village.

Local hit rate remains relatively constant while collaborative hits drive

down the miss rate.

not decrease all the way to zero because each day users click new
links on the “frontier” of what is locally cached.

Figure 3 shows the benefits of collaborative caching. By Day 5,
hits on data stored locally at the requesting machine had reached
19% of all requests. This rate remained relatively unchanged
throughout the deployment (rising only 2 percentage points). How-
ever hits on data stored collaboratively elsewhere in the village had
soared to 59%. The jump in hit rate from 37% to 59% demonstrates
the benefits gained by the collaborative portion of the cache.

Figure 4 plots the daily average effective access latency for the
deployment. Any misses required a one-day turnaround time. (Re-
call that we drove to the city once per day; in a more long-term
deployment, we could use the 5X per day bus service to reduce
this miss latency.) While still high by well-connected standards,
this latency is sufficient for web research. Users accepted the wait
times and simply moved on to browse other pages that were already
available in the system, incurring almost no latency.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

A
 v

 e
 r

 a
 g

 e

 T
 i

 m
 e

 t

 o

 R
 e

 c
 e

 i
 v

 e

P
 a

 g
 e

(
H

 o
 u

 r
 s

)

D a y o f D e p l o y m e n t

Figure 4. Average page access latency remains relatively constant.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

P
 e

 r
 c

 e
 n

 t
 a

 g
 e

 o

 f

 P

 a
 g

 e
 s

N u m b e r o f U n i q u e N o d e s R e q u e s t i n g P a g e

% unique pages

% total requests

Figure 5. Percentage of unique pages and total requests for any page,

broken down by number of requesters. Though only 33% of unique

pages are requested by more than one user, 74% of total requests are to

pages requested by more than one user.

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

F
 r

 e
 q

 u
 e

 n
 c

 y

 o

 f

R
 e

 q
 u

 e
 s

 t
 s

 f

 o
 r

P
 a

 g
 e

P o p u l a r i t y R a n k i n g

Figure 6. Number of requests to the 100 most popular pages. The first

5 most popular pages account for 11% of all requests.

Figure 5 shows the likelihood that a particular page is requested
by more than one user. This data shows the benefits afforded by
the collaborative cache. In particular, 33% of unique pages are re-
quested by only one user. This means that in a traditional caching
strategy, 33% of pages would have to be replicated more than once
with 5% of pages fully replicated 5 times. On the other hand, many
requests go to pages already accessed by another user in the system.
As such, the collaborative cache requires only 66% of the storage of
a traditional cache. This figure also demonstrates that while 33% of
pages are requested by more than one user, those pages make up the
bulk of all requests made to the system (74%). The large number of
shared requests make collaborative caching particularly appropriate
to this work load.

Finally, Figure 6 characterizes another aspect of the web refer-
encing patterns during our deployment. The single most popular
page is requested 5.8% of the time—nearly 3 times as frequently
as the second most popular page—after which the number of re-
quests per page drops slowly. The figure shows that a relatively
small number of pages are accessed a large number of times in a
correlated manner. This is in part due to the educational scenario in
which many users are tasked with looking up similar information,
but also holds true here despite the casual web browsing going on
as well..

4.4 User Survey Results
At the end of each user’s second session, we asked them to fill

out a short multiple-choice survey (in Spanish) to gauge their expe-
riences with the system and help us characterize the users. Users
were asked to respond to questions about whether they felt the sys-
tem was useful for education, whether they enjoyed using the sys-
tem, if they found the information they were looking for, and what
features they would like in future versions of the system. On ques-
tions such as utility and enjoyment, users could selected between
“very”, “a little,” “not at all,” and “no opinion.”

Response to the system was very positive. Of users who had
never used the internet before, 100% found C-LINK to be “very
useful.” In general, 77% of all users found C-LINK to be “very
useful.” All respondents that had only used the internet one or fewer
times found the system to be at least “useful.” Of the 31 users,

97% reported enjoying using the system at least “a little”. Again,
considering those that had only used the internet 0-1 times, 60%
stated that that enjoyed using the system “a lot.”

Finally, we note happily that the most common complaint in the
comments section was that there were not enough computers for all
users to have as much usage time as they wanted. It was rewarding
to hear from students, none of whom had ever used a laptop (the
touch pad was quite a shock to them!): “I learned a lot although it
was only 2 days. Thank you. I hope you continue bringing projects
to continue modernizing our municipality and our youth. Thanks.”

5 Discussion and Design Decisions
Through the deployment, we learned things about the use and

structure of our system that could be modified to improve perfor-
mance in the field.

5.1 Cache “Hits”
During the deployment, we adjusted our definition of cache

“hits” in order to improve the user experience. Our initial system
would simply hash the full URL to obtain a key with which to per-
form a hit/miss check. Within a URL, some webpages (Google
searches in particular) append arguments to a URL to guide their
response. While some arguments are central to the information
requested (in particular, the search terms themselves) other argu-
ments may not significantly impact the information being returned.
Thus, we developed a method to elide such arguments from Google
searches before performing the hash and hit check. C-LINK thus
returns information as a village cache hit based on the search term,
rather than requiring a 100% URL match.

Google requests composed 7.5% of all requests made to the sys-
tem. This change improved the miss rate on Google requests from
46% to 30%. Users reported that the improvement in browsing was
significant.

5.2 Parallelization and Prefetching
Our initial coding for data retrieval was inefficient and relied

on serial methods to fetch requested data. After 3 days of deploy-
ment, we rewrote this part of the code to parallelize it. Allocat-
ing 5 threads to data retrieval results in a 4X speedup. Therefore,
from Day 3 onward, the results reflect our ability to prefetch more
data while in Somotillo, thereby increasing the likelihood of hits on
data never before referenced. Prefetched hits were only 2% of total
hits, but provided large increase in user satisfaction when compar-
ing comments from before and after Day 3. Further, throughout the
course of the deployment, 48% of prefetched data was eventually
used.

The importance of parallelization was demonstrated when
power was lost in Somotillo 30 minutes into a data transfer on Day
3. Though previous trips had required an hour to download all of
the initial requests, increasing threads allocated to the task meant
that, within 15 minutes, all of the initial requests had been fetched.

5.3 Dynamic Kiosk Election
On May 22, a power event caused the kiosk to malfunction and

force a restart. During this time, students were able to continue
using the system. In the event of power failure, a heartbeat pro-
gram was designed to elect one of the other machines as kiosk,
gather LRU information from other Load Managers, and then serve
requests. The logs of May 22 indicate that User 4 serviced 33 re-
quests from 3 other users in the time the kiosk was down. Of these
hits, 9 (29%) were for pages located elsewhere in the village.

This power event reiterates the need for a distributed, robust sys-
tem in this environment. Had the system not been robust to power
failures, such an event would have resulted in complete loss of ac-
cess to data. C-LINK’s approach successfully prevented such an
occurrence.

5.4 Multiple Villages
In future deployments, multiple villages may share a single ve-

hicle DTN route. In these cases, it is likely that some of the infor-
mation that is requested by users in one village will be requested
by users in other villages. This provides a unique opportunity to
perform collaboration and prefetching between the villages as well
as between users in a single village.

Collaboration between villages may decrease the latency of a
requested page by serving it from a nearby village rather than wait-
ing for the full round trip. In addition, the request trace from one
village can be used to inform prefetching in other villages, further
decreasing latency. We intend to implement this functionality in
future deployments.

6 Conclusions
C-LINK’s deployment demonstrates that it is possible to build a

flexible, robust system for providing high latency internet connec-
tions to developing regions. Further, the usage patterns of students
fit well with a collaborative caching model with 74% users inter-
ested in the same pages, resulting in miss rates that dropped to 22%
in 5 usage days.

Through our deployment in Cinco Pinos, Nicaragua, we saw
first-hand the importance of design choices that increased the ro-
bustness of the system. Though we were often without power, it
was possible for the system to function as long as the netbooks re-
tained their batteries, even without the original kiosk. Had we relied
solely on a large, centralized cache, as might be done in a developed
region, no pages could have been served during power failures.

We will provide our detailed, anonymized trace to the CRAW-
DAD repository[6] after publication of this paper.

7 Acknowledgements
We would like to thank Tanushree Dutta Isaacman for acting as

a translator during our stay in Cinco Pinos. We also are indebted
to Zimo Zheng and Lindsay Gehrig for their efforts in ensuring that
there would be students available to make use of the C-LINK sys-
tem and for designing lesson plans. Finally, we wish to thank all of
the students and residence of Cinco Pinos, Nicaragua for welcom-
ing us into their community and for their enthusiastic adoption of
this technology. This work was funded in part by National Science
Foundation grant number CNS-0614949. In addition, we gratefully
acknowledge the support of the Princeton Technology for Devel-
oping Regions program, who provided a SEAS/PIIRS deployment
grant to fund a portion of our efforts.

8 References
[1] A.Seth et al. Low-cost communication for rural internet kiosks using

mechanical backhaul. 12th Intl. Conf. on Mobile Comp. and Network-

ing, Sept. 2006.

[2] G. Barish and K. Obraczke. World Wide Web caching: Trends and
techniques. IEEE Communications, 38(5), May 2000.

[3] E. Brewer et al. The case for technology in developing regions. Com-

puter, 38(6), May 2005.

[4] J. Chen, L. Subramanian, and J. Li. Ruralcafe: Web search in the rural
developing world. 18th Intl. Conference on WWW, April 2009.

[5] K. Chinen and S. Yamaguchi. An interactive prefetching proxy server
for improvement of WWW latency. 7th Conf. of the Internet Society,
June 1997.

[6] A Community Resource for Archiving Wireless Data At Dartmouth.
2009. http://crawdad.cs.dartmouth.edu/.

[7] M. Demmer and K. Fall. DTLSR: Delay tolerant routing for devel-
oping regions. ACM SIGCOMM Workshop on Networked Systems in

Developing Regions, Aug. 2007.

[8] L. Fan et al. Summary cache: A scalable wide-area web cache sharing
protocol. IEEE/ACM Transactions on Networking, 8(3), June 2000.

[9] S. Isaacman and M. Martonosi. Potential for collaborative caching
in largely-disconnected villages. 2008 ACM Workshop on Wireless

Networks and Systems for Developing Regions, September 2008.

[10] A. Joseph et al. Rover: a toolkit for mobile information access. 15th

ACM Symp. on OS Principles, 1995.

[11] P. Juang et al. Energy-efficient computing for wildlife tracking: De-
sign tradeoffs and early experiences with ZebraNet. Architectural Sup-

port for Programming Languages and Operating Systems, Oct. 2002.

[12] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the
coda file system. ACM Trans. on Comp. Systems, 10, Feb. 1992.

[13] Miniwatts Marketing Group. World Internet Usage
Statistics and World Population Stats, May 2008.
http://www.internetworldstats.com/stats.htm.

[14] L. Osin. Computers in education in developing countries: Why and
how? Education and Tech. Series, 3(1), 1998.

[15] T. S. Parikh and E. D. Lazowska. Designing an architecture for deliv-
ering mobile information services to the rural developing world. 15th

Intl. Conference on World Wide Web, 2006.

[16] A. S. Pentland, R. Fletcher, and A. Hasson. DakNet: Rethinking con-
nectivity in developing nations. IEEE Computer 37, 1, Jan. 2004.

[17] A. Rousskov and D. Wessels. Cache digests. Computer Networks and

ISDN Systems, 30(22-23), Nov. 1998.

[18] U. Saif et al. Poor man’s broadband: Peer-to-peer dialup networking.
ACM SIGCOMM Computer Comm. Rev., 37(5), Oct. 2007.

[19] R. R. Sarukkai. Link prediction and path analysis using Markov
chains. 9th Intl. WWW Conf. on Computer Networks : The Intl. Jour-

nal of Computer and Telecomm. Networking, 2000.

[20] W. Thies et al. Searching the world wide web in low-connectivity
communities. 11th Intl. WWW Conf., May 2002.

[21] United Nations. Millennium Development Goals. 2008.
http://www.un.org/millenniumgoals/.

[22] D. Wessels and K. Claffy. ICP and the Squid web cache. IEEE Journal

on Selected Areas in Communications, 16(3), April 1998.

[23] A. Wolman et al. On the scale and performance of cooperative web
proxy caching. 17th ACM Symp. on OS Principles, 1999.

