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Abstract

As moderate-scale multiprocessors become widely used, we foresee an increased demand for effective compiler
parallelization and efficient management of parallelism. While parallelizing compilers are achieving success at
identifying parallelism, they are less adept at pre-determining the degree of parallelism in different program phases.
Thus, a compiler-parallelized application may execute on more processors than it can effectively use, a waste of
computational resources that becomes more acute as number of processors increases, particularly for systems used
as multiprogrammed compute servers.

This paper examines the dynamic parallelism behavior of multiprogrammed workloads using programs from
the Specfp95 and NAs benchmark suites, automatically parallelized by the Stanford SUIF compiler. Our results
demonstrate that even the programs with good overall speedups display wide variability in the number of processors
each phase (or loop) can exploit. We propose and evaluate a run-time system mechanism that dynamically adjusts
the number of processors used by a compiler-parallelized application, responding to observed performance during
the program’s execution. FExecuting programs can thus adapt processor usage both to poor parallelism within
certain parts of their code, and also to heavy multiprogramming loads during the execution. This mechanism
improves workload performance up to 33% over consecutive standalone runs of each program.
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1 Introduction

Moderate-scale parallel computers are more and more commonly being used as general-purpose compute servers,
increasing the value of parallel programming tools such as parallelizing compilers. Years of work on parallelizing
compilers for C and FORTRAN has brought them to a stage where they successfully identify parallelizable loops in
many codes. Their success in identifying parallelism opportunities has led to fairly impressive speedups on four and
eight processor runs [3, 1]. Compiler-parallelized applications are not as consistently successful, however, at yielding
near-optimal speedups on larger parallel machines; as the number of processors increases, fewer and fewer applications
have sufficient parallelism granularity to make effective use of all the processors.

Thus, if compiler-parallelized applications are to be run on larger-scale parallel machines, the issue of effectively
mapping the parallel computations to the processors becomes increasingly important. Today’s parallelizing compilers
typically map parallel loops to processors statically. Most commonly, they simply assign all the machine’s processors
to the computation. Because speedups will typically level off (or even drop!) as processors are added, additional
processors often do little for program performance and might be better used elsewhere. This paper demonstrates that
a significant waste of processor resources can be avoided by tailoring the mapping of a parallel computation to the
number of processors 1t can use effectively. Furthermore, since parallelism changes in different program phases, this
mapping may best be done intermittently at run time, rather than once at compile time.

Determining the appropriate degree of parallelism in program phases 1s important for both program and system
performance. At the system level, we expect that many moderate-scale machines will be used as multiprogrammed
compute servers, running a mix of sequential and parallel jobs. If each computation uses only the number of processors
it needs to approach its maximum speedup, the overall system can maintain high throughput by not wasting compu-
tational resources while still observing the low latency benefits of parallelizing individual applications. For individual
programs, mappings involving fewer processors will sometimes reduce false sharing and improve performance. In the
future, accurate mappings will become even more important as compiler-parallelized applications become increasingly
complex, and incorporate more general multi-threading and combined task/data-parallelism constructs.

An appropriate processor mapping requires accurate knowledge about program parallelism. Estimating a program’s
per-computation parallelism at compile-time is often difficult, due to variable loop bounds, unpredictable memory
behavior, and other effects [13]. For this reason, this paper argues for the need for dynamic mapping of computations
to processors, which not only offers more accuracy than static mappings but can also adapt to multiprogrammed
workloads. Through a dynamic threads package (extending the SUIF run-time system [16]), our approach adaptively
manages a pool of threads for multiple programs; it gradually deallocates threads from programs making ineffective
use of parallelism, and allocates them to programs making effective use of parallelism based on run-time performance
measurements.

While there have been other dynamic approaches to parallelism management in multiprogrammed environments,
this work is distinguished by two features. First, it is fully automatic and completely transparent to the user. Second,
it uses more sophisticated information— dynamic measurements of how effectively an individual computation is using
its assigned processors—to guide allocation. Overall this work contributes (i) practical observations on loop-level
behavior of compiler-parallelized code, (ii) a careful exploration of policy issues in run-time parallelism management,
and (iii) data evaluating a prototype implementation such a system in a moderate-scale shared-memory multiprocessor.

The remainder of this paper is structured as follows. In Section 2, we describe the SUIF parallelizing compiler and
run-time system upon which we base our work. Section 3 presents overall program characteristics and per-loop data for
five common benchmarks; which illustrates the variability in parallelism over the course of program execution. Based
on these observations, Section 4 discusses our mechanism for adaptive thread management and fine-grained time-
sharing. Section 5 presents experimental results for a proof-of-concept implementation. Section 6 presents related
work and Section 7 concludes with a discussion of requirements for this approach and future extensions.

2 SUIF Compiler Parallelization and Run-Time System

The programs in our experiment were parallelized using the Stanford SUIF compiler [16]. SUIF takes as input
sequential Fortran or C programs, producing as output parallel SPMD C programs, and has demonstrated significant
overall speedup improvements on realistic benchmark programs [3].

The SUIF compiler determines the outermost loop in a loop nest for which it is safe to perform parallelization.
The iterations of an outermost parallel loop are divided at compile time so that each processor performs a roughly



equal number of consecutive iterations. SUIF programs rely on a run-time system built from ANL macros for thread
creation, barriers, and locks. The run-time system creates P threads, where one i1s a master thread and the others are
worker threads that spin at a barrier waiting for work from the master.

The standard interaction between the SUIF compiler and the run-time system is as follows. SUIF generates se-
quential and parallel versions of all outermost parallelizable loops. The compiler and run-time system then collaborate
to “turn off” parallel execution of certain loops that they determine do not have sufficient granularity for profitable
parallelization, executing the sequential version of the loops instead. This decision is based on static information
regarding the amount of work in a single iteration of the loop and dynamic information on number of loop iterations.
Thus, a loop executes either sequentially or on all the available processors.

SUTF’s mostly static, all-or-nothing strategy has several limitations. First, static models cannot easily capture
effects of memory behavior, which can be very complex and can significantly affect performance. Second, parallel
loops may behave differently throughout a program’s execution — such as when number of iterations of a loop varies
across invocations — so a solution appropriate to one invocation may not be adequate for another. Third, the all-or-
nothing approach does not scale. As larger numbers of processors are applied to the application, fewer loops will have
sufficient granularity to take advantage of all the processors, and thus, less and less of the application will execute
profitably in parallel.

Limitations in SUIF’s standard static approach motivate our adaptive run-time system, which uses dynamic in-
formation to guide mapping parallel loops to processors. By adjusting the number of processors used for each loop
according to its requirements, we can make more efficient use of parallelism on larger numbers of processors.

3 Program Characteristics

Input 14-proc.

Program Suite Description Data Set Iters. | Speedup
cgm NAS sparse conjugate gradient 14000 array elements | 14000 5.7
hydro2d | Specfp95 Navier-Stokes 402x160 grid 20 7.8
mgrid Specfp95 multigrid solver 64° grid 25 10.9
su2cor Specfp95 quantum physics 12% grid 40 2.9
swim Specfp95 shallow water model 5127 grid 128 13.0

Table I: Characteristics of scientific applications in study.

Our results focus on workloads comprised of combinations of a set of five benchmarks. Four of the five programs—
hydro2d, mgrid, su2cor and swim—are taken from the suite of Specfp95 floating-point benchmarks [12]. The remaining
program, cgm, is from the NAS sample benchmarks [7]. These programs were chosen for two main reasons. First, they
are real computational benchmarks, not toy programs or toy data set sizes. Second, taken together they represent
a range of computation granularities with varying parallelism behavior. Table T briefly describes features of the
applications.

We used standard data set sizes for all of the programs, using the “test” inputs for the Specfp95 programs and the
large input for cgm. Other than swim, the programs had sequential execution times ranging from 3.5 to 8 minutes.
Because swim’s “test” input executed in under a minute, we modified the iteration count for swim to bring its 1-
processor execution time up to 3.5 minutes, similar to other applications. This one small change was needed so that
our experiments measured the behavior of executing programs with comparable execution times together.

3.1 Overall Application Parallelism

The rightmost column of Table I summarizes application speedups on an SGI PowerChallenge multiprocessor running
Irix 6.2. The machine had a total of 18 R8000 processors. Since the machine was configured with a mix of 14 75Mhz
and 4 90MHz processors, our experiments only show data up to 14 processors, and we assigned processes to processors
such that the four faster processors were never used for the measured applications.

The SUIF compiler does a fairly good job of finding and exploiting parallelism for these applications, but these
programs span a wide range of parallelism granularities and, as a consequence, overall speedups. We observe speedups
ranging from a near-linear 13.0 for swim down to a modest 2.9 for su2cor.
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Figure 1: Parallelism distribution for each of the applications.

3.2 Loop-level Performance

We shed light on the speedups in Table I by considering application performance on a per-loop basis. For each
application, Figure 1 shows a histogram weighting the time the application spends at different speedups. To gather
these numbers, we first ran the program sequentially, and measured both its overall execution time and also the time
spent in each loop. The entire program was then re-run with a full 14 processors and once again we measured the
time spent in each loop. From these two runs, we can calculate individual speedups for each loop in the program, and
histogram them to show how often different speedup values occur. The x-axis of the graph is divided into histogram
bins corresponding to speedups of 1.0 or less, 1.0+ to 2.0, and so on. Each bar corresponds to the total fraction of the
program’s sequential execution time spent on code with a particular speedup.

Overall, the figure shows that within each application, there is noticeable variability in the speedups at which they
spend significant execution time. Swim, the application with the best performance, has the least variability. Both
hydro2d and mgrid, however, have loops with speedups near ideal but also loops with much lower speedups. In the
case of cgm, the effect is more dramatic. One loop in the program is responsible for 28.6% of the sequential execution
time, and yet has a speedup of only 6.9 with 14 processors because of a small granularity of parallelism. The program
with the most widely differing behavior is su2cor, with a large sequential component and parallel loops with speedups
ranging from 8 to 11.

The significant speedup variability noted in all the programs except swim indicates that compiler-parallelized
programs are frequently not making efficient use of the processors allocated to them. We expect the majority of
moderate-scale multiprocessors to be used as multiprogrammed compute servers; thus, if one program is sometimes



using processors inefficiently, it is natural to consider shifting processors away from this program, and towards programs
that might use them more effectively. Our work explores mechanisms for dynamically managing threads to accomplish
this.

4 Adaptive Threads for Fine-Grained Time-Sharing

Based on the observed variability in per-loop speedups for these programs, we began to explore lightweight means
of assigning threads to processors such that the system can be multiprogrammed efficiently. We describe our thread
management mechanism and policy in the subsections that follow. Section 5 then evaluates these ideas and suggests
ways of expanding them.

4.1 Adaptive Thread Management: Mechanism

In Section 2, we described that the standard SUIF run-time system relies on a master-worker approach to release
worker threads at a parallel loop with information about how to execute the loop. This information includes the
location of the loop in the program, the variables accessed by the loop, and the block of iterations to execute. The
standard SUIF run-time system is capable of releasing fewer than the full allocation of worker threads to execute a
loop, but any unused threads remain spinning at the barrier.

Our adaptive run-time system is implemented by making a small change to the standard SUIF mechanism for
managing threads. At each loop invocation, the run-time system computes the number of threads to use. Then, the
run-time system releases only those threads to the computation; the remaining threads do not spin but instead are
available to be applied to useful work by other processes.

When multiple programs are run, max_procs threads are allocated in total, where max_procs is the number of
available processors. Each program has its own master thread, and the programs share the remaining threads to use
as workers. To avoid memory access overhead for odd and prime partitioning of data, a loop is always allocated an
even number of threads. Thus, if there are N programs being run on max_procs threads, each loop can allocate at
most procs_per_prog = | (max_procs — N)/2] * 2 threads. When one of the programs finishes its execution, it releases
the thread it used as a master and makes it available to the remaining executing programs.

4.2 Adaptive Thread Management: Policies

The previous subsection focused on implementing a mechanism for adaptive thread assignments and abstracted away
the related policy decisions. Whether a program’s per-loop speedup variability is caused by its inherent characteristics,
or by external competition for processors amongst programs, this variability makes useful parallelism difficult to
estimate at compile-time. Thus, the decision of how many threads to give a program must be made throughout the
program’s execution. Here we examine policies for repeatedly making this decision at run-time.

A simple adaption policy would base the processor allocation decision for some loop L on its observed speedups
in past invocations. For example, at the core of our adaption policy, the per-loop, one-processor time seq_timey, 1is
computed by averaging over all of this loop’s invocations in a sequential pre-run of the program.! This information is
placed in a file and is read in at the beginning of the adaptive run. By default, the program starts by assigning each
loop the number of threads originally requested by the application. On subsequent loop invocations, the number of
allocated threads can be adapted upwards or downwards to directly match the observed loop speedups. While initially
appealing, we found this simple policy to be inadequate at balancing the performance needs of multiple running
programs. Thus, additional factors were added, as discussed below.

Delaying Adaption The adaption policy must aim to optimize the processor utilization without unduly penalizing
programs for brief, possibly-spurious fluctuations in their performance. Because of the simple block partitioning of
iterations used by the compiler, an adaption involves a remapping of iterations to processors, and as a direct result,

1 The point of the sequential profiling run is to give our prototype sufficient information to gauge loop speedups at run-time. The latency
of this profiling run could be considered part of the compilation process. For programs whose sequential run-time is prohibitively high, a
two- or four-processor run could be substituted, with the processor adjustments modified appropriately. One could also omit the profiling
pre-run entirely by gathering sequential profiling information on the first several invocations of each loop in the “real” run, before going to
normal parallel execution for the remainder of the run.



a repartitioning of data accessed by each processor. Thus, at least the first invocation of the loop at a new number
of threads may observe poor performance due to increased memory costs. For this reason, we typically do not want
to adapt downwards at the first sign of poor speedup, but instead should delay this decision to see if it is a sustained
event.

Our first tactic is to require that the speedup change by a significant factor before adaption is considered. That
is, if the previous speedup is above factory, of ideal, the number of threads may be adapted up. If it is less than
factorgoyn of ideal, the number of threads may be adapted down. (To improve performance, adapting from two
processors to one processor is treated as a special case with a slightly larger factor used.)

Speedup changes that exceed the parameterized factors cause the loop to be considered for adaption, but the
system does not immediately adapt down due to one bad timing. Instead, the system must observe more than wait
bad timings in a row before adapting down. This allows applications to have occasionally-anomalous behavior without
punishment. Our results indicate that a non-zero wait is particularly important immediately following an adaption;
we observed up to a 9% performance improvement for the combined programs by waiting beyond a single bad timing.

Competition for Threads If several programs with good speedups are running concurrently, then sometimes a
loop may be allocated more threads for its next invocation than the system currently has available. In these cases, the
loop suspends execution in a FIFO queue until the threads are available. The time spent waiting in the queue is part of
the monitored execution time, so that if programs are competing with each other for threads, the system will naturally
adapt down the number of threads being used by all programs. Ultimately this allocates more threads to the loops
that are achieving the best speedups. As previously stated, the adaption mechanism is gradual, adapting up or down
only 2 threads at a time. This lets one program slowly increase its resource allocation without suddenly impacting
the performance of other executing programs. Our experiments have indicated that this gradual change significantly
improves performance over selecting the number of processors more directly according to observed speedups; the
system achieved up to a 33% performance improvement by introducing gradual downward adaption.

Sequentializing Loops An important decision in automatic parallelization is determining when to sequentialize
a loop’s execution. When a loop is sequentialized, it will never be executed in parallel again for the remainder of
the program’s current execution. Sequentializing a loop eliminates the normal parallelization overhead, and is thus
an important efficiency feature for fine-grained, low-speedup loops. In SUIF and other current parallelizing compil-
ers, loops are sequentialized at compile-time via potentially-inaccurate static performance estimates and user-defined
threshold values. This can lead to poor performance because compile-time estimates can frequently be inaccurate. Our
adaption policy sequentializes loops based on observed run-time performance; this allows more accurate assessments
of their potential for parallelism. Run-time sequentialization is an important efficiency feature, but it must be used
conservatively so as to avoid sequentializing loops that could profitably be executed in parallel. We set a parameter,
granularity_threshold, which is a per-invocation minimum execution time for profitable execution in parallel.

Based on the observations and data discussed above, we arrived at the adaption policy presented in Figure 2. For the
experiments presented in this paper, we use the following values for these parameters: granularity_threshold = .001s,
factoryy, = .67, factoriown = .5, and wait = 1.

5 Experimental Results

Adaptive runtime parallelism has two means by which it might improve system performance. First, in some applications
individual program speedups may degrade (primarily due to insufficient granularity and false sharing) if too many
processors are used. For the applications and number of processors we studied, however, we found this to be a fairly
minor effect. Rather, the real advantage of adapting the number of processors applied to a loop is that the system can
increase throughput and processor utilization by matching the loop to the number of processors it can effectively exploit
and releasing remaining threads for useful work in other programs. In this section, we present a series of experimental
results showing increased overall throughput when using the adaptive run-time system to execute multiple programs
at a time.



Initialization.

if seq_timey, < granularity_threshold then
sequentialize L

else
procsr, (1) = min(procs_per_prog, itersy,)

General adaption decision.

if speedupy, (k — 1) > procsy(k — 1) * factory, then
procsy, (k) = min(proesp(k — 1) + 2, procs_per_prog, itersy, (k))
reset wait
else if speedupy (k — 1) < procsp (k — 1) * factorgoyn then
wailt = wait - 1
if (wait < 0) then
proesy, (k) = min(procsp(k — 1) — 2, itersp (k))
reset wait
if (proesg (k) < 1) then
sequentialize L
else
procsy, (k) = min(proesy (k — 1), itersy (k))
reset wait

Figure 2: Pseudo-code for the implemented process adaption policy.

5.1 Methodology

Evaluating our proposal requires a mechanism for controlling threads and assigning them to different tasks in a
multiprogrammed environment. We originally implemented this functionality using the available blocking system calls
on the SGI Power Challenge. We found, however, that they were prohibitively expensive, typically resulting in a
2X or more slowdown over the original codes. For these reasons, we developed an alternative methodology for our
experiments. We extended the run-time system to support executing multiple programs together. We compiled and
linked the multiple programs into a single executable, accordingly modifying where the individual programs received
their input and placed their output to avoid conflicts. Thus, the run-time system could control the schedule of a
set of max_procs threads and how they were used by a group of programs. Obviously, in a production system, we
would not require compiling the programs together but would instead have them link in a shared library and execute
using a common pool of threads. System support for this approach should be considered in future developments. We
anticipate similar overheads with either approach, but the methodology we chose was simpler for a proof-of-concept
implementation.

5.2 Adaption Measurements

We measured the effectiveness of the adaptive run-time system on combinations of the 5 programs described in
Section 3. Table 5.2 presents the 8, 12 and 14-processor results, showing the speedup of the combined program
compared to the sum of the individual programs’ execution times each running on a standalone machine. (A P-
processor run is one in which the sum total of processors, or threads, used by both programs is P.) Consider for
example, the entry in the 14-processor section corresponding to hydro2d-cgm. This entry contains the sum of each
of cgm’s and hydro2d’s individual standalone 14-processor execution times, 66.0s and 44.7s, divided by the combined,
thread-managed 14-processor execution time of 83.5s. Numbers greater than 1.0 indicate that our adaptive thread
management policy improved the workload’s performance.?

In fact, we find that our adaptive thread-management policy almost always improves performance. On all the runs
shown, only 5 of the 29 runs fail to be improved by thread-management when compared to standalone execution. When

2The asterisk by the 12-processor swim results indicate that these programs were run using a coarser granularity timer than the other
combinations. Our experiments showed consistently better results with the finer granularity timer (see discussion), so these results should
be considered pessimistic compared to the better timer.



8-Processor Runs
Cgm | Hydro2d | Mgrid | Su2cor
Hydro2d 1.18 - - -

Mgrid 1.32 97 - -
Su2cor 1.20 1.17 1.03 -
Swim 1.33 .99 0.78 1.11

12-Processor Runs
Cgm | Hydro2d | Mgrid | Su2cor

Hydro2d 1.23 - -

Mgrid 1.14 1.09 -

Su2cor 1.24 1.23 1.03 -
Swim 1.19* 1.08* .84* n/a

14-Processor Runs
Cgm | Hydro2d | Mgrid | Su2cor
Hydro2d 1.33 - - -

Mgrid 1.19 1.18 - -
Su2cor 1.31 1.22 1.16 -
Swim 1.14 1.15 0.90 1.04

Table II: Speedup factors comparing execution times of thread-managed application workloads to unmanaged execution
(8-, 12-, and 14-processor runs).

one considers only runs with 12 or more processors, the results are even more promising: all but one workload show
improvements due to our adaptive thread-management policy. This is because individual programs tend to use higher-
numbers of processors less efficiently; thus there is more leverage for thread-management to redistribute resources and
improve performance. In some cases, our approach yields up to 1.33X speedups over executing the programs one at a
time in standalone mode. Note further that comparing against standalone execution is a fairly conservative evaluation
metric for our approach. Rarely are these machines available to users in standalone mode! More realistically, the
programs are run as part of a multiprogrammed workload, where an individual program loses parallelism efficiency
due to competition for resources with other programs, as occurs in our experiments when executing programs together.
Thus, our approach should be considered an alternative to multiprogrammed runs without thread management, and
not standalone runs. We believe adaptive thread-management would show even more significant improvements if
compared against more realistic coarser-grained scheduling approaches such as gang-scheduling. This is especially
true for programs where parallel speedups are fairly high, and coarser-grained approaches fail to respond to their
needs fast enough.

Examining the individual results, we observe a number of trends. At 8 processors, most combinations improve.
Improvements range from roughly 11% for swim-su2cor to 33% for some of the workloads involving cgm. On the other
hand, there are three workloads where performance does not improve; these include almost negligible degradations in
the mgrid-hydro2d and swim-hydro2d combinations, and a larger degradation with the mgrid-swim combination. It
is not surprising to see some degradation when combining mgrid and swim, since these are two coarse-grain programs
that speed up extremely well when run individually. Thus, the workloads that involve them can be challenging because
each application has such good individual speedups that it offers little leverage for adaption-based improvements.

As more processors are considered, adaptive thread-management becomes a clear winner. At 12 to 14 proces-
sors, the individual applications running on a standalone system often do not make efficient use of all the available
parallelism. While nearly all the programs contain loops that speed up well to 14 processors, the per-loop speedups
are generally fairly variable, and more of the execution time is spent on the less-efficient loops. This gives adaptive
thread-management better opportunities to overlap execution with other programs without paying a high performance
penalty. One way to visualize these opportunities is in terms of where each application is positioned on its individual
speedup curve. As the available number of processors is increased (i.e., as one moves out along the speedup curve) a
program is increasingly unlikely to be able to use them all efficiently. In these cases, downward adaption can move back
down along the speedup curve, toward a more efficient region of the curve; this helps overall workload performance.

In particular, in the 12 and 14-processor runs, only the mgrid-swim workload continues to show a degradation.



The remaining applications improve between 3 and 33%. Even the challenging mgrid-swim workload, however, shows
better behavior in the 14-processor runs. While overall the results improve as number of processors increase, a few
workloads involving cgm and su2cor are less improved at 12 or 14 than they were at 8 processors. This effect is
apparently caused by significant low-parallelism components to these programs; when run with other programs that
speed up well, the execution times of cgm and su2cor start to dominate overall execution times.

5.3 Discussion

The presented results offer a view of the opportunities and challenges presented by dynamically managing parallelism
in compiler-parallelized codes. As a result of this work, we identify a few implementation issues that bear discussion.

First, we should touch on the envisioned user-model for our adaptive threads approach. Clearly we do not expect
programmers to compile programs together as we did for expediency in this experiment. Rather, the environment
will allow for individual programs to be compiled and then executed by attaching to the run-time system and thread
manager. The key attribute of any such system is that there be a neutral party in charge of managing threads, and
that there be a lightweight mechanism for allocating or relinquishing threads such that an application pays little or
no cost for blocking a thread as compared with leaving it spinning in a synchronization loop. For example, 1t would
be possible to build such a system in which parallel programs are invoked similarly to dynamically shared libraries on
current systems. Since we foresee an environment in which the bulk of the applications are uniprocessor or compiler-
parallelized multiprocessor applications, the compiler can add in the appropriate run-time system calls to ensure that
the user-level processes on the system subscribe to the thread manager, and yet the users need not be aware of the
difference.

Our second observation pertains to timer granularities. Our adaption policies rely on loop timings accurate at the
same granularity as loops that can profitably execute in parallel. Inaccurate measures of loop execution times may
impede decisions on how many processors a loop should be given. System developers should provide fine-grained,
user-readable timers, so that performance-aware software can time at sufficiently fine granularities.

6 Related Work

This section will present some of the prior work on multiprocessor scheduling on which our work extends and discuss
some relevant details of our work.

Some related work, such as that by Setia et al. [8] and Majumdar et al. [5] has primarily explored analytical
mechanisms for evaluating the efficiency of different scheduling approaches. Building on this analytical work, several
more empirical studies have explored thread management in real systems [6, 14, 15, 2]. In some of these studies, such
as [6], the thread management policy assumed that each running program was efficiently using all of the threads it
had requested; no on-line performance measurement was used to doublecheck on the parallel efficiency of the running
programs. This gives users an undue temptation to request as many threads as possible, even if the program will
not use them effectively. Other studies, including those by Tucker et al. [14, 15], base thread allocation on specific
synchronization mechanisms in the code, and thus require that the programmer of the system use these synchronization
mechanisms as the basis of an explicit parallel programming model.

One particular scheduling policy, gang scheduling, has received a great deal of attention. In gang scheduling,
processes working on behalf of the same program are scheduled to run together where possible, in order to reap
benefits of faster communication and improved memory behavior. Both analytical [11] and experimental studies
[10, 9, 4] have been published. Our scheduling policy is a good deal more sophisticated than the heuristic-based gang
scheduling, however, since it bases processor allocations on aggregate observed performance, rather than on heuristics
regarding what “should” produce good performance.

One recent study particularly warrants a close comparison here. Unlike prior papers which focused on explicitly-
parallelized codes, Yue and Lilja have performed scheduling studies on compiler-parallelized applications [17]. Like
ours, their LLPC technique also adapts the number of threads allocated to a parallel loop dynamically, but in their
case the decision is based on just system load and a static estimate of work in the loop. A key contribution of our work,
as compared both to the fully-static SUITF approach and the partially-static LLPC approach, is that we use a fully-
dynamic runtime performance measure to guide adaption, rather than rough static guesses. A direct comparison with
LLPC 1s impossible, but we discuss a few key points here. Their paper shows consistent improvements over SGI’s gang
scheduling technique, and improves over space sharing techniques for the programs that speed up well. It is important



to note, however, that had they applied our speedup metric (from Table 5.2) to their results, their “speedups” for
executing two programs together would all be less than 0.9, in some cases by a significant margin. (This assertion
is based on comparing estimates from their graphs and reported execution times.) For this reason, we argue that
the adaptive thread-management policy we demonstrate here shows convincing new improvements over standalone
individual execution times and suggests significant opportunities to improve multiprogramming effectiveness.

7 Conclusions

Overall, our results highlight the promise of using on-the-fly monitoring in managing threads for compiler-parallelized
workloads. Our technique improves the parallel efficiency of workloads by adjusting thread assignments based on the
achieved speedups of the programs being executed. This approach has demonstrated substantial improvements, in
several cases executing 33% faster than the individual programs executed on a standalone machine. These results
improve on those garnered from established scheduling regimes like gang scheduling, and also with other research
approaches [17].

Our experimentation with different thread control policies has demonstrated the importance of (i) making the
adaption mechanism gradual, (ii) increasing or decreasing the number of threads allocated to a computation only a
few processors per invocation, and (iii) allowing for spurious timings due to changes in processor allocation. Gradual
adaption is particularly important for allowing the memory access behavior to stabilize and to avoid significant conflict
with other executing programs; intuitively, this issue arises because the same loop often executes repeatedly in quick
succession, so a computation may be competing with the same computation in other executing applications for an
interval of time.

Taking the three major policy issues into account, we have shown that the benefits of adaption increase as the
number of processors increases because individual compiler-parallelized applications are less able to make efficient use
of all the available processors. Based on this observation, we believe our techniques will become increasingly relevant
as multiprocessor sizes increase. Scheduling mechanisms such as ours will be vital in the near future when it will be
routine to have multiprogrammed workloads including compiler-parallelized applications executing on medium and
large scale parallel machines.
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