Reducing Register File Power Consumption by Exploiting Value Lifetime

Characteristics

Zhigang Hu and Margaret Martonosi

Department of Electrical Engineering

Princeton University

{hzg,mrm}@Qee.princeton.edu

Abstract

With the trend towards wider instruction issue and
larger instruction windows, register files grow both in
terms of size and number of read/write ports. However,
large multi-ported register files consume a substantial
amount of power, and may also limit the cycle time of
a processor. This work attempts to address these issues
by taking advantage of the facts that many register ac-
cesses show extremely good temporal locality, and that

many register values are very short-lived.

Based on these ideas, this paper proposes buffer-
ing the result between functional units and the register
file in a “holding tank” we call the Value Aging Buffer
(VAB). Due to the temporal locality of value access,
most of the accesses to register values can be serviced
from the VAB. Since the VAB is smaller than a typical
register file, it can have better power characteristics.
Furthermore, reducing read/write requests at the reg-
ister file also allows us to reduce the number of ports
provided on the register file. Thus, this gives us mul-
tiple ways in which register file power consumption is
reduced. For example, with a 16-entry VAB, register
file read and write operations can be reduced by 64%
and 61% respectively for SPECint95 benchmarks. The
VAB offers roughly a 30% power savings for register

files, with less than a 5% performance loss.

1 Introduction

Current microprocessor design has a tendency towards
wider instruction issue and larger instruction windows.
This trend also naturally leads to a larger register file
with more read/write ports. In early work, Johnson
suggested that for a 4-issue processor, register file read
ports could be reduced from 8 to 4 with only a minor loss
of performance, if all registers can be accessed within
one cycle [6]. However, reducing register file ports re-
quires arbitration logic that is complex and slow and
thus may stretch the cycle time.

In [3] the authors showed that 80 and 120 physical
registers are needed respectively for a 4-issue and 8-
issue superscalar processor. To manage the cycle time
pressure inherent in such a design, they proposed a de-
centralized register file organization. Such clustered no-
tions have been embodied in current commercial pro-
cessors such as the Alpha 21264 [5].

Previous work has shown that register value access
shows strong temporal locality [4]. In fact, most of the
read and write operations of a register occurs within
a few cycles after the value is first produced. Based
on this observation, the authors in [4] proposed using
local register files within each processing unit in Mul-
tiscalar processors to reduce the traffic of the global,
ISA-visible register files. Significant traffic reduction

can be achieved by using such local register files.

In this paper, we similarly leverage value lifetime
characteristics. Our primary goal, however, is to quan-
tify the power reduction that can be accomplished by
taking advantage of short-lived variables. We first give
an analysis of value lifetime characteristics based on

our simulation of a model processor similar to current

state-of-art superscalar processors. We show that after
a physical register is allocated, it typically waits an av-
erage of 12 cycles before it actually holds valid data.
Within only the next 3-4 cycles, however, the data is
typically finished being used. It will then stay idle for
about 8 cycles to maintain the machine state for precise

exceptions.

Since most of data accesses are clustered within a
few cycles after data is produced, we propose a small
structure, which we call the Value Aging Buffer (VAB),
which sits between the functional units and the register
file. The VAB is intended to buffer recently-produced
results for several cycles in order to “filter” accesses that
would otherwise go to the larger and more power-hungry
register file. Since the buffer can be much smaller than
the register file, the total power consumption can be
reduced significantly. In our simulations, we observe a
power saving of 30% with a performance loss of less than
5%.

In fact, the Value Aging Buffer also seems to improve
the cycle time scenario for superscalar processors. Most
of the data accesses can be serviced from the smaller,
presumably-faster VAB. Accesses to the register file are
backgrounded, similar to L2 cache accesses, and thus the
register file is no longer on the critical path determining
CPU cycle time. For this reason, we feel that the VAB
may degrade performance by even less than 5% in many

Ccases.

1.1 Structure of this paper

In Section 2, we explain the simulation environment and
machine model used to evaluate our ideas. Next in Sec-
tion 3, we present statistics on value lifetime patterns;
these motivate our proposal for the Value Aging Buffer.
Section 4 discusses the detailed structure and opera-
tions of the Value Aging Buffer and shows its power
and performance result compared to a conventional 8-
read-port and 4-write-port register file. Finally, Section
5 concludes the paper and discusses our plans for future

work.

2 Simulation Framework

2.1 Simulator

Our model processor has sizing parameters that closely
resemble Alpha 21264 [5] with the key difference that
we do not model a clustered organization. The proces-
sor parameters are shown in Table 1. Our power con-
sumption results are derived from Wattch [1] which is
an architecture-level power modeling framework based
on Simplescalar [2]. Wattch uses a suite of parameter-
izable power models for different hardware structures
and per-cycle resource usage counts generated through
cycle-level simulation. Unlike the original Wattch and
Simplescalar, this paper’s simulator models a physical
register file rather than an RUU. This aids our value
lifetime analysis and makes our power analysis for the

physical register file more accurate.

Parameter | Value
Processor Core
Physical Registers 64-INT, 64-FP

Fetch width
Decode width
Issue width
Commit width
Functional Units

4 instructions per cycle

4 instructions per cycle

4 instructions per cycle

4 instructions per cycle

4 IntALU, 1-IntMult/Div,
2 FP ALU, 1-FPMult/Div
2 MemPorts

Branch Prediction

Branch Predictor Combined, Bimodal 4K table,
2-Level 1K table

10bit history, 4K chooser
BTB 1024-entry, 2-way

Return Address Stack | 32-entry

Mispredict penalty 7 cycles

Memory Hierarchy

L1 Dcache Size
L1 Icache Size

64K, 2-way, 32B blocks
64K, 2-way, 32B blocks

L2 Unified, 2M, 4-way LRU,

32B blocks,12-cycle latency
Memory 100 cycles
TLB Size 128-entry, 30-cycle miss penalty

Table 1: Configuration of Processors

2.2 Benchmark

‘We choose to evaluate the power and performance prop-
erty of Value Aging Buffer by simulating the SPEC95
Integer benchmark suites. We compiled the benchmarks
for the Alpha instruction set using the Compaq Alpha
cc compiler with the following optimization options as
specified by the SPEC Makefile: -migrate —stdl —O5 —

ifo —non-shared. For each program, we simulated 50M

map table _ map table
5 Before renaming After renaming s
<1> rl+r2=>r3 _Regster p8 +p3=>pl 3
3 | e :>r4q>pl-l = p7
9 <3> r4*2=>r3 'enamn p7* p3=>p4 4
2 7

free physical register

free physical registers

Figure 1: Register renaming mechanism

instructions using the ref input set.

3 Value Lifetime Analysis

3.1 Background and Architectural Model

In our model processor, the instruction set has 32 archi-
tectural registers. A map table records the mapping be-
tween these virtual architectural registers and 64 physi-
cal registers. This mapping occurs during decoding and
a new physical register is assigned if the corresponding
instruction produces a value. This new physical register
is filled with data when the instruction completed exe-
cution in the writeback stage. Subsequent instructions
can fetch the data either from the result buses if appli-
cable or read from the physical register file. The value
is kept after its last use in case it is needed to recover
from a mispredicted branch or an exception. It can be
safely freed only after a new instruction with the same
destination architectural register number is committed
without error, or when the corresponding instruction is
squashed due to misprediction or exception. Figure 1

show an example of the register renaming mechanism.

3.2 Value Lifetime Characteristics

The life of a physical register value can be divided into

3 periods as shown in Figure 2.

Pre-Value Active Value Save for Exception
time_allocated time_produced time_last_used time_freed

Figure 2: 3 periods in the life cycle of a register value

e Pre-value: This is the time period between
when the register tag has been allocated

(time_allocated) and when the value is produced

Life Period Length E)

mi Dijpeg mperl Ovortex

mmssksim Occl Ocompress

20
18 4
16 A
14 4
12 4

Cycles

Save for
Exceptions

Pre-value Active Value

Figure 3: Length of the 3 periods in the life cycle of a

register value

(time_produced). There is no useful data so no

reads or writes will occur in this period.

e Active Value: This is the time period between
when the value is first produced and put in the
register, until the last read or write that uses the
value (time_last_used). All read and write opera-

tions occur in this period.

e Save for exceptions: This time period follows the
last planned read or write to the value. During
this time period, the register value is maintained
for the sole purpose of guaranteeing precise excep-
tions. The value will only be used if an exception
occurs in the window after time last_used and be-

fore time_freed.

Figure 3 shows the average length of the 3 periods
for SPECINT 95 benchmarks. From the figure we can
see that on average the “Active Value” period of a value
is only 3-4 cycles. This indicates that all the read and
write operations are typically clustered within a few cy-

cles after it is produced.

4 Value Aging Buffer

The previous section illustrated the fact that values have
quite short active lifetimes on average. Frequently, val-
ues have seen their last use before they are even com-
mitted to an architectural register. Prior work has sug-
gested register files that take advantage of short-lived
variables [10] in order to improve cycle times. The pri-
mary goal of our work is to suggest an approach whose

specific goal is to harness short-lived variables in order

Value Aging Buffer

pregt | data | valid

Functional .
Unite | Register

File

i J

| operand bus |

Figure 4: Structure of the Value Aging Buffer

to reduce power consumption with little performance
impact.

In particular, we propose a wvalue aging buffer that
sits between the functional units and the register file
as illustrated in Figure 4. The value aging buffer
(VAB) acts as a holding tank. Our goal is to postpone
(typically-expensive) accesses to the register file long
enough to see if they are actually necessary. If they
are not necessary, then we can often avoid the power-
hungry step of writing to the large multi-ported register
file. This approach is philosophically similar to using a
small filter cache [7] in front of the data cache to save

power.

4.1 Read Operations

When a functional unit requires an operand value, it
first performs a lookup in the VAB. If it is found there,
it can be retrieved within one cycle. If it is not found
in the VAB, the request is forwarded to the register file
and the value can be fetched with a one-cycle penalty.
This is the approach evaluated here, but it could be
refined to allow for locating values with a fixed access
time. We define the VAB miss rate as the number of
misses in the VAB divided by the total number of read
request to the VAB. A low VAB miss rate means better

power and performance characteristics.

4.2 Write Operations

When a functional unit produces a value, it is first writ-
ten to the VAB. The VAB acts as a FIFO. Once full, it
will evict the oldest entry each time a new entry needs to
be added. We define the VAB eviction rate as the ratio
of VAB entries evicted to the register file. A low evic-
tion rate means fewer register file writes and thus will

lead to power savings. Since the VAB receives results

from functional units, it can have a one-cycle warning
of when new results will be produced. This allows it to

begin these evictions in advance.

4.3 Freeing Operations

When a physical register is freed, the corresponding en-
try in the VAB will also be freed, if one exists. A phys-
ical register can be freed either when the producer in-
struction is squashed due to misprediction or exception
or when another instruction with the same destination
register is commited. In either case, the physical register
number is sent to the VAB, compared with the physical
register number in each entry, and the matched entry is
freed by resetting their valid bit. Freeing register val-
ues in the VAB reduces the write traffic to the physical
register file and thus reduces the power consumption of

the physical register file.

4.4 Exception and Misprediction Handling

In our model processor, precise exceptions are main-
tained. When exceptions occur, the content of VAB is
dumped into the register file. Since exceptions are rel-
atively rare, the impact on performance and power is
small. For misprediction, the handling should be fast
since this will add to the misprediction penalty. In our
model processor, misprediction is handled with a branch
stack [12]. Similarly, we can put the VAB in the branch
stack so that when misprediction is detected, the con-

tent of VAB can be copied back quickly.

Since the VAB is small and we have an additional
cycle to access the physical register file, we assume we
have enough cycle time budget to add an arbiter before
the VAB and the physical register file so that their read
ports can be reduced. In our simulation, we assume the
VAB and the physical register file have 5 and 3 read
ports respectively. They both have 4 write ports to

avoid an arbiter for write.

4.5 Performance and Power Results

Figure 5 shows the miss rates for VAB of size 8, 12
and 16 respectively. The main observation is that a
relatively small VAB of 16 entries is sufficient to capture
roughly 50-70% of the read requests. Figure 6 shows
the eviction rates for VAB of size 8, 12 and 16. With a

VAB miss rate Hvab:8 Wvab:12 Ovab:16

0.7

0.6

0.5 A

0.4

0.3 A

VAB miss rate

0.2

0.1 A

0.0 +

- SR S S

Figure 5: Ratio of reads serviced from the register file

Ovab:8 Evab:12 Ovab:16

VAB eviction rate

0.9 -
0.8 4
0.7 A
0.6 4
0.5 4
0.4 4
0.3 4
0.2 4
0.1+
0.0

VAB eviction rate

Figure 6: Ratio of writes to the register file

16-entry value aging buffer, only 26%-56% of all value
produced need to actually save to the register file. All
other values will be freed during their stay in the VAB.

VABs smaller than 16 entries are not as effective.
This is because small VABs require faster aging or forced
evictions to the register file. These events increase the
amount of register file activity, and reduce the benefit
of the VAB as a filter in front of the register file.

Our main goal in implementing a VAB is to re-
duce power consumption without unduly hurting perfor-
mance. Thus, Figures 7 and 8 show the IPC and power
consumption of our proposed approach. Note that for
the VAB scheme we show the total power consumption
of both the VAB and the register file. Compared to
a register file without VAB, a 16-entry VAB incurs an
IPC loss of less than 5%, but saves about 30% of the

register file power.

4.6 Value Aging Buffer with location bit

In our original VAB scheme, we assume it will take 2 cy-

cles to fetch an operand if it is in the register file. This is

Dipc_orig Mipc_vab

IPC_orig vs. IPC_vab

2.5~
2 4
1.5 A
o]
25
1 4
0.5 4
0 ,
S & & & N & & &
S ‘88@\ 9 &Q@ § Q @(\

Figure 7: IPC with VAB vs. without VAB

@ power_orig M power_vab

power_orig vs. power_vab
0.8 ~
0.7 A
0.6 A

Power(W)
© 0 o o o
P N W A~ O
L

o
o
|

Figure 8: Power of VAB + register file with VAB vs.
Power of register file without VAB

the major source of the performance loss. To eliminate
this one-cycle penalty, we can associate an additional bit
with each physical register to indicate whether it is in
Value Aging Buffer or physical register file. Whenever
a value is needed, the corresponding bit is first checked
to decide whether the request should go to the VAB or
the physical register file. Since the additional work is
only a one-bit check, we assume it does not lead to an
increase of the cycle time compared with the original
8-read-port/4-write-port scheme. Thus in this case, the
performance will not experience a loss since all data can
be fetched within a cycle, whether it is in the VAB or
the physical register file. However, since a large portion
of the accesses can be serviced from the smaller VAB,

we can still expect significant power savings.

In this simulation we assume the physical register file
has 8 read ports to avoid an arbiter since all physical
registers should be able to be accessed within one cy-
cle. Compared to the original VAB scheme, the physical

register has more read ports so the power consumption

VAB with location bit @ Orig
W vab:16 w/ location bit

0.8 4
0.7 A
0.6
= 054
0.4 4
0.3 4
0.2 1

Power(W

0.1+
0.0 +—

A) N S+
& & &
® ¢S

Figure 9: Power of VAB + register file with VAB with

location bit vs. Power of register file without VAB

is larger. This leads to a smaller power saving. Figure
9 shows the average power consumption when using a
16-entry VAB with a location bit for each physical regis-
ter. An average power saving of 9% is achieved without
impacting the performance. Though the power savings
is smaller than with the original scheme, the additional
bit helps with both performance and fast exception han-

dling which makes this scheme a feasible alternative.

5 Conclusions and Future Work

This work introduces ideas for register file power reduc-
tions based on taking advantage of typical register ac-
cess characteristics. These ideas will be broadened and
expanded upon in our future work. For example, we in-
tend to look for further ways to exploit short-lived vari-
ables. Dynamic approaches we have examined thus far
indicate roughly 30-65% of values are short-lived, mean-
ing that their destination register will be over-written by
an unspeculative instruction already in the instruction
window. We intend to explore further dynamic tech-
niques and also expand on previously-proposed compiler
techniques [8] [9] to increase and detect short-lived vari-
ables. We also wish to more aggressively utilize infor-
mation on the value access patterns to reduce processor

power consumption.

More broadly, micro-architectures are progressing
rapidly towards several styles of post-superscalar ar-
chitectures with higher performance and manageable
power consumption. In further work, we intend to ex-
plore the performance and power-effectiveness of using
VABSs in a more diverse set of microarchitectures, such

as simultaneous multithreading (SMT) [11], Multiscalar

[10] and other architectures.

Overall, this paper first analyzed the access pattern
of the physical register file values. We showed that for
SPECint95 benchmarks on average all the reads and
writes are performed within 3-4 cycles after the value is
produced. Based on this result, we proposed the VAB
to buffer results between functional units and the phys-
ical register file. The smaller VAB can service most of
the accesses and thus the CPU power is reduced. We
feel that our proposal is a first step towards identify-
ing power-effective techniques to employ in a range of

modern micro-architectures.

References

[1] D. Brooks, V. Tivari, and M. Martonosi. Wattch: A
Framework for Architecture-Level Power Analysis and
Optimizations. ISCA 2000.

[2] D. Burger, T. M. Austin, and S. Bennett. Evaluating
future microprocessors: the SimpleScalar tool set. Tech.
Report TR-1308, Univ. of Wisconsin-Madison Com-
puter Sciences Dept., July 1996.

[3] K. Farkas, N. Jouppi, and P. Chow. Register file de-
sign considerations in dynamically scheduled processors.
Technical report, Compaq Western Research Lab, 1995.

[4] M. Franklin and G. Sohi. Register traffic analysis for
steamlining inter-operation in fine-grain parallel proces-
sors. In 25th Annual International Symposium on Mi-
croarchitecture, pages 236-245, December 1992.

[5] L. Gwennap. Digital 21264 sets new standard. Micro-
processor Report, pages 11-16, Oct. 28, 1996.

[6] M. Johnson. Superscalar Microprocessor Design.
Prentice-Hall, 1991.

[7] M. G. Johnson Kin and W. H. Mangione-Smith. The
filter cache: An energy efficient memory structure. In
Proc. of the 30th Int’l Symp. on Microarchitecture, Nov.
1997.

[8] L. A. Lozano and G. R. Gao. Exploiting short-lived
variables in superscalar processors. In Proc. Micro-28,
pages 292-302, Dec. 1995.

[9] M. M. Martin, A. Roth, and C. N. Fischer. Exploiting
dead value information. In Proc. of the 30th Int’l Symp.
on Microarchitecture, Nov. 1997.

[10] G. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In Proc. of the 22nd Int’l Symp. on Com-
puter Architecture, pages 414-425, June 1995.

[11] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simulta-
neous multithreading: Maximizing on-chip parallelism.
In Proc. of the 22nd Int’l Symp. on Computer Archi-
tecture, pages 392-403, June 1995.

[12] K. C. Yeager. The MIPS R10000 Superscalar Micropro-
cessor. IEEE Micro, 16(2):28-40, Apr. 1996.

