
Tradeoffs in Message Passing and Shared Memory Implementations of a Standard Cell Router

Margaret Martonosi and Anoop Gupta
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

Abstract

This paperconsiderstwo implementationsof the Locus-
Routestandardcell routing program. One implementation
usesa messagepassingapproach,where global data dis-
tributed among the processesis kept consistentthrough
explicit updatesusing messages.The other implementa-
tion usesa sharedmemoryapproachand relies on under-
lying coherencemechanisms,suchas hardwarecacheco-
herenceprotocols,to keepthe dataconsistent.We discuss
the performanceof thesetwo mappingsin terms of the
network traffic, executiontime, and solution quality. We
explorea numberof updatestrategiesfor the data struc-
tures in the messagepassingimplementation,classifying
the methodsaccordingto whetherthey aresender initiated
or receiver initiated andwhetherthey areblocking or non-
blocking. Further, we showthat theseexplicit methodsfor
interprocessorupdatescan reducenetwork traffic to as lit-
tle as 1% of the traffic required for our sharedmemory
approach.Also, we examinemethodsfor task assignment
which takeadvantageof locality. While thesemethodscan
improvesolutionquality and reducethe needfor interpro-
cessorcommunicationin eitherparadigm,taskassignment
basedstrictly on locality can lead to load imbalancesbe-
tweenprocessors.Finally, we examinetheeffectof increas-
ing thenumberof processorson solutionquality, execution
time andnetworktraffic.

1 Introduction

Two commonparallelprogrammingparadigmsarethemes-
sagepassingprogrammingmodel and the sharedmemory
programmingmodel. In the messagepassingstyle, data
is distributed amongthe processes;if thereareglobal data
structures,theyarekeptup to dateby sendingmessages.In
suchan approach,the programmeris responsiblefor main-
tainingthe consistencyof thedatastructures.In theshared
memorymodel,the datastructuresarestoredin the shared
memory, andtheconsistencyof thesharedmemoryis guar-
anteedby an underlyingcoherencemechanism,suchas a
hardwarecachecoherenceprotocol.

In this paper, we explain the decisionsmadein encod-
ing the LocusRoute[8, 9] standardcell routing program

In Proc. 1989 International
Conference on Parallel Processing

in a messagepassingstyle, and make comparisonsto the
original sharedmemory implementation.We comparethe
performanceof thesemappingsin termsof networktraffic,
executiontime, andsolutionquality. In the messagepass-
ing version,the strategyusedto keepthe globaldataup to
date is an importantpart of the implementation.Updates
canbeeithersender initiated or receiver initiated. Receiver
initiatedupdatesarefurtherbrokendowninto blocking and
non-blocking types, where a blocking updatemeansthat
the processorthat requestsan updateis held idle until the
updatearrives. Also, eachupdatecancontaineitherabso-
lute data,or datarelative to the last updatethat was sent.
Resultspresentedshow that, for LocusRoute,senderini-
tiated schemesproducequality which is slightly betteron
averagethanreceiverinitiatedschemes,but with increased
executiontime comparedto thereceiverinitiatedapproach,
and network traffic that is nearly an order of magnitude
larger thanthat for receiverinitiatedstrategies.Most of the
messagepassingupdatescheduleswe usedproducequality
within 10% of the original sharedmemory version, with
networktraffic reducedsignificantlycomparedto the traffic
requiredby our sharedmemoryapproach.

We alsoexamineddifferentmethodsfor taskassignment
in eachparadigm.Both qualityandtraffic canbe improved
(by as much as 5% and63% respectively)by making use
of locality whenassigningtasks. In this study, we exploit
locality by assigningeachprocessorwires which arephys-
ically closeto eachotherin the circuit. However, strict ap-
plicationof thisheuristiccanleadto loadimbalanceswhich
degradeexecutiontime, if thecircuit’s wiresarenot spread
evenly over the areaof the circuit. Also, we examinethe
dependenceof performanceon the numberof processors.
In eitherparadigm,the quality of the solutiondegradesas
the numberof processorsincreases,becausemore work is
beingperformedin parallel,andtheprocessorsdonotknow
aboutthe work otherprocessorsaredoingsimultaneously.

Becausethemessagepassingparadigmcanbeefficiently
supportedon a sharedmemory machine,the resultspre-
sentedheredo not necessarilyleadto architecturalconclu-
sions,but ratherreflectmoreon theeffect thatprogrammer
effort canhavein efficient managementof datastructures,
andonefficientparallelprogrammingtechniquesin general.
Although the resultspresentedin the paperare specific to
LocusRoute,thegeneraltechniquesdiscussedareapplicable
to a variety of optimizationproblems.

The rest of the paperhas the following structure. Sec-
tion 2 gives a brief descriptionof the tools and method-

1



ology usedto collect the data presentedhere. Section3
givesa generaldescriptionof the LocusRouteapplication,
andits sharedmemoryimplementation.Section4 explains
the designdecisionsmadein mappingthe applicationto a
messagepassingparadigm.Resultson the performanceof
LocusRoutewith thesedecisionsare presentedin Section
5, andfinally, conclusionsarepresentedin Section6.

2 Tools and Methodology

Thissectiondescribesthetoolsandbenchmarkcircuitsused
in collectingthe datato be presentedin this paper.

2.1 CBS Message Passing Architecture Sim-
ulator

To simulateexecutionof the messagepassingversion of
LocusRoute,we usedthe ����� [7] messagepassingarchi-
tecturesimulator. This simulator generatesuseful statis-
tics on network traffic and executiontime. ����� simulates
a k-ary n-dimensionalhypercubemachine(with a total of
���

processors).For the work describedhere, ����� simu-
lated a machinewith deterministicwormhole routing [3],
andwith a two–dimensionalmeshinterconnection[4]. �����

alsomodelscontentionon thenetwork. Thenumberof pro-
cessorswas varied by changingthe arity of the simulated
machine.Thereareunidirectionalchannelsconnectingeach
processorto two of its four neighbors.With no contention
andwith onebytewide channels,thetotal time requiredfor
a packetof L bytesto travel D hopson the networkis:

2ProcessTime + HopTime(D + L).

ProcessTime is the time for theentiremessageto becopied
from the processornodeto themessagenetwork,andHop-
Time is the time requiredfor one byte to travel one hop
on the network. HopTime and ProcessTime were set to
100 ns and 2000 ns, respectively, to roughly model the
performanceof the Ametek Series2010 messagepassing
computer[1, 10]. The simulationswere run on an Encore
Multimax computer[5].1

2.2 Tango Shared Memory Tracing System

Traffic data presentedfor the sharedmemory version of
LocusRoutewascalculatedby analyzingshareddatarefer-
encetracescollectedfrom multiprocessrunsof LocusRoute
using the Tangotracing system[6]. Thesetracescontain
all shareddatareferencesmadeby the programduringex-
ecution. For eachreference,the time, address,and refer-
encingprocessorarerecorded.The tracesaregeneratedon
a uniprocessorby spawningthe specifiednumberof pro-
cessesandmultiplexing their execution.This multiplexing

1 To simulatetheAmetek’s MC68020processingnodes,
all timesfrom the EncoreMultimax clock weredividedby
five, becausethe Multimax usesNS32032microprocessors
which areaboutfive times lesspowerful.

CHANNEL 5

CHANNEL 4

CHANNEL 3

CHANNEL 2

CHANNEL 1

STANDARD CELL PLACEMENT COST ARRAY

Figure 1: Standardcell placementand correspondingcost
array.

is very fine grainedandis controlledto closelymodela run
on a multiprocessor.

2.3 Benchmark Circuits

The datapresentedherewas collectedfor two benchmark
circuits. The first circuit, bnrE, has 420 wires, a size of
10 channelsby 341 routinggrids, andrepresentsan actual
standardcell circuit developedat Bell-NorthernResearch
Ltd. The secondcircuit, MDC, has573 wires with a size
of 12channelsby 386routinggrids,andwasdesignedat the
Universityof TorontoMicroelectronicDevelopmentCentre.

3 LocusRoute: The Application

This section will give background information on the
LocusRouteapplication, in preparationfor later sections
which describethe tradeoffs involvedwith mappingLocus-
Routeto a messagepassingapproach.

LocusRoute[8, 9], originally written in a sharedmem-
ory style, is a commercialqualityVLSI standardcell router
developedby JonathanRoseat StanfordUniversity. Locus-
Routeroutesthe wires of a standardcell circuit, attempt-
ing to minimize the circuit area.LocusRoute’s centraldata
structureis acost array thatkeepsa recordof thenum-
berof wiresrunningthougheachroutinggrid of thecircuit.
Theverticaldimensionof thearrayis thenumberof routing
channelsin the circuit, andthe horizontaldimensionis the
numberof routinggrids. Eachwire is routedalongthepath
with the minimal sum of the cost array entries. Figure 1
showsa standardcell circuit andoneof its wires, with the
correspondingcost array. The highlighted portionsof
the cost array will be incrementedif this route is chosen.
An iteration of routing is completedwhen eachwire has
beenroutedonce. Performingseveralof theseiterations,
with all wires routedonceper iteration,improvesthe final
solutionquality [8]. However, before reroutinga wire in
a later iteration, the processormust “rip up” the previous
routingof thewire by decrementingthecostarraylocations
in its path.

In additionto producingthe routedcircuit, LocusRoute



also computesa measureof the overall solution quality.
Overall quality, also referredto as circuit height, is com-
putedas follows. For eachchannel,the numberof wires
usingthe channelwill vary acrossthe width of the circuit.
Thenumberof routingtracksrequiredby thechannelis the
maximumnumberof wires runningthroughthe channelat
any point. The circuit heightis the total numberof routing
tracks requiredfor all channels. This measureof quality
is usefulbecauseit is proportional to the circuit area,and
thus,givesa meansof estimatingthe expectedareaof the
circuit. A secondmeasureof quality will be presentedin
somecasesaswell. Thesecondmeasureof quality is called
the occupancy factor. The occupancyfactor is computed
asfollows. Whena wire is routed,thecostof a pathis the
sumof thecostarrayentriesalongit. Theoccupancyfactor
is thesum,over all wires, of the pathcostsat the time the
wire is routed.The occupancyfactorgivesan indicationof
the costof the wire’s pathat the time it was chosen.For
bothof thesemeasures,a lower valuemeansbetterquality.

The sharedmemory implementationfollows fairly nat-
urally from the algorithm descriptionstatedabove. The
cost array is implementedasan arrayin globalshared
memory. All the processorsperform readsand writes on
it as they routethe wires. Although it is possiblefor sev-
eral processesto simultaneouslyattemptto read or write
the samearray location, the probability of suchcollisions
is low, and for this reason,accessesto the cost array are
not locked. Researchhasshownthat the solutionqualities
obtainedfrom the sharedmemoryversionswith andwith-
outcostarraylockingarenotsignificantlydifferent,andthe
performanceof thenon–lockingversionis betterdueto the
decreasein serialization[9].

In this sharedmemoryimplementation,wire distribution
can be easily accomplishedusing a distributed loop, in
which processesarerepeatedlygivenwires to route. When
done with one wire, processesrequestanotherwire sub-
script. When all the wires havebeengiven out, processes
areblockedat a barrieruntil all theprocessorsarefinished.
While this original sharedmemoryapproachhassimplicity
on its side, it doesnot attemptto takeadvantageof local-
ity by assigningwires to processessuchthat eachprocess
works mainly in one region of the circuit and cost array.
We will show that a wire assignmentstrategywhich does
take advantageof locality in this way can result in better
solution quality and lower network traffic, becauseinter-
ferenceamongprocessesas they accessthe cost array is
greatlyreduced.

4 LocusRoute in a Message Passing
Style

This sectiondescribesthe tradeoffs involvedin implement-
ing LocusRoutein a messagepassingstyle. LocusRoute
is an optimizationproblemwhich can tolerateout of date
information in its main datastructure,the cost array,
so the programmerhas considerableflexibility in imple-
mentingit in a messagepassingstyle. In essence,appli-
cationslike LocusRouteallow the programmerto choose

cost array
PE1

cost array
PE0

cost array
PE2

cost array
PE3

Owned Portion
of Cost Array

Unowned Portion 
of Cost Array

Figure2: Division of the costarrayamongprocessors.

to simulatesharedmemoryonly up to the degreeof con-
sistencyrequiredby the algorithmfor the desiredsolution
quality. Many messagepassingimplementationsof Locus-
Routeare possible,dependingon (i) how the programmer
decidesto distributethe cost array, (ii) how wires are as-
signedto processorsto berouted,(iii) whattypesof updates
areperformedon thecostarray, and(iv) howfrequentlyup-
datesare performed. The following subsectionselaborate
on thesedecisions,discussingalternativesfor each.

4.1 Distribution of Cost Array

In the sharedmemory versionof LocusRoute,all proces-
sors have accessto a single, consistentcopy of the cost
array. Whenencodingtheapplicationin a messagepassing
style, one must decidehow the cost array shouldbe im-
plemented,sinceno sharedmemoryis available. The cost
arraycouldbedividedinto portionsof approximatelyequal
size, allocatinga portion to eachprocessor. Each proces-
sor performsall routing within the region allocatedto it.
If routing extendsinto anotherregion, the task is passed
to the processorowning that region. This implementation
has load balancingproblemsif many wires lie in a single
processor’s regionof thecostarray. Also, sincemostwires
spanmultiple regions,andsincemany routesare explored
for eachwire, this methodcould generatea large amount
of messagetraffic.

Instead,we chosea lessstrictapproach.Thecostarrayis
dividedinto sections,andeachprocessoris theownerof one
section. However, eachprocessorhasa view of the whole
cost array. The processorwhich owns a certainregionof
the cost array is the owner processor for the region, and
the region itself is the owned region. The four processor
examplein Figure2, showseachprocessor’scostarraywith
the ownedregionshighlighted. Also, we add a new data
structure,known as the delta array. The delta array
hasthe samedimensionsasthe costarray, andkeepstrack
of changesmadeto the cost array betweenupdates.This
deltaarrayis usedto notify otherprocessorsof changesthat
have beenmade,and will be further discussedin Section
4.3.



4.2 Wire Assignment and Locality

In the sharedmemory paradigm,wires can either be as-
signeddynamically, using a distributed loop for example,
or statically, using locality and load balancingheuristics.
In the messagepassingapproach,dynamicwire allocation
requiresmessagetransactionson the network. Also, the
time spentwaiting for a requestedtaskcanbe large. If the
processorreceivingthe taskrequestsis alsorouting wires,
andif processorsonly checkfor newly receivedmessages
betweenroutingwires,a processormay haveto wait for an
entirewire to be routedbeforethewire assignmentproces-
sor evenretrievesthe taskrequestmessagefrom its queue.

A variationon the first schemeis possibleif messages
arriving at a processorcancausethe processorto be inter-
rupted. The wire assignmentprocessorrouteswires at a
low priority level, and respondsto wire requestinterrupts
from otherprocessorsat a higherpriority level. This solves
the problem of the first method,wherewire requestswere
only processedbetweenwires. If the wire requestinterrupt
can be servicedwith low overhead,this methodcan offer
wire distribution with lower latencythan the first method.
However, becausethis methodis dynamic,it is difficult to
examinehow locality in thewire assignmentaffectsperfor-
mance.Also, ����� doesnot supportthe notionof interrupts
occurringon messagereception,so this wire assignment
methodis difficult to simulate.

For the abovereasons,we chosea static wire assign-
mentmethod.Becausethecostarrayis dividedinto owned
regions, the algorithm benefits from a wire assignment
methodthat attemptsto assignwires to the ownerproces-
sor of the region they run through. To achievethis, wires
are assignedto the ownerprocessorof the leftmostpin of
the wire. Unfortunately, trials with this heuristichad very
poor load balancing,becauseno effort was madeto even
out the numberof wires eachprocessorhad. We modified
the assignmentstrategyto avoid this. A cost measureis
computedfor each wire, basedon its length. Any wire
with cost lessthanthe parameterThresholdCost is as-
signedto the owner processorof the wire’s leftmost pin.
All longer wires, which havecostgreaterthanThreshold-
Costandwhich havelimited locality anyway, arehelduntil
a final stepin the staticwire assignmentphase,wherethey
are assignedto balancethe load, ignoring locality. By in-
creasingThresholdCost,we increasethe amountof locality
exploitedin thewire assignment.By decreasingThreshold-
Cost,morewiresareassignedon thebasisof loadbalancing
insteadof locality.

4.3 Update Mechanisms

In mostcircuits,wiresassignedto oneprocessorwill extend
into regionsownedby otherprocessors,so updatesof cost
array information betweenprocessorswill have to occur.
We explorethe efficiency of differentmethodsof updates.
Figure3 showsa classificationof the typesof updatesthat
will be discussedin this section.

Sender Initiated Receiver Initiated

Absolute Delta

Blocking

Absolute Delta

Updates

Non-Blocking

Absolute Delta

Figure3: Classificationof typesof updates.

4.3.1 Structure of Updates

The structureof the updatepacketsshouldsatisfy several
requirements.First, it shouldmaximize the useful infor-
mation per byte. However, it must also be convenientto
assembleand disassemble,so the processingoverheadof
sendingor receivinga messageis not high.

One possiblepacket structureis baseddirectly on the
structureof the wires being routed. This packetstructure
wouldcontaincoordinatesof thestartandendpointsof each
horizontalor verticalsegmentof thewire, alongwith a flag
indicatingwhetherthis wire hadbeenrippedup (decrement
costarray)or routed(incrementcostarray).

Anotherpossiblestructurefor the packetis to havethe
updatepacketcontainthe valuesof an entireregionof the
costarrayownedby oneof the processors.This is simple
for the senderand receiverto process,and may be more
efficient thanthe wire basedpacketstructureif manywires
arechangedbetweenupdates.On the otherhand,it usesa
large numberof bytes,which can increasethe processing
overheadatboththesendingandreceivingendsandcongest
the network.

We chosea third updatestrategy, which is a simpleop-
timization of the secondone. In this structure,the sending
processorscansthe deltaarrayfor changes,shownby non-
zeroelementsin thedeltaarray. For eachcostarrayregion,
the senderconstructsa packetwhich containsthebounding
box of all the changesmadewithin that region,aswell as
the coordinatesof the boundingbox being sent. Because
thesenderhasto scanthearrayfor changes,thismethodhas
moreoverheadat the sendingendthanthe secondmethod
described.However, it reducesnetworktraffic comparedto
the othermethod,becauseusuallyonly a small fraction of
the ownedregionhasbeenchanged.It also reducesmes-
sagereceptionoverheadat the receiver, becausethereare
fewerbytesfor thereceiverto incorporateinto its costarray.

4.3.2 Sender Initiated Updates

We mustalsodecidehow updatesshouldbe initiated. We
proposea generalclassificationinto four types of update
transactions.The first two typesof transactionsare called



sender initiated becausethe processorto determinethat an
updateshouldbe initiated is the onewhich sendsthe data.
The other two are receiver initiated and are discussedin
section4.3.3.

SendLocData is usedto inform other processorsof the
ownerprocessor’s view of its ownedregion. The receiving
processorsreplacetheir view of the region being updated
with the updatedata. In general,this typeof updatecanbe
sentto anyprocessor, butasanoptimizationin LocusRoute,
thesepacketsare sentonly to the North, South,East,and
Westneighborsof the ownerprocessorsendingthe update.

SendRmtData is usedto inform an owner processorof
changesthat anotherprocessorhasmadeto the ownerpro-
cessor’s ownedregion. The processorsendingthis update
is not the owner processorof the region, so it doesnot
sendthe absolutecost array entries. Rather, it sendsthe
correspondinglocationsfrom the deltaarray, indicatingthe
changesmadeto this regionsincethe last update.

To study the sensitivityof the LocusRoutealgorithmto
inconsistenciesin the costarray, the frequencywith which
updatesareperformedwasallowedto vary. For eachtype
of senderinitiatedupdate,there is a parameterindicating
how many wires should be routed betweenupdates. In
addition, if an updateis supposedto occur, but no changes
have been made in the region to be updated,the update
will not be sentout. The size of the updatevaries,but it
is alwaysthe rectangularboundingbox of all the changes
thathaveoccurredin a given ownedregion.

4.3.3 Receiver Initiated Updates

In the receiver initiated schemes,a processordetermines
(usingmethodsto be discussedlater) thatan updateshould
occur. It sendseither a ReqLocData or a ReqRmtData
packetto the appropriateprocessor. Requestpacketsin-
clude coordinatesof the boundingbox of the region for
whichanupdateis requested.Whenthedestinationproces-
sor receivesthe request,it returnsa responsepacketwith
therequesteddata,so in this case,the initiator of the trans-
actionis the receiverof the data.

ReqRmtDatais usedwhen a processorwantsto update
its view of a remotelyownedregionof the costarray. For
eachwire, a processordetermineswhichregionscontainthe
wire, and incrementsa counterfor eachof thoseregions.
Whenthe count for a regionreachesa specified(variable)
parameter, a ReqRmtDatapacketis sentto the ownerpro-
cessorof that region. The wire assignmentis static so a
processorknows in advancewhich wires will be routed
andcan requestupdatesfor the appropriateregionsahead
of time. Requestingupdatesin advancehelpsensurethat
the updatewill arrive beforerouting for that wire actually
begins,butupdatesorderedtoo far in advancewill beoutof
datebeforethey areused.As a compromisebetweenthese
two opposingfactors,we choseto haveprocessorsrequest
updatesfor five wires at a time.

ReqLocDatais useful when an owner processorwishes
to bringits ownedregioninto a consistentstate.Theowner
processormonitorsthe numberof ReqRmtDatapacketsit

receivesfrom all the otherprocessors.If a remoteproces-
sor hasmademore thana certainnumberof ReqRmtData
requests,the ownerprocessorrequestsan updatefrom the
remoteprocessor, becausethe remoteprocessorhas been
routing in the ownerprocessor’s region.

In thecaseof receiverinitiatedupdates,onefurtherdeci-
sionremains.If a processorhasrequestedanupdate,it can
eitherblock, andwait until the requestedupdatearrives,or
it can proceedwith its work. If it proceeds,the processor
neverneedsto sit idle, waiting for thepacket.On theother
hand,if it doesnot wait for the packet,the processormay
actually finish routing the wire for which the updatewas
requested,beforethe updateevenarrives. Due to locality,
the processoris likely to be routing wires in that region
againsoon,andan updatethat arrivestoo late for onewire
can often be useful for other ones. Also, becauseseveral
iterationsof routing are performed,the processoris guar-
anteed(excepton the last iteration)to routethe samewire
again,so the update,if not yet out of date,will be useful
for that. In fact, resultspresentedin Section5.1.3 show
thatthequalityusingthenon-blockingschemeis not worse
than when using the blocking scheme,and the execution
time is muchimproved.

5 Results

The previoussectionsintroduced the implementationsof
LocusRoutein sharedmemoryandmessagepassingstyles.
Here, we presentresultsto supportthe decisionsmadein
those approaches. Unless otherwisenoted, the message
passingresultsarepresentedfor 16 processorsarrangedin
a four by four grid. The sharedmemoryresultsare for 16
processorsusinga Write Back with Invalidatecachecoher-
enceprotocol[2].

5.1 Effectiveness of Message Passing Update
Strategies

The goalof theupdatestrategyis to producea goodquality
resultwith thesmallestamountof communicationpossible,
andwith aminimalamountof computationaloverhead.The
following subsectionswill presentdatashowingthe effect
of the updatestrategiesoutlinedin Section4.3 on solution
quality, executiontime, andnetworktraffic.

5.1.1 Sender Initiated Strategy

Table 1 showsresultsof runningmessagepassingLocus-
Routeon thebnrEcircuit usinga purelysenderinitiatedup-
datescheme.The tableshowsthe frequencyof both types
of senderinitiatedupdates,givenin termsof thenumberof
wiresbetweenupdates,andthecircuit heightresultingwith
eachupdateschedule.The quality of the messagepassing
versionusingsenderinitiatedupdatesis within 10% of the
sharedmemoryquality for mosttrials. Unfortunately, qual-
ity measuredin termsof circuit heightseemsto havelittle
correlationwith the updatefrequency. This is becausethe



Table1: Network traffic usingsenderinitiatedupdates.

SendRmtData, Ckt Occup. MBytes
SendLocData Ht. Factor Xfrd. Time (s)
2 1 142 426109 .862 1.893

5 143 428558 .222 1.515
10 141 429589 .140 1.445
20 145 432360 .101 1.426

5 1 144 425576 .859 1.668
5 143 430046 .212 1.306

10 146 430580 .133 1.260
20 145 431366 .094 1.240

10 1 142 426706 .840 1.553
5 143 429423 .208 1.282

10 146 431662 .128 1.243
20 145 432169 .087 1.219

circuit height only changeswhen routeswhich affect the
numberof routing tracks per channelare changed. Fur-
ther, the table indicatesthat the occupancyfactor is only
slightly sensitiveto changesin SendLocDatawith Send-
RmtDataheld constant.In bnrE, with SendRmtDataequal
to 2 wires, the occupancyfactor changesonly 2%.

Theexecutiontime variesa greatdealwith thefrequency
of updates,from a maximumvalueof 1.893secondsto min-
imumvalueof 1.219seconds.Becausethesamestaticwire
assignmentis usedfor all the runsshownhere,the execu-
tion time is clearly a function of the frequencyof updates.
Timingtheassemblyanddisassemblyof packetsshowsthat
theseoperationstakeupto onefourthof theprocessingtime
in runswith frequentupdates. To comparethe execution
timewith thatof thesharedmemoryversion,recallthat �����

is simulatingprocessorswhich arefive timesfasterthanthe
NS32032processorsof the EncoreMultimax. Therefore,a
roughcomparisoncanbe obtainedby multiplying the exe-
cution times of the messagepassingversionby five.2 The
besttime for bnrE is 1.219seconds,which whenmultiplied
by five, is comparableto the sharedmemoryversion.

The numberof bytestransferredis alsoa clear function
of the updatefrequency. However, the increasein network
traffic is less than linear with the updatefrequency. This
is due to the form of the updates:a boundingbox of all
changesmadeto a region. When updatesare performed
after manywires, changesmay havebeenmadein several
different areasof the cost array region,and the bounding
box will containall the unchangedlocationsbetweenthe
changedareas. When updatesoccur more frequently, the
updatesmorecloselymatchthe changesthatoccurred,and
fewer extra bytesare sent. This leadsto the sublinearin-

2 Notethatsimplemultiplicationby a factorof five when
comparingthe executiontimesfavorsthe bus-basedshared
memoryarchitecture.This is becauseif the processorsin
the sharedmemorymachinereally were five times faster,
therewould be morecontentionon thebus,andtheoverall
performancewould not improveby a factor of five.

creasein networktraffic with updatefrequency.

5.1.2 Non-Blocking Receiver Initiated Strategy

Table 2 shows the quality, executiontime, and network
traffic for severalpurely receiver initiated strategies. All

Table 2: Traffic using non-blocking receiver initiated up-
dates.

ReqLocData, Ckt Occup. MBytes
ReqRmtData Ht. Factor Xfrd. Time (s)

1 5 144 430686 .130 1.166
10 150 436496 .056 1.159
30 151 437956 .009 1.099

2 5 143 431936 .112 1.156
10 149 437088 .045 1.126
30 151 437956 .009 1.113

10 5 142 430868 .088 1.133
10 149 437797 .039 1.135
30 151 437956 .009 1.097

of thesestrategiesuse the non-blockingreceivermethod,
in which processorsdo not wait for the responsesto their
requests.

The bestcircuit heightmeasurefor the non-blockingre-
ceiver initiated caseis slightly worsethan the bestcircuit
height measurefor the senderinitiated case. The small
overall degradationin output quality is due to the loose
coupling betweenupdaterequestsand wire routing. One
can seethat the circuit heightis quite sensitiveto changes
in ReqRmtData.WhenReqRmtDatais increasedbeyond5,
the quality of the routingdropsby about5%.

The executiontime is improvedover that for the sender
initiated strategies.The bestexecutiontime is 1.097sec-
onds,ascomparedto 1.219secondsfor thesenderinitiated
version. The large variationin executiontime with update
frequencythat was presentin the senderinitiated trials is
not presenthere,however. The reasonfor this is that the
processorsin the senderinitiated approachare spendinga
large fraction of time processingmessages.There is less
traffic in the receiver initiated approach,so the message
processingoverheadis lower, leadingto both lessexecu-
tion timeoverall,andlessdependenceof theexecutiontime
on the frequencyof updates.

5.1.3 Other Strategies

Intuitively, oneexpectsa blockingreceiverinitiatedscheme
to give the bestquality. First, any processorcandetermine
if it needsan updateand order one. Second,becausethe
processoris forcedto blockuntil theorderedupdatesarrive,
the processoris guaranteedto make the routing decisions
usinginformationthat is only asout of dateasthenetwork
delaythatwasrequiredto sendit to therequester. Actually
though,the averagequality of the blocking receiveriniti-
ated runs is about the sameas that for the non-blocking



runs. Further, blocking strategieshaveexecutiontimes as
muchas 75% larger thannon-blockingschemesusing the
sameupdateschedule. With a higher performanceinter-
connectionnetwork,lower overheadon messagereception,
anda betterheuristic for requestingupdates,the blocking
strategywould probably becomemore effective than the
non-blockingstrategy.

We also experimentedwith several update schedules
which were mixtures of senderand receiver initiated up-
dates.Whentheoccupancyfactor is usedasthemeasureof
quality, mixed updateschemesgenerallygive an improve-
mentover senderor receiverinitiated schemesalone. For
example,a mixed schemewith parametersSendLocData=
5, SendRmtData= 2, ReqLocData= 1 andReqRmtData= 5
givesan occupancyfactorof 424337.This quality is better
thanthat from the first line of Table1, 430686,andis ob-
tainedusingonly .311 MBytes, lessthanhalf the network
traffic of the senderinitiated scheme. However, when a
comparisonof quality is madeusingthe circuit heightmet-
ric, thesenderinitiatedapproachalwaysproducesresultsof
similar or betterquality.

5.1.4 Summary of Update Strategy Results

The senderinitiated updatestrategygives the best results
in termsof circuit height. However, the networktraffic can
be morethanten timeslarger for a senderinitiatedscheme
than for a receiver initiated scheme. In situationswhere
quality is requiredat anycost,thesenderinitiatedapproach
will bethepreferredupdatemethodfor themessagepassing
implementation.

5.2 Comparison of Shared Memory and Mes-
sage Passing Approaches

The previoussectiongave the performanceof the various
messagepassingupdatestrategiesin termsof networktraf-
fic, solution quality andexecutiontime. In this section,we
will comparethoseresultswith datafrom a sharedmemory
approach.

The metric of network traffic is an interestingbasisfor
comparisonbecauseit reflects the amountof interproces-
sor communicationrequiredby eachapproachto achieve
similar results. In a messagepassingarchitecture,there
is processingoverheadassociatedwith sendingandreceiv-
ing updatemessages,so one would like to updateas in-
frequentlyas possible. In a sharedmemory architecture,
hardwarecacheconsistencyprotocolscauseextrabustraf-
fic dueto cacheline invalidations.Theseoperationscause
theprocessorto stall, andso,alsohurtperformance.Traffic
in the sharedmemoryapproachis madeup of threeparts.
First, the processor’s initial accessto a locationalwaysre-
sultsin a miss,andbringsthe line into the cache.Second,
thefirst write to a cleanlocationcausesa word write on the
sharedbus. The otherprocessorsseethis write andinvali-
datethatcacheline if it is in their cache.Third, oncea line
hasbeeninvalidatedby a cache,it mayneedthe line again.
This leadsto refetchesof the datafrom memory. Clearly,

traffic in the sharedmemoryapproachis a function of the
cachecoherenceprotocoland the line size of the cache.3

For all the resultsgiven here,we useda Write Back with
Invalidatecoherenceprotocol[2].

Increasesin the cacheline size can have the effect of
either increasingor decreasingtraffic. First, with a longer
cache line, data items that will never be used are more
likely to be broughtinto the cache. This will increasethe
traffic on thebus. Also, increasingtheline sizemeansthere
will be more data in the cache(under the infinite cache
assumption)andso processorsare more likely to interfere
with each other, and force invalidations in other caches.
These invalidations,as well as the subsequentrefetches,
also causethe traffic to increase.On the other hand,it is
possiblefor a longercacheline to causea traffic decreaseas
well. If thereareseveralshareddataitemsstoredrelatively
close to each other, then a single invalidation of a long
cacheline could causethem to all be invalidatedin one
operation.This candecreasetraffic comparedto thecaseof
severalindividual invalidations. For the casesconsidered
here, this last situationhappensinfrequently, so its effect
is minor comparedto the first two. Thus, we expectthat
increasingthecacheline sizewill leadto an increasein the
numberof bytestransferred.

Table 3: Traffic as a function of cacheline size in shared
memoryversion.

Circuit CacheLine Size MBytes Transferred
bnrE 4 2.15

8 3.73
16 6.87
32 13.5

As predicted,the datain Table3 clearly showsthat the
traffic increasessignificantlyasthe line size increases.For
example,a cacheline sizeof 4 bytescausesthe total traffic
to be 2.15megabyteswhile a 32 bytecacheline causesthe
traffic to increaseto 13.5 megabytes,more thansix times
asmuch.

Comparingthesefigureswith thosepresentedin Section
5.1, we seethat the communicationtraffic in the message
passingapproachis 1-3 ordersof magnitudelessthanthat
for the sharedmemory approach. This surprisingly large
differencecanbeexplainedby severalfactors.Theupdates
being performedin the messagepassingversionoccur, at
most, once per wire, so the write performedat the wire
rip up stageis handledat the sametime as the write per-
formedat the wire routingstage.Sincemuchof the wire’s
pathwill remainthe sameafter rerouting,thesetwo writes
will often canceleachother in the delta array, and many
of the locationswill not need to be updatedat all. By

3 Traffic is also a function of the cachesize, because
a small cachewill havea highermiss rate requiringmore
data fetchesfrom main memory. For the purposesof this
study, we haveassumedan infinite cache.



contrast,the sharedmemoryapproachmay requireconsis-
tencyoperationson any individual reador write operation.
The cancellationpossiblein the messagepassingapproach
removesmany of the write operations—asignificant ac-
complishmentsince over 80% of the bytes transferredin
the sharedmemoryversionarecausedby writes.

Thesharedmemoryversiongivesa circuit heightof 131
for thebnrEcircuit. This is about8% betterthanthatgiven
by the senderinitiatedmessagepassingapproach.Clearly,
thecostof this improvedquality is in theincreasednetwork
traffic requiredto maintainconsistencyof the costarrayto
sucha large degree. However, for massproductionsitua-
tionswherean improvementin routingquality can lead to
reducedmaterialscostsandhigheryields, the sharedmem-
ory versionappearsto be the methodof choice.

5.3 Effect of Locality

Thesolutionquality, executiontime andamountof network
traffic generatedin both the sharedmemory and message
passingversionsof LocusRoutedependon the degreeto
which locality can be exploited. Here, locality is a mea-
sureof how often a processoris routing wires within its
owned region or regionsclose by. (A quantitativemea-
sure is describedin Section5.3.3.) Architecturesbenefit
in differentwaysfrom exploitinglocality. Messagepassing
architecturesbenefitfrom locality becausetheneedfor mes-
sagetraffic to producea certainlevel of solutionquality is
reduced.In this sectionwe showthat messagepassingim-
plementationstaking advantageof locality can reducethe
total network traffic by as much as 63%. Sharedmem-
ory architecturesbenefitfrom locality throughbettercache
behavior. Specifically, exploitinglocality in a sharedmem-
ory approachresultsin lessprocessorinterferencecausing
cachecoherencetraffic, and providesbetterspatial local-
ity. In the past,locality hasnot playeda major part in the
designof sharedmemoryparallel programs. However, in
hierarchicalsharedmemoryarchitectures,now being con-
sideredbecauseof their scalability, a local referencecanbe
morethananorderof magnitudefasterthana non-localref-
erence.This architecturaltrend indicatesthat locality will
becomean importantpart of future programdesign.

5.3.1 Locality in the Message Passing Approach

Table4 showsthe effect of variouswire assignmentstrate-
gieson thequalityof theroutedcircuit, theexecutiontime,
andthenumberof bytestransferred.Theextremenon-local
caseis onewhichusesroundrobinwire assignment,andthe
extremelocal case(ThresholdCost= infinity) is onewhere
eachwire is assignedto theprocessorwhoseownedregion
containsits leftmostpin. Clearly, wire assignmentswhich
do not take advantageof locality, suchas roundrobin, re-
sult in poorerqualitythanthosethatdo,suchasassignments
madewith ThresholdCostsetequalto 1000or infinity. (See
Section4.2 for anexplanationof theThresholdCostparam-
eter.)

The effect of locality on the network traffic depends
on the type of updatestrategyused. In the senderiniti-

atedscheme,updatesaresentout if the sender’s arrayhas
changed.A reductionin traffic dueto locality will occurbe-
causechangesaremadein fewerandsmallerregionsof the
costarray. Thechangein traffic for senderinitiatedupdates
from a fully local assignmentto a roundrobin assignment
is 11%. The receiver initiated schemeis more sensitive
to locality, becausein this strategy, poor locality resultsin
frequentinterprocessordatarequests.Traffic is reducedas
muchas63% going from a round-robinassignmentpolicy
to a local one.

Table4: Effect of locality (SenderInitiated).

Asmt. Ckt. MBytes
Ckt. Method Ht. Xfrd. Time (s)

bnrE roundrobin 147 .156 1.478
ThresholdCost= 30 141 .153 1.392
ThresholdCost= 1000 141 .140 1.445
ThresholdCost= inf. 140 .139 2.468

MDC roundrobin 150 .242 2.181
ThresholdCost= 30 146 .232 1.768
ThresholdCost= 1000 147 .217 1.866
ThresholdCost= inf. 146 .220 3.684

Locality also hasan effect on the quality of the output
and executiontime requiredby LocusRoute. By using a
totally local wire assignment,thesolutionquality improves
as much as 5%. When processorsroute in localized re-
gions, each has a fairly consistentview of the area it is
routing in. Ultimately, this is a moreeffective way to pro-
ducegoodsolutionquality than nonlocalizedrouting with
periodicupdates.

5.3.2 Locality in the Shared Memory Approach

This sectionexaminesthesensitivityof thesharedmemory
approachto locality. Table5 showsthesolutionqualityand
amountof traffic generated,asa functionof the amountof
locality exploitedin the application.

Table5: Effect of locality in sharedmemoryversion.

Asmt. Ckt. Mbytes
Ckt. Method Height Xfrd.
bnrE roundrobin 139 3.96

ThresholdCost= 30 134 3.77
ThresholdCost= 1000 131 3.73
ThresholdCost= infinity 139 3.73

MDC roundrobin 144 4.833
ThresholdCost= 30 138 4.625
ThresholdCost= 1000 143 4.600
ThresholdCost= infinity 143 4.687



For bnrE with 8 byte cachelines, total global bus traf-
fic can be reduced5.8% by taking advantageof locality
in the assignmentof wires. While a small reduction, it
will still be an important factor in the performanceof a
hierarchicalsharedmemory machine, in which non-local
memoryaccessescanbe more thanan orderof magnitude
slowerthanlocal memoryaccesses. In mostcases,a local
wire assignmentresultsin improvedquality over the round
robin assignmentas well. Quality is improvedby nearly
6%. Becausethe improvementin quality comeswithout
any increasein networktraffic, it is definitely a usefulop-
timization. Thesesmall gainsin circuit quality can leadto
largepayoffs in termsof materialcostsandyield.

5.3.3 Limitations on Exploiting Locality

Exploiting locality to reducenetwork traffic and increase
quality has clear benefits. However, severalfactors limit
the amountto be gainedby takingadvantageof locality in
a problem.

First,thestandardcell circuitshaveonlya limitedamount
of locality. If the circuit’s wires are long enoughto pass
through the regionsof severalprocessors,there is an un-
avoidableamountof interprocessorcommunicationthatwill
takeplaceto performthe necessaryupdates.To determine
an upperboundon the locality LocusRoutecould exploit,
we developeda measureof the locality in standardcell
circuits. The locality measureis a weightedaverageindi-
catingthe averagedistance(in horizontalor vertical hops)
betweentheprocessoractuallyroutinga wire segment,and
the processorthat owns the region that segmentlies in.
Thus, a locality measureof 0 indicatesthat all segments
were routed by the region owner, giving perfect locality.
Increasesin this measureindicatethat the averagesegment
is beingroutedat a distancefurther from the owner.

Computing the locality for the bnrE circuit with several
wire allocationstrategies,we find that evenwith the most
local wire assignmentstrategies,wire segmentsare routed
anaverageof 1.21processorsawayfrom theownerproces-
sor. The MDC circuit hadbetterlocality, with wiresrouted
anaverageof 0.91processorsawayfrom theowner. As the
numberof processorsis increased,the locality of the cir-
cuit will be degraded,becausethe regionof the costarray
ownedby eachprocessorwill becomesmaller.

The secondlimitation to exploiting locality is the con-
straint that the processorshave balancedworkloads. If
manywireslie within a singleprocessor’sregion,thencon-
sideringlocality alone,thatprocessorshouldroutethemall.
However, this can give that processoran unfair amountof
work, resultingin a load imbalanceandpoor performance.
To someextent, a circuit with good locality will require
fewer updates,and therefore,less time to execute. How-
ever, theeffect of a load imbalancecanoutweighthesubtle
effect of the differencein updatetime. Therefore,in terms
of executiontime, the optimal point is neithera fully load
balancedcircuit, nor a fully local circuit, but rathera point
betweenthe two. For example,in Table 4, the bestexe-
cution time is alwaysgiven by the wire assignmentwith a
ThresholdCostof 30.

5.4 Number of Processors

The behaviorof a parallel programas the numberof pro-
cessorsis increasedis animportantconsiderationwhenpar-
allelizinganapplication.In thiscase,themainlimitation to
scalingthe messagepassingLocusRouteapplicationis the
distributedcostarray. As the cost array is divided among
more processors,more frequentupdateswill be neededto
keepit consistent.Theseupdateswill takeextraprocessing
time. Also, the optimization in the senderinitiated up-
datestrategyto sendabsoluteupdatesonly to the four near
neighborsof the senderwill be less effective, becauseas
the ownedregionsdecreasein size, an increasingnumber
of processorswill needtheupdate.Table6 showstheeffect
of increasingthe numberof processorson the measuresof
quality, time, andnetworktraffic.

Table6: Effect of numberof processors(SenderInitiated).

Num Ckt. Occup. MBytes
Ckt Procs. Ht. Factor Xfrd. Time (s)

bnrE 2 131 415142 .245 8.438
4 137 421041 .263 4.378
9 143 425426 .178 2.184

16 141 429589 .140 1.445

As expected,the occupancyfactor andcircuit heightare
degradedby the addition of more processors. For these
circuits, the circuit height degradationis around6%. As
the numberof processesis increasedfurther, the number
of wires being simultaneouslyroutedwill increase. Also,
the number of cost array regions spannedby each wire
will increase. For a fixed updateschedule,both of these
factorswill leadto poorerquality resultsas the numberof
processorsis increased.The sharedmemory versionalso
producespoorerquality resultsasthenumberof processors
is increased[9]. For a larger numberof processors,better
heuristicsfor localitybasedwire assignment,andmorestrict
methodsfor maintainingconsistencyin thedistributedcost
arraywill be requiredto maintaina useful level of routing
quality.

Next, we examinethe effect increasingthe numberof
processorshas on execution time. (Here we calculate
speedupwith respectto the two processorrun, and then
multiply by two.) Using the bnrE circuit, for 16 proces-
sors,the speedupis 12 with a senderinitiatedupdatestrat-
egy. For MDC, a larger circuit, the speedupis slightly
better, reaching12.8for thesenderinitiatedstrategy. These
speedupvaluesarecomparablewith the speedupmeasured
for the original sharedmemoryprogram.

The network traffic alsodependson the numberof pro-
cessors.After four processors,the network traffic actually
beginsto decreaseas the numberof processorsincreases.
However, this is not an indicationthat lesscommunication
is required.Clearly, sincethe quality is rapidly degrading,
morefrequentupdatesarerequiredasthenumberof proces-
sorsincreases.What this decreasein networktraffic shows



is that the updatessentout for eachownedregion,which
arebounding boxesof all the changesmadein the region,
containfewer wastedbytes,becausethe owned region is
smaller. Except for this effect, one expectsthe needfor
communicationto increaseas the numberof processorsis
increased.

6 Conclusions

Wehaveexaminedtwo versionsof theLocusRouteapplica-
tion, written in messagepassingandsharedmemorystyles.
In the messagepassingapproach,the global cost array is
keptconsistentusingmessagesto performexplicit updates.
For this approach,we exploreda numberof strategiesfor
updatingthe costarray. The sharedmemoryapproachuses
a centralizedcost array, relying on underlyingcoherence
mechanismsto keepthe dataconsistent.

In general, the sharedmemory version of LocusRoute
givesbettersolutionquality than the messagepassingap-
proachfor any of the updatestrategies. Intuitively, this
is becausethe sharedmemoryapproachmaintainsgreater
consistencyof thecostarraythananyof the messagepass-
ing strategies. For a circuit that will be massproduced,
the 5-15%improvementin quality affordedby the shared
memoryapproachcan representa significantcost savings.
Of the messagepassingstrategies,senderinitiated updates
producedthe resultswith the bestcircuit height.

However, better solution quality has a cost associated
with it. The networktraffic measuredfor the sharedmem-
ory approachwas significantlyhigher than that for any of
themessagepassingapproaches,especiallythereceiverini-
tiated updatemethodwhich had the lowest network traf-
fic. The network traffic of the sharedmemory approach
wasabout10 timeshigherthanthat for thesenderinitiated
messagepassingstrategy, which in turn wasabout10 times
higherthanthat for the receiverinitiated strategy.

Exploiting locality in the taskassignmentis an effective
way of improving the quality of resultsin both the shared
memory and messagepassingapproach. In the message
passingapproach,solution quality was improved nearly
10%by assigningwires to processorson the basisof their
locationin thecircuit. Exploitinglocality alsodecreasesthe
networktraffic by up to 63%. Making useof locality in the
sharedmemoryapproachalsohada favorableeffect on so-
lution quality andnetworktraffic. Qualitycanbe improved
by about 6% by assigningwires to processorsbasedon
their locationin the circuit. With this quality improvement
comesa reductionin network traffic as well. We further
note that the amountof locality in a typical standardcell
circuit is limited becauselong wires canstretchacrossthe
ownedregionsof severalprocessors.Also, wire assignment
policieswhich strictly enforcelocality canleadto poorload
balancing,with largeexecutiontime degradation.More so-
phisticatedwire assignmentheuristicsmay further improve
quality and reducetraffic, but may increasethe time spent
on the staticwire assignmentphase.

Thesolutionquality andnetworktraffic arealsostrongly
dependenton the numberof processorsbeingused.As the

numberof processorsincreases,the numberof wires being
routedin parallel increases,so the informationavailableto
each processoras it routesa wire is less accurate. Both
the sharedmemoryandmessagepassingapproachessuffer
quality degradationsof 5-10%asthe numberof processors
is increasedto 16. However, our methodsfor exploiting
locality can mitigate somewhatthe effects of scaling to a
larger numberof processors.

Sincethe messagepassingstyle of programmingcanbe
efficiently implementedon sharedmemory machines,the
resultspresentedherearenot intendedto makea statement
abouttherelativemeritsof sharedmemoryor messagepass-
ing architectures. Rather, our resultsstressthe effect that
programmereffort can have on the efficiency of the data
structures,and on the parallel decompositionin general.
The messagepassingparadigmrequiresthe programmerto
explicitly grapplewith how to keepshareddatastructures
consistent. This extra effort can result in lower network
traffic than the sharedmemory approachwhich might be
consideredthemore“natural” implementation.However, if
theamountof traffic presentin thesharedmemoryapproach
is not excessivelyhigh, thentheextraeffort requiredto im-
plementthe distributedapproachmay not be worthwhile.
Finally, while our resultsapply specificallyto LocusRoute,
the analysisperformedhereshouldserveasa guidefor the
implementationof othersimilar applications.

7 Acknowledgments

We would like to thank JonathanRosefor his help with
the LocusRouteapplication,andAndreasNowatzykfor his
quick repliesto questionsabout ��� � . Thanksshouldalso
go to MonicaLam andWolf-DietrichWeberfor their help-
ful commentson earlier versionsof this paper. This work
wassupportedby DARPA contractN00014-87-K-0828. In
addition,MargaretMartonosiis supportedby a fellowship
from the National ScienceFoundationand Anoop Gupta,
by a faculty awardfrom Digital EquipmentCorporation.

References

[1] Ametek ComputerResearchDivision. Series 2010
System General Description Issue 3. 1988.

[2] J. Archibald and J.-L. Baer. CacheCoherencePro-
tocols: EvaluationUsinga MultiprocessorSimulation
Model. ACM Trans. Computer Systems, 4(4):273–298,
Nov. 1986.

[3] W. J. Dally. A VLSI Architecture for Concurrent Data
Structures. Kluwer Publishers,1987.

[4] W. J.Dally. Wire EfficientVLSI MultiprocessorCom-
municationNetworks. In Stanford Conference on Ad-
vanced Research in VLSI, pages391–415,1987.

[5] Encore ComputerCorp. Multimax Technical Sum-
mary. 1986.



[6] S. R. Goldschmidt.TangoMethodology. Unpublished
report,1989.

[7] A. Nowatzyk. ����� : A MessagePassingCubeSimu-
lator. Unpublishedreport,1988.

[8] J. Rose. LocusRoute:A Parallel Global Router for
StandardCells. In Design Automation Conference,
pages189–195,June1988.

[9] J. Rose. The ParallelDecompositionand Implemen-
tationof an IntegratedCircuit GlobalRouter. In Proc.
ACM SIGPLAN Parallel Programming: Experience
with Applications, Languages and Systems (PPEALS),
pages138–145,July 1988.

[10] C. L. Seitz,W. C. Athas,et al. The Architectureand
Programmingof the Ametek Series2010 Multicom-
puter. In Hypercube Concurrent Computers and Ap-
plications, 1988.


