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ABSTRACT

An improved understanding of human mobility patterns would

yield insights into a variety of important societal issues such
as the environmental impact of daily commutes. Location
information from cellular wireless networks has great po-
tential as a tool for studying these patterns. In this work,
we use anonymous and aggregate statistics of the approx-
imate locations of hundreds of thousands of cell phones in
Los Angeles and New York City to demonstrate different
mobility patterns in the two cities. For example, we show
that Angelenos have median daily travel distances two times
greater than New Yorkers, but that the most mobile 25% of
New Yorkers travel six times farther than their Los Angeles
counterparts.

1. INTRODUCTION

Characterizing human mobility patterns is critical to a
deeper understanding of the effects of human movement.
For example, the impact of human travel on the environment
cannot be understood without such a characterization. Sim-
ilarly, understanding and modeling the ways in which disease
spreads hinges on a clear picture of the ways that humans
themselves spread [2]. Other examples abound in fields like
urban planning, where knowing how people come and go can
help determine where to deploy infrastructure [1].

Human mobility researchers have traditionally relied on
surveys and observations of relatively small numbers of peo-
ple to get a glimpse into the way that humans move about,
for instance by studying airline flight paths [8]. These meth-
ods often result in small sample sizes and may introduce in-
accuracies due to intentional or unintentional behaviors on
the part of those being observed. However, with the advent
of cellular wireless communication, ubiquitous networks are
now in place that must know the location of the millions of
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active cell phones in their coverage areas in order to provide
the phones with voice and data services. Given the almost
constant physical proximity of cell phones to their owners,
location data from these networks has the potential to rev-
olutionize the study of human mobility.

In this work, we explore the use of location information
from a cellular network to characterize human mobility in
two major cities in the United States: Los Angeles (LA)
and New York (NY). More specifically, we analyze anony-
mous records of approximate cell phone locations at discrete
times when the phones are in active use. Our data set spans
two months of activity for hundreds of thousands of phones,
yielding hundreds of millions of location events. We then
compile aggregate statistics of how far humans travel daily.
We introduce the concept of a daily range, that is, the max-
imal distance that a phone, and by assumption its owner,
has been seen to travel in one day. Finally, we make various
observations about these daily ranges in the two populations
of interest. For example, we see in Figure 1 that cell phone
users in downtown LA have median daily ranges that are
nearly double those of their Manhattan counterparts.

Our main observations from this work are as follows:

e Studying cell phone location data brings to light sig-
nificant differences in mobility patterns between dif-
ferent human populations. One example is the large
difference in median daily ranges between LA and NY
residents, as mentioned above.

e Extracting a variety of statistics from this data can
bring out unexpected aspects of human behavior. For
example, although Angelenos’ daily commutes seem to
be two times longer than New Yorkers’, New Yorkers’
long-distance trips seem to be six times longer.

e Inspecting the data at multiple geographic granulari-
ties can further illuminate mobility patterns in differ-
ent areas of the same city. For example, daily ranges
across different areas of LA are more similar to each
other than they are across different areas of NY.

Overall, we conclude that the study of operational records
from cellular networks holds great promise for the large-
scale characterization of human mobility patterns without
compromising individual privacy. The rest of this paper de-
scribes in more detail our data set, our analysis methodology,
and our results.
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Figure 1: Maps giving a visual representation of the median daily ranges of cell phone users in Manhattan and
downtown Los Angeles. The radii of the inner, middle, and outer circles represent the 25", 50t", and 75!" percentiles,
respectively, of these ranges across all users in a city. Ranges for all users in a city are made to originate in a common
point for clarity of display. The two maps are drawn to the same scale.

2. DATA SET

2.1 Data Characteristics

For this study, we first developed a target set of 891 zip
codes located in the New York and Los Angeles metropoli-
tan areas. In the NY area, these zip codes cover the five New
York City boroughs (Manhattan, Brooklyn, Bronx, Queens,
and Staten Island) and ten New Jersey counties that are
close to New York City (Essex, Union, Morris, Hudson,
Bergen, Somerset, Passaic, Middlesex, Sussex, and Warren).
In the LA area, the zip codes cover the counties of Los An-
geles, Orange and Ventura. Figure 2 shows the zip codes
used in the study. Note that our selected zip codes cover
similarly sized geographic areas in NY and LA.

We then obtained a random sample of anonymized Call
Detail Records (CDRs) for 5% of the cell phone numbers
where the owner’s billing address was in one of the selected
zip codes. These CDRs contained information about three
types of events in the cellular network: incoming voice calls,
outgoing voice calls, and data traffic exchanges. In place of
a phone number, each CDR contained an anonymized iden-
tifier composed of the 5-digit zip code and a short integer.
In addition, each record contained the starting time and du-
ration of the event, and the locations of the starting and
ending cell towers associated with the event. This random
sample, generated over a 62 consecutive day period (March
15, 2009 to May 15, 2009), resulted in hundreds of thou-
sands of anonymized identifiers, 54% from Los Angeles zip
codes, and 46% from New York. The overall process yielded
hundreds of millions of anonymous CDRs for analysis, for
an average of 21 voice and data CDRs per phone per day.

After receiving the anonymized CDRs, we checked to see
if the number of identifiers in each zip code was proportional
to US census figures [15] for the overall populations in these
zip codes. Several zip codes had far more identifiers than ex-
pected, corresponding to accounts owned by businesses, not
individuals. We omitted identifiers corresponding to busi-
nesses from further consideration.

We also removed from our sample the records for those

phones that appeared in the area of their base zip code fewer
than half the days they made calls. We assumed that the
owners of those phones live in other parts of the country
(e.g., they are college students), and therefore that their
daily travel patterns are not representative of the geograph-
ical areas we are interested in. After excluding those identi-
fiers from consideration, we have assumed that the zip codes
in our records correspond to users’ home addresses.

2.2 Data Anonymization and Privacy

Given the sensitivity of the data, we took several steps
to ensure the privacy of individuals. First, only anony-
mous data was used in this study. In particular, CDRs were
anonymized to remove any personally identifying character-
istics. Second, all our results are presented as aggregates and
no individual anonymous identifier was singled out for the
study. By observing and reporting only on the aggregates,
we protect the privacy of individuals.

Third, each CDR only included location information for
the cellular towers with which a phone was associated at
the beginning and end of a voice call or data exchange. The
phones were effectively invisible to us aside from these begin
and end events. In addition, we could estimate the phone
locations only to the granularity of the cell tower coverage
radius. These radii average about a mile, giving an uncer-
tainty of about 3 square miles for any event.

3. METHODOLOGY

Throughout this study, we use the locations of cellular
towers with which a phone is associated as approximations
of that phone’s actual locations. We define a phone’s daily
range as the maximal distance it has traveled in a single day.
We construct a phone’s daily range by calculating distances
between all pairs of locations visited by the phone on a given
day, and extracting the maximal pairwise distance. Because
distances are calculated “as the crow flies,” our daily range
is more accurately a lower bound on the maximal distance a
phone has traveled. By repeating this process for each day
of the study, we end up with 62 daily ranges for each phone.



(a) New York metropolitan area

(b) Los Angeles metropolitan area

Figure 2: Billing zip codes of cell phone users in this study are shown in grey and black. Black zip codes are in the
downtown areas of each city; they follow the pattern 100xx for Manhattan and 900xx for downtown LA.

By further calculating the median and maximal values of
these daily ranges over the duration of our study, we arrive
at a phone’s median daily range and mazimum daily range,
respectively. Note that while the median daily range is an
approximation of the “common” daily commute distance, the
maximum daily range corresponds to the longest trip taken
by the phone during the study.

We categorize these ranges by whether they occurred on
weekends or weekdays. Our reasoning is that for the ma-
jority of people, a weekday range is more closely related to
work-related travel (e.g., commuting, business trips), while
weekend travel is more often done for pleasure.

In addition, we divided the phones into groups based on
their billing zip codes. For phones registered in the NY area,
the groups are Manhattan, Brooklyn, Bronx, Queens, Staten
Island, and New Jersey. Phones in the LA area were clas-
sified as being from Downtown LA, Beverly Hills, Antelope
Valley, San Fernando Valley, or Orange County.

We acknowledge that our data may not represent actual
commuting patterns because individuals do not necessarily
use their phones in every place they go. However, we feel
that people do tend to use their phones in places where they
spend significant amounts of time.

4. RESULTS

We summarize our results with the help of boxplots, his-
tograms, and map overlays. The boxplots in Figures 4-7
depict five-number summaries of the complete empirical dis-
tributions of interest. The “box” represents the 25, 50",
and 75" percentiles, while the “whiskers” indicate the 2™¢
and 98" percentiles. The horizontal axes show miles on a
logarithmic scale, and the number of people in the repre-
sented population is given in the category label.

The statistical significance of our results is apparent from
our boxplots. We could have shown the variability in our
data using a technique known as notched box plots[9], where
the size of a notch around the median represents the vari-
ation of the median. Boxplots whose notches do not over-
lap would be considered to have come from distributions
with significantly different medians. However, because of
the large size of our data set, our notches would be imper-
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Figure 3: Number of users whose maximum daily range
throughout the study falls on each date of the study.
Darker bars indicate Sundays. The middle dark bar rep-
resents Easter Sunday.

ceptibly small, about the same width as our median lines.
In other words, any visible difference between our median
lines is statistically significant.

Fridays are Weekend Days: Figure 3 is a histogram of
the number of users who reach their maximum daily range on
a given day of the study. These maxima occur far more fre-
quently on Saturdays and Sundays than on workdays, with
the notable exception of Fridays. When considering daily
ranges, Fridays are more similar to Saturdays and Sundays
and therefore we treat them as weekend days. This observa-
tion matches a similar one made by Sarafijanovic-Djukic et
al. [12], who eliminated weekends (including Fridays) from
their own mobility study after examining their data. Fur-
ther, it is of note that though data from the Easter weekend
was included in the period of our study, the number of daily
maxima in that weekend is not significantly larger than other
weekends (although there was a slight increase in maxima
in the weekdays leading up to the holiday).

‘Weekends are Varied: Although more daily range max-



47.7

all NY weekend - 79125

13 44 103

all NY weekday - 79651

15 5.3 13.

all LA weekend - 106482

2.0 5.9 13.

all LA weekday - 107425

0.1 1 10 100 1000
Miles

Figure 4: Boxplots of all daily ranges during weekdays
and weekends. Light boxes represent LA while dark
boxes represent NY.
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Figure 5: Boxplots of maximum daily ranges during
weekdays. Light boxes represent LA while dark boxes
represent NY. The lower two boxplots represent only
the city centers.

ima occur on weekends, this does not necessarily correlate to
greater distances traveled on weekends. As Figure 4 shows,
weekends tend to be more variable than weekdays. The
larger boxes corresponding to weekends can be interpreted
to mean that the middle two quartiles have more variable
travel patterns compared to weekdays. Specifically, in LA
the middle quartile span for weekdays is [2, 13.2] miles, while
for weekends it is [1.5,13.8] miles. A possible explanation is
that more people stay at home on weekends (bringing down
the 25" percentile) while others make longer that usual trips
(bringing up the 75" percentile).

Angelenos Commute Farther: Figure 4 shows non-
trivial differences between the weekday travel patterns of
Angelenos and New Yorkers. Specifically, the median for
weekday daily range is 4.4 miles in NY and 5.9 in LA, mak-
ing LA daily ranges 34% larger. The 25" percentile weekday
numbers are 1.3 for NY and 2.0 for LA, making LA ranges
53% larger. One likely explanation for this would be that
the average distance between home and work is greater in
the LA area than in the NY area. This trend of Angelenos
traveling farther than New Yorkers continues when examin-
ing maximum daily ranges, as can be seen in the top two
boxplots of Figure 5. The figure demonstrates that people
living in the LA area travel about 20% farther than those
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Figure 6: Boxplots of median daily ranges during week-
days. Light boxes represent LA while dark boxes repre-
sent NY. The lower two boxplots represent only the city
centers.

from the NY area, regardless of the percentile considered.

Commuting Estimates: We also examined the median
values of users’ daily ranges, shown in Figure 6. Since the
median daily range is the most commonly traveled distance
for each user, it provides a reasonable measure of his daily
commute distance. For the greater NY and LA regions, the
medians are fairly low at 3.8 and 5.0 miles, respectively.
Using finer granularity in examining median daily range in
the city centers, the bottom two boxplots of Figure 6 con-
firm the general pattern of Angelenos commuting farther.
Specifically, we look at detail at data from Manhattan (zip-
codes 100xx) and downtown LA (zipcodes 900xx). Here we
see again that Angelenos tend to commute about twice as
far as New Yorkers (2x at the 25" percentile and nearly 2x
at the 50" and 75" percentiles).

Data released by the US Census Bureau [15] indicates that
people in NY have the longest commutes in the nation by
time. Our data suggests that people in NY have significantly
shorter commutes than people in LA by distance. If not nec-
essarily contradictory, our data indicates that commuting is
done differently in NY and LA. It is possible that gener-
ally slower forms of transportation, such as public transport
or walking, are responsible for the long commute times re-
ported in NY.

City of Neighborhoods: There is further insight to be
gained in breaking down the LA and NY areas into subareas,
as is done in Figure 7. Variations in mobility are striking
even between subareas of the same city. Within LA, vari-
ations span from 1.3x (at the median) to 3x (at the 98"
percentile). The differences within LA itself are thus equal
to, or perhaps even a bit greater than, differences between
LA and NY. Differences within NY are even greater — varia-
tions span from 1.8x (at the 75" percentile) to 4.2x (at the
98" percentile). The map overlays in Figure 8 also show
that LA is more self-similar than NY.

Manhattanites Travel Very Far: By examining max-
imum daily ranges only in the city centers, the bottom two
boxplots of Figure 5 reveal an interesting reversal of the gen-
eral pattern of Angelenos traveling farther than New York-
ers. Specifically, we look at weekday data from Manhat-
tan (zipcodes 100xx) and downtown LA (zipcodes 900xx).
Here the medians are at 69 and 29 miles for Manhattan and
downtown LA, respectively. For the 75" percentiles the cor-



17 53 13
76

o

new jersey weekday - 31050

11 39 84
86

o

brooklyn weekday - 13450

21 59 13
94

o

staten is. weekday - 2903

1.2 4.7 9.7
50

queens weekday - 13144

o

11 4.2 9.7
50

o

bronx weekday - 5566

09 29 73
210

manhattan weekday - 12631

o
H I

0.1 10 100 1000

Miles

(a) New York area daily ranges

2.1 6.4 14
79

-

s. fernando va. weekday - 18957

20 59 13
84

n

orange co. weekday - 25114

21 5611
230

=

beverly hi. weekday - 735

27 75 19
antelope va. weekday - 3405

19 5611

900XX weekday - 17276

0.1 1 10 100 1000
Miles

(b) Los Angeles area daily ranges

Figure 7: Boxplots of all weekday daily ranges, split into subregions of the LA and NY metropolitan areas.

responding numbers are 735 and 129 miles. These numbers
show that when Manhattanites travel far, they travel very
far and farther than Angelenos. We recall that business
phones were excluded from our dataset. However, business
travel is still likely to be associated with these long-distance
weekday trips, because when going out of town people are
likely to take along their personal phones as well as their
business phones.

US vs Unnamed European Country: It is possi-
ble to compare some of our statistics to those computed
by Gonzéilez et al. for an Unnamed European Country
(UEC) [7]. Our maxima show that in the greater LA area,
50% of people traveled more than 36 miles on at least one
day, and that in the NY area 50% traveled more than 27
miles. This is in sharp contrast to Gonzélez et al.’s findings
that nearly 50% of all the people in their study remained
within a 6-mile range over a 6-month period. The LA max-
ima are more than 5x larger than those in UEC and the NY
maxima are more than 4x larger. While it is not surprising
that the numbers in the US are larger, as the US is more
car-oriented, the magnitude of the difference is unexpected.

5. RELATED WORK

The usefulness of cellular network operational records has
not gone unnoticed in the research community. Gonzéilez
et al. [7] used this type of data from an unnamed Euro-
pean country to track people’s movements for a 6-month
period and form statistical models of how individuals move.
Though the duration of their study was longer than ours,
our user base is significantly larger and we analyze far more
location events. Further, the aims of the two projects are
different. Gonzalez’s et al. were interested in modeling an
individual, while we are interested in differences in behavior
between large populations. It is also interesting to contrast
the mobility patterns of European and American popula-
tions, as we did in Section 4.

Other attempts at studying user mobility also tend to fo-
cus on finer-grained movement patterns of individual users.
Sohn et al. used GSM data to determine mobility modes,
such as walking or driving, of three individuals [13]. Simi-
larly, Mun et al. developed PEIR [10] to track the environ-
mental impact of individual users of the system. In contrast,
our goal here has been to look on a more macro scale at the
ways in which whole populations behave.

Work by Girardin et al. used cell phone usage within cities
to determine locations of users in Rome [5] and New York
City [6]. They were able to find where people clustered
in these cities and the major paths people tended to take
through the cities. They were also able to find differences
between the behavior of locals and tourists. In addition to
cell phone records, they relied on tagged photos uploaded
to popular photo sharing websites. In contrast to our study,
they made no effort to compare movement patterns between
the two cities they studied. Further, we are more interested
in long-term aggregate behavior than the short-term travel
patterns they studied.

In a step away from studying the patterns of individual
users, Pulselli et al. examine the use of wireless call volume
as a proxy for population density in Milan [11]. Although
their work illuminates trends of movement through the city,
we feel that our more direct measurements of user locations
yield a more accurate picture of human mobility.

There is a growing body of work around the use of cell
phones as ubiquitous sensors of factors such as location [3,
4, 10]. Our work is related to but differs from such participa-
tory sensing efforts. One, our data comes from the cellular
network, not from sensors on the phones. Two, our dataset
is much larger than those used by such efforts to date.

Before cell phones became ubiquitous, Tang et al. [14]
studied user accesses to an early wireless data network in
California. They found subsets of users with similar access
patterns and analyzed movement within these subsets. Our
study is based on much larger numbers of people in multiple
geographic regions, which makes our results more represen-
tative of the population at large.

6. CONCLUSIONS & FUTURE WORK

Cellular phone networks can help solve important prob-
lems outside the communications domain because they can
provide rich insights into the way people move. Scientists
and policy makers in many fields can use human mobil-
ity data to explore existing problems and anticipate future
problems. By analyzing anonymized records of cell phone
locations, we have been able to draw novel conclusions re-
garding how people move in and around two major cities in
the United States, Los Angeles and New York.

Using the concept of a daily range of travel, we have
demonstrated concrete differences between Angelenos and



(a) New York and New Jersey subregions

(b) Los Angeles subregions

Figure 8: Maps giving a visual representation of the median daily ranges of cell phone users in subregions of the

LA and NY metropolitan areas. The radii of the inner, dashed, and outer circles represent the 25", 50t", and 7

5th

percentiles, respectively, of these ranges across all users in a subregion. Ranges for all users in a subregion are made

to originate in a common point for clarity of display.

New Yorkers. Those living in the LA area tend to travel
on a regular basis roughly 2 times farther than people in
and around NY. However, when looking at the maximum
distance traveled by each person, New Yorkers are prone to
taking 2-6 times longer trips than Angelenos. Furthermore,
by looking within the cities themselves, we see that although
significant differences exists between portions of both cities,
the LA area is more homogeneous than the NY area.

Our results to date demonstrate the potential of our ap-
proach to characterizing human mobility patterns on a large
scale and without compromising individual privacy. Our
methodology has wide-ranging applications. Future work
includes using these techniques to examine correlations be-
tween human movements and world events such as national
holidays and disease outbreaks. A better understanding of
how such events affect human movement can inform a range
of pursuits, from urban planning to disaster response. Fur-
ther, we plan to expand upon our comparison of two urban
populations to a larger set of population types, for example
to compare rural vs. urban movement patterns. Finally,
we plan to use clustering techniques to identify those areas
most frequently visited by cell phone users. We thus hope
to more precisely quantify commute distances, and thereby
the impact of commuting behavior on the carbon footprints
of different populations.
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