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Abstract

As the gap between processor and memory performance widens, careful anal-
yses and optimizations of cache memory behavior become increasingly impor-
tant. While analysis of regular loop-based scientific programs has made significant
progress, the analysis of less regular reference patterns has lagged somewhat. This
paper presents basic analytic expressions for cache miss behavior in fundamental
types of irregular programs: linked list traversals and binary tree searches. We
compare our analytic expressions to simulation-based results. Although quite ele-
mentary, these simple expressions will form the foundation for our planned work in
analyzing the behavior of database and other applications which have linked lists,
trees, and other pointer data structures at their core.

1 Introduction

As the speed gap between processor and memory widens, the study of cache memory
is increasingly important. Through the effort of many researchers, formal theory for
cache behavior of arrays in numeric programs have become well-established; numerous
code and memory layout transformation methods have been proposed and implemented
[12, 6].

For pointer data structures, however, the success has been limited. These structures
are dynamically allocated at run time, and their irregular data placement and pointer
chasing characteristics pose a big barrier for formalized methods. Nonetheless, some
sub-problems, such as hardware and software prefetching [11, 15], have begun to show
success [11, 15]. Other efforts have examined making malloc and garbage collectors
cache-conscious [2, 4], reorganizing data layout,or even transforming code dynamically
to change data access order to optimize program cache behavior [5, 3].

This study is a first step towards extending CMEs [6] to pointer-based programs. The
goal is to obtain some formal mathematical method to characterize the cache behavior
of pointer data structures (PDSs). An analytical model of cache misses for PDS will
ultimately help us devise general and formal means to optimize PDS cache behavior.

We studied typical PDS linked lists and binary trees, getting analytical representa-
tions for the number cache misses. We then validate these analytic expressions with
simulations. For linked lists, over 96% of the cache misses are heap misses, which are
cold and conflict misses incurred by the list nodes themselves and are determined by
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the number and size of list node. For recursive binary trees, over 93% of the misses
are heap misses. Since linked lists and binary trees are two very common PDS types, a
deep understanding and mathematical characterization of their cache behavior will help
us to model more complicated PDSs, such as B-Trees later on.

Later sections of this paper are organized as below: Section 2 discusses the gnu
malloc routine, which serves as background knowledge for following analysis. In
Section 3, we present our detailed cache miss analysis and validation for linked list
and binary tree. Section 5 extends our analysis from contiguous allocations to cases in
which the allocated nodes are only piecewise contiguous. Finally, Section 6 discusses
related work and Section 7 concludes this paper.

2 Gnu Malloc Routine

We discuss here the details of the memory allocation our analysis and measurements
are based on. Gun malloc uses a variant hybrid first-fit/segregated algorithm [7]. When
the requested size is bigger than half of a page size, the returned block is retrieved from
a doubly linked free list using a first-fit strategy. If the first-fit free block is bigger than
requested, the remaining left-over is re-linked into the free list. When the requested
size is smaller than half of a page size, it is rounded to the nearest power of 2 and
retrieved from the segregated free fragment list with the corresponding power of 2. If
the correct-sized list is empty, a new page is requested. The first fragment is returned,
while the other ones are added into the front of list one by one. The resulting list is in
descending order by addresses.

Consider a PDS with nodes whose size is less than half of a page size. The PDS is
built with each of its nodes allocated one by one. If there are no intervening allocations
of another similar-sized PDS nodes from the same list, the resulting memory layout will
be generally contiguous. The main differences are due to the reverse fragment adding
order and the fact that the last allocated page will have a hole R with an average size
of half a page in it. Such a good spatial locality resulting from gnu malloc justifies
our contiguous assumption. It is also possible to enhance the malloc routine to allocate
PDS nodes that are circularly contiguous in the cache; one might use this to simulate
contiguous allocations in cases when intervening allocations of other similar-sized PDS
nodes are unavoidable.

3 Cache Miss Analysis and Validation

In this section, we elaborate on our cache miss analysis for linked lists and binary trees,
starting first with observations about the programs, and then giving our analysis and
simulation validations.

3.1 Program Patterns and Assumptions

The usual reference pattern of linked list and binary tree programs is composed of
traversals, either complete or partial. Traversals can be further categorized as build
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(allocate) or compute. The build traversal allocates memory for each node and links
them together. The compute traversal processes information contained in each node,
i.e. doing some computation for each of the traversed node.

For linked lists, we assume that the allocate traversal is done backwards: that is, new
nodes are added in the front of the list. To improve cache performance, the compute
traversal is done forwards, so successive traversals alternate their orders. See Figure 1
for a C code snippet for the linked list example.

typedef struct list {

  long int val;

  struct list *next;

} list_t;

list_t *build()

{

  int i=0;

  list_t *h,*p;

  h=NULL;

  while(i<NUM) {

       p=(list_t *) malloc(sizeof(list_t));

       p->val=i;

       p->next=h;

       h=p; i++; }

  return (h);

}

compute(list_t *p)

{

  while(p) {

       p->val+=NUM;

       p=p->next; }

}

typedef struct tree {

  long int val;

  struct tree *left;

  struct tree *right;

} tree_t;

tree_t *build(int i)

{

  tree_t *new,*left,*right;

  if(i) {

     new=(tree_t *) malloc(sizeof(tree_t));

     left=build(i-1);

     right=build(i-1);

     new->val=i;

     new->left=left;

     new->right=right;

     return new; }

  else return NULL;

}

void compute(tree_t *r)

{

  if(r) {

     r->val++;

     compute(r->left);

     compute(r->right); }

}

Code for linked list Code for binary tree

Figure 1: C Code Snippet

For binary tree, the build and compute phases are both pre-order depth-first traver-
sals. Pre-order depth-first traversal simply means that the current node is processed
first, then the left subtree and finally the right subtree. See Figure 2 for a diagram and
Figure 1 for a C code snippet for the binary tree.

We first assume that all nodes are allocated contiguously in the heap memory. The
previous discussion of the gnu malloc implementation justifies this assumption, as this is
the natural result of either a complete or a segmented build traversal with no intervening
mallocs from the same freelist. We also make the simplifying assumption that every
traversal accesses all elements contained within each PDS node.
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Figure 2: Diagram of Binary Tree

3.2 Cache Miss Analysis

We use notation as follows. We consider direct-mapped caches of size CS . BS repre-
sents cache block size, which is assumed to be always in the powers of two; Nn and
NS designate number of nodes and node size, respectively. Finally, Data Set Size is

abbreviated as DSS, and DSS = NN � 2
dlog

NS
2

e. For binary trees, NN = 2
L
� 1,

where L is the number of tree levels.

3.2.1 Cold Misses

The entire data set will suffer cold misses during the build traversal.

• NS � BS : ColdMisses = DSS
BS

+
HeapinfoSize

BS

• NS > BS : ColdMisses = NN � d
NS
BS
e+

HeapinfoSize
BS

The second part of both expressions is due to initializing the malloc bookkeeping
data structures called heapinfo at the first call of malloc. The heapinfo size is initially
16K for gnu malloc and this resides in the heap itself.

3.2.2 Replacement Misses

All the cold misses will be incurred during the build traversal. Following this, the
compute traversal will either experience cache hits, on items that still remain in cache,
or replacement misses, on items that have been evicted. Items that remain in cache after
the build traversal are referred to here as the cache residue. For other nodes not in the
cache residue, a small number of them are evicted by stack references (whose effect are
neglected here) but most of them are evicted by accesses to other list items in the heap.

1. DSS � CS

If the data set size is less than the cache size, the cache residue is always fully
consumed, and clearly there will be no replacement misses during the compute
traversal. This is true whether the traversal order alternates or not.

2. CS < DSS � 2CS
See Figure 3 for illustration, keeping our contiguity assumption in mind.
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Memory (DSS) Cache Residue (Cs)

Conflict

Cs < DSS <= 2Cs

0

1

Area 0 and 1 conflict in
the cache. If alternating
successive traversal
order, only 0 suffers
miss, while 1
materializes hit, cache
residue is fully used.  If
keeping successive
traversal in the same
order, both 0 and 1
suffer misses, 1 in the
cache residue is
wasted.

Figure 3: Cache Mapping when
CS < DSS � 2CS

Memory (DSS) Cache Residue (Cs)

DSS > 2Cs

If alternating
successive
traversal order,
cache residue
will be fully
utilized.  If
keeping
successive
traversal in the
same order, all
cache residue
will be wasted.

Figure 4: Cache Mapping when
DSS > 2CS

For binary tree, the compute traversal order keeps the same as build traversal, the
cache residue is only partially consumed, both area 0 and area 1 (and both of their
size equal DSS � CS) will suffer cache misses.

There are two subcases.

• NS � BS : ReplMisses = DSS�CS
BS

� 2

When NS � BS the cache is big enough to hold the biggest left subtree.
This allows spatial locality to be exploited when accessing the right sub-tree
after finishing processing its value and traversing its left sub-tree.

• NS > BS : ReplMisses = (NN �
CS

2
dlog

NS
2

e
) � d

NS
BS
e � 2

For a linked list, the compute alternates traversal order compared with build, so
the cache residue is guaranteed to be fully consumed. Therefore only area 0 from
Figure 3 will suffer misses. This reduces the cache misses by half for both of the
two subcases above.

3. DSS > 2CS

Consider first a binary tree.

• NS � BS

ReplMisses =
DSS

BS

+
(2

(L�blog
(
CS
BS

+1)

2
c)
� 1) � 2

dlog
NS
2

e

BS

=
2
dlog

NS
2

e

BS

� ((2
L
� 1) + (2

(L�blog
(
CS
BS

+1)

2
c)
� 1)) (1)
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The second item is added by those tree nodes in the top subtree whose
left sub-trees are beyond the cache size. These nodes incur misses when
traversing their right sub-trees after finishing their left sub-tree’s traversal,
causing the potential spatial locality to be unrealized.

• NS > BS ReplMisses = NN � d
NS
BS
e

For linked list, because of the traversal order alternation, the cache residue is fully
consumed, so the miss number is reduced in correspondence to the cache size as
shown below.

• NS � BS : ReplMisses = DSS�CS
BS

• NS > BS : ReplMisses = (NN �
CS

2
dlog

NS
2

e
) � d

NS
BS
e

3.3 Simulation Validation

3.3.1 Simulation Methodology

We simulate the C code for both linked list and binary tree on a Compaq Alpha-based
machine using Compaq’s ATOM tool [16]. Through ATOM, we build an instrumented
version of our program, which simulates a single level data cache for every data load
and store, and gathers statistics of both total cache misses and heap cache misses.

3.3.2 Simulation Results

The statistics shows that heap misses constitute over 96% of the total misses for linked
list, and over 93% of the total misses for binary tree. Here, we compare heap miss
numbers with our mathematical analysis. We simulate three different combinations of
cache configurations and program parameters for linked lists (Figures 5, 6 and 7) and
two for binary trees (Figures 8 and 9).

The x-axis on the graphs of binary tree is the number of tree levels rather than tree
nodes, which gives a logarithmic effect on our curves.

The graphs show that our mathematical analysis (line) matches the simulation results
(points) well. There is a little under-estimation for our mathematical analysis, which
is understandable since we do not take the effect of all auxiliary data (e.g. global data)
into consideration.

4 Piecewise Linear Layout

Until now, this paper has made the simplifying assumption that PDS nodes are allo-
cated contiguously. At this point, we relax our contiguity assumption by considering
piecewise linear layouts with occasional skips between items. There are two main cases:

• Intra-page contiguous with only big inter-page skips in step of s�pagesize(s� 0)

This results from allocation which has other intervening allocation of different
malloc sizes lying in between. The other intervening allocations will causes pages
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Figure 5: Validation of Linked List:
CS = 16K;BS = 32; NS = 16
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Figure 6: Validation of Linked List:
CS = 16K;BS = 32; NS = 24

to be devoted to freelists for other malloc sizes. A similar skip patter will also
occur in cases where the pages might be contiguous in virtual memory, but are
not contiguous in physical memory.

• Small skips in step of s � 2dlog
NS
2

e across the whole layout

This results from allocations which have intervening allocations off the same
freelist.

Clearly, these two cases can also appear within the same allocation stream, but we
consider them separately here.

4.1 Cache Miss Analysis for Piecewise Contiguity

Big Skips

Big skips will impact cache temporal locality, leaving spatial locality unchanged. These
skips impact temporal locality mainly by spoiling cache residue consumption. This will
occur when the skip pattern leads to hole in the cache residue, but its probability is quite
low if DSS � CS . For case where DSS � CS does not hold, it is not difficult to get
the cache residue layout given the big skip patterns.

Small Skips

Small skips mainly spoil spatial locality, as opposed to temporal locality. They mainly
affect the case whenNS � BS . If NS � BS and BS

2
dlog

NS
2

e
= 2

m
(m > 0), suppose the
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Figure 7: Validation of Linked List: CS = 16K;BS = 16; NS = 40

skip step is s � 2dlog
NS
2

e. If s+ 1 < 2
m, then

ColdMisses =
(s+1)�NN�2

dlog
NS
2

e

BS
+

HeapinfoSize
BS

ReplMisses =
(s+1)�NN�2

dlog
NS
2

e
�CS

BS
(2)

(3)

On the other hand, if s+ 1 � 2
m, then

ColdMisses = NN +
HeapinfoSize

BS
(4)

ReplMisses = NN �
CS

BS

�
2
m

s+ 1
(5)

For NS > BS , small skips only affect the cache residue by adding small holes in
it; this effect is small enough to be neglected.

5 Related Work

This section now relates the analysis work we have begun to prior work for both regular
and irregular programs. Ghosh et. al. proposed a CME mathematical framework for
array loop nest [6]. While effective, this framework is mainly applicable to array-based
codes with regular access patterns.

In recent years, cache behavior research for pointer data structures has increased.
Chilimbi et. al., proposed a cache conscious malloc routine, cache conscious garbage
collector, and run-time memory reorganizer [2, 3, 4]. Grunwald et. al. also studied
the cache locality issue of various malloc implementations [7]. Ding et. al. studied
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Figure 8: Validation of Binary Tree:
CS = 16K;BS = 32; NS = 24
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Figure 9: Validation of Binary Tree:
CS = 16K;BS = 32; NS = 40

both run-time data and computation reorganization for PDS applications [5]. Calder et.
al. proposed a dynamic cache conscious data placement optimizing algorithm using
profiling, which takes all the concerning segments including heap, stack and global
data section into consideration [1]. Both Chilimbi’s cache conscious garbage collector
and Calder’s cache conscious data placement optimizer use software profiling and a
certain graph to record the profiling information, which is then used to guide the later
data placement. Kistler and Franz applied the similar ideas to gather the spatial locality
information by the so-called temporal relationship graph to guide the intra cache line
placement on a much finer granularity by exploiting memory interleaving and cache line-
fill buffer forwarding characteristics [9]. Kumar and Wilkerson apply spatial locality
prediction hardware to pick up cache line components dynamically based on the profiling
history [10]. All the above techniques for PDS either apply heuristics or use profiling
or both to accomplish the cache conscious effect.

Our ongoing efforts focus on using the elementary analysis described here as a
foundation to help us analyze the cache behavior of database applications. Database
applications uses pointer-based structures intensively, and some work has been done
on analyzing and optimizing their performance. Trancoso et. al. characterized cache
behavior of database application under DSS Commercial Workloads in a multi-processor
environment [17]. They also proposed a cache conscious query plan generator for
database application and applied some traditional cache miss reduction method, i.e. ,
data blocking, software prefetching in the database setting [18]. Rao and Ross proposed
Cache Sensitive Search Tree to substitute for B+ Tree as key indexing structures, but
only limited to DSS workload where data input and modification are rare and data
modification can be done in batch [13, 14]. Karlsson et. al. devised an analytical
database cache miss model for a DSS workload, using the working set concept [8]. Our
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work seeks to provide a more detailed extension of their initial approach.

6 Conclusions

By carefully analyzing the memory reference pattern of PDS centric programs, we have
derive some analytical representations of cache miss numbers for linked lists and binary
trees. We plan to use these analytic expressions as a foundation for understanding
programs whose key operations manipulate trees and lists. A general optimization
strategy is to order computation traversals such that they always seek to consume the
cache residue before bringing in new items to the cache. We plan to build on this work
in two main ways. First, we plan to extend our models to relax assumptions about
memory allocator behavior. In particular, we will use probabilistic analysis to extend
on our piecewise linear skip assumptions from Section 4. Second, we plan to compose
these expressions together into more complicated descriptions of database and other
complex applications.
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