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Abstract 

Analyzing and optimizing program memory performance is 
a pressing problem in high-performance computer architec- 
tures. Currently, software solutions addressing the processor- 
memory performance gap include compiler- or programmer- 
applied optimizations like data structure padding, matrix 
blocking, and other program transformations. Compiler op- 
timization can be effective, but the lack of precise analysis 
and optimization frameworks makes it impossible to confi- 
dently make optimal, rather than heuristic-based, program 
transformations. Imprecision is most problematic in situa- 
tions where hard-to-predict cache conflicts foil heuristic ap- 
proaches. Furthermore, the lack of a general framework for 
compiler memory performance analysis makes it impossi- 
ble to understand the combined effects of several program 
transformations. 

The Cache Miss Equation (CME) framework discussed 
in this paper addresses these issues. We express memory ref- 
erence and cache conflict behavior in terms of sets of equa- 
tions. The mathematical precision of CMEs allows us to 
find true optimal solutions for transformations like block- 
ing or padding. The generality of CMEs also allows us to 
reason about interactions between transformations applied 
in concert. Unlike our prior work, this framework applies 
to caches of arbitrary associativity. This paper also demon- 
strates the utility of CMEs by presenting precise algorithms 
for intra-variable padding, inter-variable padding, and se- 
lecting tile sizes. Our experiences with CMEs implemented 
in the SUIF system show that they are a unifying mathemat- 
ical framework offering the generality and precision impera- 
tive for compiler optimizations on current high-performance 
architectures. 

1 Introduction 

As the disparity between processor cycle times and main 
memory access times grows, data cache performance be- 
comes increasingly important. Although caches generally 
work well, some programs have access patterns that fail to 
use the cache effectively. Ideally, automatic compiler trans- 
formations should improve the memory behavior of such 
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code, thereby reducing the programmer’s need to hand-tune. 
While compiler transformations are often effective, the anal- 
ysis and optimization techniques they employ are sometimes 
insufficient for memory optimizations on particular programs 
or machines. These shortcomings are often due to a lack 
of precision or generality. In response, this paper describes 
Cache Miss Equations (CMEs), a precise mathematical frame- 
work for guiding a range of compiler optimizations. 

There are two main approaches to automatically im- 
proving the data locality of loop-oriented programs--loop 
neat restructuring and data layout optimizationa. Restruc- 
turing loop optimizations (e.g., permutation, tiling, and fu- 
sion) are mechanisms widely used to reorder the access pat- 
tern in a loop nest for better temporal and spatial local- 
ity [g, 12, 15, 23, 241. The key issues here are determin- 
ing appropriate analyses and policies for determining when 
to apply these optimizations. In the past, such analyses 
have primarily considered capacity misses, but loops can 
also suffer heavily from conflict misses, particularly in caches 
with low associativity [ll, 12, 16, 211. Moreover, conflict 
misses are highly sensitive to slight variations in problem 
size and base addresses [3, 121. As a result, previous com- 
piler techniques, using simpler cost models to guide loop 
transformations, have disappointing results when there are 
unaccounted-for conflict misses. Researchers have also con- 
sidered transformations on the underlying data layout. They 
have developed specialized algorithms for selecting tile sizes 
[i’, 121 and for specific data layout optimizations [3, 201 to 
reduce conflict misses. 

While compiler transformations have been effective in 
optimizing some programs, they are frequently based on lim- 
ited or heuristic analyses whose imprecision leads to poor re- 
sults for some programs and cache organizations. Further- 
more, these transformations are often based on individual 
isolated insights, with little common base, perhaps a conse- 
quence of the lack of a unified analytical model for program 
cache behavior. It is therefore difficult to reason about the 
combined effect of several transformations applied to the 
same code. 

To address these problems, we have introduced Cache 
Miss Equations (CMEs), a mathematical framework that 
precisely represents the cache misses of a loop nest. CMEs 
are unique in unifying both the loop structure and the data 
layout within a simple, equations-based analytical model 
representing the cache misses. We can count cache misses in 
a code segment by analyzing the number of solutions present 
for a system of CMEs, where each solution corresponds to 
a potential cache miss. CMEs are a system of linear Dio- 
phantine equations. The precision of this framework allows 
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us to find optimal solutions to padding or blocking opti- 
mizations by employing mathematical analysis to determine 
when the equations will have zero solutions. The generality 
of the framework allows us to concurrently reason about the 
impact of multiple optimizations on the solution count; this 
gives us a mechanism for analyzing several optimizations 
applied at once. We have implemented our algorithm to au- 
tomatically generate CMEs within SUIF [22]. We have also 
tested our system by automatically generating the equations 
for many numerical loop nests from the SPECfp benchmarks 
and subsequently using them for optimizations. 

This work makes several significant contributions. Our 
prior work described CMEs and some initial manipulations 
thereof [9], but that work was applicable only to direct- 
mapped caches. The new CME framework presented in this 
paper applies to caches of arbitrary associativity. Further- 
more, our prior work employed a solution method based on 
difficult aggregate set operations on the complete set of a 
reference’s reuse vectors. The work we describe in this pa- 
per ‘<re-invents” CMEs in a way that is both more broadly 
useful and more conveniently manipulated. We have imple- 
mented an entirely new algorithm for finding cache misses 
from the CMEs; this algorithm enables one to trade off pre- 
cision versus analysis complexity for practical loop nests. 
The final contribution of this paper is to give new compiler 
optimization algorithms that are concrete examples of the 
sophisticated code optimization methodologies that CMEs 
enable. While space limits preclude a comprehensive demon- 
stration of CME’s broad utility, these examples and exper- 
imental data demonstrate how the precision and generality 
of our framework make CME-based optimizations more ef- 
fective at reducing cache misses than other non-CME-based 
optimizations previously described by the compiler commu- 
nity. 

The rest of this paper is organized as follows. Section 2 
provides the underlying models and background information 
along with an overview of CMEs. Section 3 describes the 
algorithm to generate the CMEs. Since solutions to each 
CME represent potential cache misses, Section 4 describes 
how we can compose the effects of multiple CMEs to find 
the loop’s actual cache misses. In addition, Section 4 gives 
experimental results on the accuracy of this method. Sec- 
tion 5 includes examples of using CMEs on a range of code 
optimizations. Finally, Sections 6, 7, and 8 present related 
work, future work, and conclusions respectively. 

2 CMEs: Background and Overview 

A system of CMEs couches a loop’s reference stream and 
cache conflict patterns in a mathematical framework that 
can be analytically manipulated. This section describes the 
abstractions and terminology we use to facilitate this. 

2.1 Program Model 

Our model applies to references in which the array subscript 
expressions and the bounds of the loop index are affine com- 
binations of the enclosing loop indices, a common model 
for research in compiler memory analysis. All loops are as- 
sumed to be normalized such that the step value is 1 [2]. 
We consider only perfectly nested loops and some imper- 
fectly nested loops if they have only a single basic block in 
between the loops of a nest. We also assume that loops 
contain no conditional expressions. Extending this work to 
handle conditionals, by focusing on the frequently-taken pro- 
gram paths is part of our future research. Our previous work 

evaluated these restrictions for the SPECfp benchmarks and 
found that the majority of loops satisfied them [9]. In this 
paper, we consider each loop nest separately; inter-nest anal- 
ysis is part of our ongoing research. For the sake of unifor- 
mity, all arrays discussed here are assumed to be arranged 
in column-major order as in Fortran, but the techniques do 
not depend on a specific layout order. We also assume that 
all the load/store references inside a nest correspond to only 
the array references. Scalars can be considered as a special 
case of 1-D arrays. 

2.2 Compilation Model 

CMEs are linear Diophantine equations in constrained solu- 
tion spaces. While solving these is difficult, we note that it is 
unnecessary for our approach. Mathematical techniques for 
manipulating Diophantine equations allow us to relatively 
easily compute and/or reduce the number of possible solu- 
tions without solving them. 

In addition to program restrictions, it is important to 
clarify when CMEs are generated and used. CMEs are gen- 
erated statically at compile-time, but may give data posi- 
tioning hints to the linker. Since CMEs are analyzing pos- 
sible cache conflicts, they need some information about the 
relative positioning of different data structures, but they do 
not need the absolute base address of any variable. Some 
of the optimizations we describe could be implemented by 
analyzing CMEs where relative variable spacings are a pa- 
rameter, and then passing the linker information concerning 
what numeric constraints on their spacing will lead to the 
best performance. 

In general, any variable whose value is dependent on run- 
time information (e.g. loop bounds) or whose optimizing 
value needs to be determined for some cache optimization is 
kept as a parameter in the CMEs. Compiler optimizations 
will then try to use these CMEs based on available informa- 
tion. However, in order to find the exact number of cache 
misses using CMEs for a precise evaluation, we will need to 
know the values of all such parameters. 

2.3 Architecture Model 

The basic architecture we consider here is a uniprocessor 
model with a memory hierarchy. We focus on analyzing a 
single level of the data cache hierarchy. (Analyzing multiple 
levels simultaneously is not precluded, but it would com- 
plicate the equations.) The associativity of the cache is a 
parameter in our models, and CME methods apply to caches 
of any associativity from direct-mapped to fully-associative. 
We assume a least-recently-used (LRU) replacement policy. 
Writes and reads are modelled identically, so the model is of 
a write-allocate cache with fetch-on-write. 

2.4 Terminology 

Our work with CMEs draws on the substantial body of re- 
search in which iteration spaces and reuse vectors are used 
to analyze memory reference behavior for dependence analy- 
sis [18], locality optimizations [23], or prefetching algorithms 
[17]. We build on these approaches and adopt more precise 
mechanisms for using them. 

Iteration Space: Every iteration of a loop nest is viewed 
as a single entity termed an iteration point in the set of all 
iteration points known as the iteration space. Formally, we 
represent a loop nest of depth n as a finite convex polyhedron 
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DOi=l,N 
DOk=l,N 

is an 8KB a-way set-associative cache with 128 cache sets 
and 4 data elements per cache line. 

DOj-1,N 
Z(j, i) +- X(k, i) * Y(j, k) 

Figure 1: Matrix multiply loop nest. 

i 

Figure 2: Iteration space of the matrix multiply loop 
nest. The iteration points are shown by the hollow dots. 
T< = (0, 1,O) and T; = (O,O, 1) are two reuse vectors of 
Z(j, ;) shown at the iteration point c’= (1,2,3). Ti is a 
self-temporal reuse vector and T; is a self-spatial reuse 
vector. 

of the n-dimensional iteration space Z”, bounded by the 
loop bounds [6, 231. Each iteration in the loop corresponds 
to a node in the polyhedron and is called an iteration point. 
Every iteration point is identified by its index vector ; = 
(il, in,. . . , in), where i[ is the loop index of the lth loop in 
the nest with the outermost loop represented by the first 
dimension. Figure 2 shows the iteration space of the matrix- 
multiply loop nest in Figure 1. c’is an iteration point and 
corresponds to the iteration i = 1, lc = 2, and j = 3. In this 
representation, if iteration $2 executes after iteration $1 we 
write pi + $1 and say that $2 is lexicographically greater 
than $1. For example, in Figure 2, c’+ 3. 

Memory terminology: We refer to a static read or 
write in the program as a reference, while a particular exe- 
cution of that read or write at runtime is a memory access. 
A memory line refers to a cache-line-sized block in memory, 
while a cache line refers to the actual cache block a memory 
line maps to. 

Throughout this paper, we denote the cache size as C,, 
associativity of the cache as 12, line size as L,, and the num- 
ber of cache sets as N,. As each cache set consists of k cache 
lines, we can write C, = N, x k x L,. With all elements in 
units of data element size, the cache set accessed by a ref- 
erence Ra at the iteration point 7;s given by the following 
expression: 

MemR,(;i) = Memory-Address-of-R*(z) 

Memory-LineRA = [MemR,(l)/&] 

Cache-SetR,(l) = [MemR,(~)/L,] mod N, (1) 

where MemR,(l), the memory address accessed by RR at 
l, is an affine function of the loop indices and can be easily 
computed from the subscript expressions of Rd. 

For example, the cache set of the reference Z(j, ;) in the 
matrix multiply loop nest of Figure 1 is given by (with all 
numbers in units of data element size): 

[(4192 + 32; + j - 1)/4] mod 128 

where the base address of the array Z is 4192 and the num- 
ber of elements per column of Z is 32. The cache considered 

Reuse Vector: Reuse vectors provide a mechanism for 
summarizing repeated memory access patterns in loop-oriented 
code [23]. If a reference accesses the same memory line in 
iterations ~~ and 6, where & + ;I, we say that there is reuse 
in direction r’ = & - ll and r’is called a reuse vector. For ex- 
ample, the reference Z(j, i) in Figure 1 can access the same 
memory line at the iteration points (i, Ic, j) and (i, le, j + 1) 
and hence one of its reuse vectors is (0, 0,l) as shown in 
Figure 2. 

If the reference is reusing a previously accessed memory 
line we need to know when it was last accessed and the 
reference that accessed it. Once we have the information 
about the reuse we can check if any intervening memory 
access evicts the memory line from the cache before it can 
be reused; this would result in a cache miss. If a reuse 
results in a cache hit we say that the reuse is realized and 
the reference that enjoys the cache hit has l0cality.l The 
central idea behind the CMEs is to find the loop instances 
at which reuse does not result in cache hits. 

We have extended reuse analysis as presented by Wolf 
and Lam [23] and modified SUIF to generate, when needed, 
additional reuse vectors for more accurate analysis. These 
additional reuse vectors represent reuse directions that are 
not provided by the basic reuse vectors generated by SUIF. 
For example, in Figure 2, considering a cache line size of 
2 data elements, there is a reuse of Z(j,;) in the direction 
(0, 1, -1) which is not generated by SUIF. The approximate 
model used by SUIF to quantify reuse needs only the basis 
reuse vectors, while our precise analysis needs to know every 
reuse direction. As we show in Section 4, however, the basic 
SUIF reuse vectors are almost always sufficient for counting 
cache miss points with no error. 

Miss Along a Reuse Vector: Consider a miss of a 
reference R at an iteration point i. We define the miss to 
be along a reuse vector T’of R, if that miss would occur 
if r’ were the only reuse vector present for R. Each CME 
generated in our algorithm is for a particular reuse vector T’ 
of a reference R. In other words, that CME represents all 
the misses of R along the reuse vector T: Section 4 shows 
how all the reuse vectors interact to decide the cache misses 
for a reference. 

3 Generating the Cache Miss Equations 

Our approach generates two types of CMEs: cold miss equa- 
tions (or cold CMEs) and replacement miss equations (or 
replacement CMEs). Solutions to the cold miss equations 
represent potential cold or compulsory misses-misses that 
occur on the first reference to a memory line. Solutions to 
the replacement miss equations represent all other misses 
including both capacity and conflict misses. 

Figure 3 summarizes the algorithm to generate all CMEs 
of a loop nest. The two major steps: generating a cold miss 
equation and generating a replacement miss equation, are 
described in the next two subsections. 

1 We use wude and locality as defined in Wolf and Lam [23]. Reuse 
is considered to be an intrinsic property of the references that oc- 
curs whenever a reference accesses a memory line that was already 
accessed before and locality is used to indicate that the reuse has re- 
sulted in a cache hit. McKinley and Temam [16], however, follows a 
different interpretation where the meanings of reuse and locality are 
interchanged with respect to our interpretation. 
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Algorithm Generate 
Generate the CMEs for a loop nest 
Input: 

Information about the loop nest, array references in 
the nest, and the sequence in which those references 
appear in the generated code. 

Output: A set of CMEs for each reference. 
Algorithm: 

Generate the reuse vectors 
For each reference in the loop nest 

For each reuse vector of this reference 
1. Generate a cold miss equation 

(described in Section 3.1). 
2. For each reference in the loop nest 

Generate a replacement miss equation 
(described in Section 3.2). 

Figure 3: Algorithm to generate all the CMEs. 

3.1 Forming Cold Miss Equations 

Cold CMEs mathematically summarize the situations when 
a memory line is brought into the cache for the first time. 
Each loop nest is treated in isolation, so we assume none 
of the data accessed in a loop nest is already present in 
the cache before it starts execution. The simplest type of 
cold CME is already fairly familiar. Namely, a relationship 
like (; mod 4) = 0 summarizes that, in a sequence of unit- 
stride accesses in which four data elements fit on a cache 
line, every fourth access will result in a cold miss. Cold 
CMEs become more complicated depending on loop nesting 
depths, strides, access patterns or array alignments, but the 
basic goal remains the same. 

For each reference, we form cold CMEs that capture all 
the cold misses along each reuse vector. We use reuse vectors 
to help us determine when a cold access occurs; cold memory 
accesses are encountered at the iteration points that contain 
(1) either the first access along the direction of the vector or 
(2) accesses that have just crossed a memory line boundary 
along the direction of the vector. As a result, the cold misses 
are dependent on the reuse vectors, iteration space, and the 
line size. Since cold misses do not change with cache asso- 
ciativity, the methods to generate the cold CMEs remain as 
described in [9]. 

3.2 Forming Replacement Miss Equations 

3.2.1 Intuition and Overview 

Replacement CMEs summarize conflict and capacity misses 
in which the currently accessed memory line was previously 
resident but has been evicted from the cache. The intuition 
behind these equations is fairly straightforward, if first con- 
sidered in a direct-mapped cache. In a direct-mapped cache, 
a miss occurs if, between consecutive accesses to a particu- 
lar memory line, another access occurs to a distinct memory 
line that maps to the same cache line. 

For example, consider the tiny reference stream: Ra- 
RB-RR. A conflict clearly occurs in a direct-mapped cache 
if Cache-Line-of -Ra = Cache-Line-of -RB. This happens 
if: 

Memory-Address-of -RA = Memory-Address-of RB 

+n x Cache-Size + Line-Size-Range (2) 

That is, a conflict occurs, roughly speaking, between RA and 
Rg whenever the memory addresses accessed by them differ 
by multiples of the cache size. In order to be precise, we need 

ache-size 

Cache 

Memory 

Figure 4: An example of two memory addresses that map 
to the same cache line. The addresses are marked by the 
references that access them, namely RA and RB. 

two further details. First, n cannot be zero, because in that 
case the memory addresses reside on the same memory line. 
Second, the Line-Size-Range is included in the equation to 
capture the situations when the memory addresses do not 
differ by exactly a multiple of the cache size, but they map 
to the same cache line. (See Figure 4.) Line-Size-Range is 
a range whose size is set to capture the offset effects based 
on where the memory addresses sit in their respective mem- 
ory lines. Since memory addressing is an affine function, 
Equation 2 is a linear Diophantine equation. 

For a Ic-way set-associative cache, a miss occurs if be- 
tween consecutive accesses to a particular memory line, at 
least k other accesses occur to distinct memory lines that 
map to the same cache set. Each of these conflicts satisfy 
an equation similar to Equation 2. Intuitively, a reuse vector 
provides a closed form representation of a particular refer- 
ence stream over the entire iteration space for a particular 
reference. We utilize this representation to form equations 
characterizing all the conflicts along that reference stream. 
The formal method to form these equations is described be- 
low. 

3.2.2 Formal method 

Every replacement CME represents a contention between 
two references for the k cache lines in a cache set. Also, like 
cold CMEs, each replacement CME is formed by considering 
a single reuse vector at a time. 

Say we want to find the replacement CMEs for the ref- 
erence RA along the reuse vector r’= (~1, ~2, , T,,). These 
will fall into two categories. Self-interference equations sum- 
marize inter-iteration interactions of the same reference.2 
Cross-interference equations summarize the interactions with 
other references in the loop. Here we show how to form 
the replacement CME representing the interferences with 
the reference RB. For self-interference equation, references 
RA and RB are identical. If the current iteration point is 
: = (ii, iz, . . ,i,,) and the reuse vector is ?, then the last 
iteration point where RA accessed the same memory line is 
p’ = :- 6 Interferences between RA and Rg can occur at 
all iteration points lying between @and l. Depending on the 
relative access order of RA and RB, either p’ or : will also 
be included in the set. (Our implementation extracts access 
order information automatically from the code generation 
phase.) An example of these potentially-interfering points 
is shown in Figure 5. 

‘Note the contrast to other research that may use self-interference 
more broadly to refer to any cache interferences of a data structure 
with itself. 
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i 

Figure 5: An example of potentially-interfering points in a 
3D loop nest. The current iteration point is : = (1,2,4), 
the reuse vector is T’ = (0, l,O), and p’ = (l,l, 4). The 
potentially-interfering points are shown by the filled dots. 

Cache interference occurs when the cache set accessed by 
Ra in iteration 2 is the same as any of the cache sets accessed 
by Re at every potentially-interfering iteration j’ between 
iteration p’ and iteration z. Equating the appropriate cache 
sets accessed gives the condition for a cache set contention 
along reuse vector T’: 

cUCh&tR,(i) = cache-S&&j (3) 

Substituting in the expressions from Equation 1, we can 
simplify the resulting equation to the linear Diophantine 
equation shown in Equation 4. 

h’femR,(l) = hfemR,(I) + nC,/k + b (4) 

where C, is the cache size and n is any non-zero integer. 
The variable b can take on values in the range -L,n < b 5 

La - 1 - Lofj where L,,J = Memn,(;) mod L,. Thus, L,8 
shows the offset of the reference Rg in its cache line, and b 
bounds the search for an interference within that cache line. 
Since the loop indices are bounded, the equality holds for a 
bounded region. 

Every solution of Equation 4 is a vector of the form ++ 
(i,j, n) where 7 is the iteration where Ra might suffer a 
miss. ; is the iteration, before RA’S access in iteration z, 
where Rg accesses the same cache set. The memory lines 
of RA and RB involved in this cache set contention are sep- 
arated by n cache sizes. So, if n is 0 the memory lines are 
identical and there is no conflict at all. That is why we dis- 
allow all solutions with n = 0. In a k-way set associative 
cache, there are k cache lines in every cache set, so k distinct 
contentions are needed before a cache miss will occur along 
the reuse vector f. 

3.2.3 Example 

For the matrix multiply example shown in Figure 1 with 
N = 32, consider generating replacement CMEs for Z(j,i) 
along the spatial reuse vector r’ = (O,O, 1). If : = (i, k,j) 
then p’ = ? - T’ = (i, k, j - 1). For an 8KB a-way set- 
associative cache with 128 cache sets and 4 array elements 
per cache line, Equation 5 shows the replacement CME for 
the interferences with X(k,i) along 7: (Here the access of 
Z(j, ;) is after X(k, ;) in each loop nest iteration.) 

Cache_Set-Z(j, i) = Cache-Set-X(k’, i’) 

where (i’, k’, j’) E ((i, k, j - l), (i, k, j)] 

=F l(4192 + 32i + j - 1)/4] mod 128 
= L(2136 + 32i + k - 1)/4] mod 128 

j 4192 $- 32i + j = 2136 + 32i + k $512n + b (5) 

where n > 0, (;, j) E [(O,O), (31,31)], b E [-3,3]. 4192 and 
2136 are the base addresses (in array elements) of the arrays 

Z and X respectively, and 32 is the number of elements per 
column in the arrays. 

4 Finding Cache Misses from CMEs 

This section describes the algorithm for finding all cache 
misses in a loop nest by composing the effects of multiple 
CMEs. This algorithm is useful for building intuition about 
how CME solutions relate to cache miss instances. It is 
important to note, however, that most of the cache opti- 
mizations we describe in Section 5 would never be required 
to execute this algorithm on a per-loop basis. Instead, as 
described in Section 5, we typically use mathematical short- 
cuts to derive cache optimization algorithms from the CMEs 
once they are generated. 

4.1 Algorithm 

As described in Section 3, for every reference we generate a 
set of equations for each of its reuse vectors. For each reuse 
vector there are at most two cold CMEs representing cold 
misses along that vector [9], as well as replacement CMEs 
representing the self- and cross-interferences of this reference 
with itself and others. CME solution points represent poten- 
tial cache misses; to find actual cache misses, however, one 
must consider the effects of multiple reuse vectors at once. 
Figure 6 provides the algorithm that combines the effects of 
multiple reuse vectors in order to determine the set of all 
cache miss instances of a loop nest from the solutions of all 
of its CMEs. 

In our previous work, determining cache miss points from 
solution points relied on computing unions and intersections 
of solution sets, while considering all the reference’s reuse 
vectors at once [9]. Our current methodology represents 
a significant departure from this method; we instead con- 
sider reuse vectors one-by-one in lexicographic order. While 
both methods are of the same computational complexity, 
our current method can be computed more quickly for prac- 
tical loop nests commonly occurring in real programs. In 
addition, this method applies more directly to caches of ar- 
bitrary associativity, while our earlier approach was only for 
direct-mapped caches. 

Here, we will provide an intuitive explanation of the al- 
gorithm shown in Figure 6 with the help of an illustrative 
example. Formal proofs can be found in a more mathemat- 
ical report [lo]. We will consider the iteration space shown 
in Figure 7 as our example. The algorithm first sorts the 
reuse vectors of a reference in lexicographically-increasing 
order. In our example, assume that a reference X has three 
reuse vectors ri , T:, and ~'j. This means it accesses the same 
memory line at the iteration points i;, ii, ii, and ii. The lex- 
icographic ordering of the reuse vectors is [T<, 77, T;]. For 
each reuse vector, a number of CMEs are generated, each 
producing a collection of CME solution points. The algo- 
rithm investigates one reuse vector at a time, starting from 
the shortest one which is T< here. After investigating a reuse 
vector, some of its CME solution points are declared definite 
miss points, while others are indeterminate. If any iteration 
point is a solution for a cold CME of T:! there is a cold 
miss along T: at that point. Hence, there is no reuse along 
T; at that point. As we cannot take any further decision 
about these iteration points without considering other reuse 
vectors, we declare them as ‘indeterminate’ for T:. These 
indeterminate points are passed on to the next reuse vector 
for further investigation. However, if an iteration point is 
not a solution for a cold CME but is a replacement miss 
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Algorithm FindCachcMisses-ofsLoopNest 
Input: for each reference, 

solution sets of the CMEa for every reuse vector 
of the reference 

Output: &ix for every reference X, where 
Mx = set of miss points of X 

t 
1 .for each reference 

/* Say the reference is X *I 
2. Sort the reuse vectors lexicographically from 

the shortest to the longest one; 
3. Mx = 4 (null set); 
4. C = Set of all iteration points; 

/* n/ix keeps track of the cache miss points found */ 
/ * C keeps track of the iteration points that need */ 
I* further investigation */ 

5. for each reuse vector of the reference X 
/* Say the reuse vector is T’ */ 

6. if (ICI < c) break; 
/* No further investigation for this reference if ICI, */ 
/* the &elements in C is less than c */ 
i* d is iet to Cl for an exact output */ 

7. C’ = union of the solutions of cold CMEs of r’; 
8. 
9. 
10. 
11. 

12. 

13. 

14. 

15. 
16. 

17. 

18. 

R’ = union of the solutions of replacement &Es of r’; 
R” = cf.,; 
for each (:, ;, n) E R’ 

R” = R” u {(;,n)}; 
/* R” stores the distinct (<n) tuples */ 

I = I$; 
for each (l,n) E R” 

I =,I u {i}; Ill += 1; 
/* lil keeps track of #occurrences of : */ 
/* So, 14 counts the distinct cache set contentions */ 
/* All Iii’s are initialieed to 0 before this loop */ 

I = In C; C = C n C’; /* Search inside C only */ 
I=I-c; 
/* eliminate cold CME solution points from I */ 
for each :E I 

if 14 > k /* k = associativity of the cache */ 
/* 7 is a replacement miss point along i */ 

19. M, = Mx u{;}; 

/* At this point C = cold misses of the reference */ 
/* and Mx = replacement misses of the reference */ 

20. M, = Mx u C; 
1 

Figure 6: Algorithm to find the cache miss points of a loop 
nest from its CME solutions. 

along r<, it is declared a definite miss point for the refer- 
ence. This is because if the memory line is replaced after 
its use at ;y, there is no further access (i.e., no other shorter 
reuse vector) to prevent the cache miss at ;;. Finally, any 
iteration point that is neither a cold CME solution point 
nor a replacement miss along r< is a guaranteed hit. That 
is, if the cache line is not replaced after its use at il, X will 
enjoy a hit at i; irrespective of what happens along other 
reuse vectors. For only the indeterminate points (i.e., cold 
CME solution points) of T<, we move on to consider ri . All 
the CME solutions of T< are treated similar to those of r: 
as we can consider T< effectively absent for all its cold CME 
solution points. Finally, we consider T; within the points 
that are declared indeterminate after investigating both T< 

and Ti. 

So, in general the algorithm works as follows. We con- 
sider reuse vectors one at a time in lexicographically-increasing 

Figure ‘7: Illustration of the algorithm to find cache misses 
for a 2D loop nest. 

order. While considering each reuse vector, some of its CME 
solution points are declared definite misses, while others are 
indeterminate. Then, considering only the set of indeter- 
minate solution points, we move on to consider the CMEs 
from the lexicographically-next reuse vector for this refer- 
ence. Intuitively, the indeterminate points form a reduced 
iteration space that need further investigation. We continue 
investigating further reuse vectors until the number of in- 
determinate points is either sero, or is “sufficiently small” 
(as defined by a user threshold). At that point, we can stop 
the process, even if the reference has additional reuse vec- 
tors that we have not yet considered. Since a replacement 
miss point found along the current reuse vector in the algo- 
rithm is a guaranteed miss point, it is included in the global 
miss set Mx (Line 19 in Figure 6) immediately after it is 
found. In Figure 6, C maintains the set of indeterminate it- 
eration points and E is the tolerable error in miss count per 
reference. Section 4.3 will show that in practical loop nests, 
perfect accuracy can be obtained by considering a relatively 
small number of reuse vectors per reference. 

Figure 8 depicts the progress of the algorithm for the load 
reference of Z(j, ;) in a 256 x 256 matrix multiply loop nest 
(Figure 1). We have considered a 8KB direct-mapped cache 
with 32B line size and 8 data elements per cache line. Every 
iteration point is identified by the index vector (;, k, j). We 
consider three reuse vectors Ti, ~2, and r’j of z(j,;). Reuse 
vectors Ti and T; are self-spatial reuse vectors and T< is a 
self-temporal reuse vector. Ti and T: are the basic reuse 
vectors generated from SUIF, while T: is generated from 
our extension to SUIF. Figure 8 shows the contribution of 
every CME encountered towards the final miss count. Ev- 
ery replacement CME is denoted by ReplEqn followed by 
the names of the interfering references. Of the 2.1M in- 
determinate points after considering ~1, only 8192 remain 
indeterminate after ~2. Considering ~3, we can deduce that 
all 8192 of these are true cold misses. 

4:2 Set-Associative Caches 

The preceding miss-finding discussion built intuition by con- 
sidering a direct-mapped cache. Composing CME solutions 
into cache miss points is more complex in a set-associative 
cache. This is because a cache miss occurs in a k-way set- 
associative cache only when k distinct conflicts occur. 

Every solution to the CMEs can be summarized using 
a triple of the form (T, 1, n). (The set of all such triples is 
given by the set R’ in Figure 6.) The first component : of 
each triple corresponds to the iteration point where a ref- 
erence (the “victim”) potentially suffers a replacement miss 
along a reuse vector. The second component of the triple, 
;, denotes the iteration at which the potentially-conflicting 
reference (the “perpetrator”) occurs. The third element of 
the triple, IL, denotes how many “cache wraparounds” there 
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Reuse vector 
Ti: (0 0 1) r;: (0 l-7) r;: (0 10) 

Cold CMEs 2097152 8192 8192 
ReplEqnZZ 0 a 0 
ReplEqnZY 1835008 261120 0 
ReplEqnZX 401408 64064 0 c-C ** C2(2%) 
Repl. Misses 2236416 325184 0 

p&rite Misses 2236416 2561600 2569792 

Figure 8: Using the CME-based algorithm from Figure 4 to find cache misses for the load of Z(j, ;) in the matrix multiply loop 
nest (Figure 1). The diagram and the table shows the progress of the algorithm as reuse vectors are considered one by one, 
each time zeroing in on the previously indeterminate points. The table shows the solution count of the CMEs and the actual 
misses found at every stage of considering a reuse vector. Ci, Cz, and Cs in the diagram represent the cold CME solution 
points (from the row ‘Cold CMEs’ in the table) when we consider the reuse vectors Ti, T;, and T< respectively. Similarly, RI, 

R2 and RJ represent the replacement misses found (from the row ‘Repl. Misses’ in the table). The indeterminate points are 
identical to the cold CME solution points. The last row in the table shows the cumulative count of actual misses found so far 
after each reuse vector is investigated. 

are between the memory addresses of the two potentially- 
conflicting references. In this analysis, n will never equal 0 
since that is not a conflict but rather a reuse, and reuse will 
always be summarized in the reuse vectors. 

From this triple, we wish to derive distinct miss points. 
For a particular iteration point :, all solutions with the same 
value of n correspond to contention with the same memory 
line (since they have the same wraparound factor). Thus, to 
find distinct conflicts for an iteration z, we look for distinct 
values of n. Note that I, the cause of the miss, does not 

*1 
impact miss-finding, so we map the space of (t,~,n) triples 
down to a space, R”, of (z,n) pairs (Line 11 in Figure 6). 

The cardinality of the set R” corresponds to the total 
number of conflicts seen, but this is different from the num- 
ber of cache misses. The points in R” are misses at : along T’ 
if and only if there are at least le (the associativity) elements 
in R” with 7 as the first component. Hence, only these 2s 
are selected as replacement miss points and included in the 
set Mx (Lines 17-19 in Figure 6). The mapping from R” 

to Mx performs the following: For each ;, if there are at 
least k conflicts (for a k-way set-associative cache) then add 
a point to Mx, If there are less than k conflicts, do not add 
a point. Note that if there are greater than k conflicts, still 
only a single point is added to Mx. 

The equations generated here represent a set of linear 
equalities or inequalities. Methods to solve these kind of 
equations for most practical loops can be found in [5, 181. 
Taking the unions and intersections shown in Figure 6 takes 
polynomial time in the number of elements of the sets. In 
the next section, however, we have shown how different op- 
timizations can be analyzed without actually solving the 
equations. 

4.3 CME Accuracy 

Next, we show the accuracy of our system for finding the 
cache misses of loop nests using the reuse vectors generated 
by our current reuse analysis. Table 1 compares the actual 
misses (from Dinero111 cache simulation) of some example 
loop nests with the misses measured from CMEs. Actual 
runtime values of loop bounds, array sizes, and relative base 
addresses of arrays are used to count the cache misses using 
CMEs. We have considered an 8KB direct-mapped cache 
with 32B line size. The loop nests considered include mmdt 
(matrix multiply), gauss (Gaussian elimination), sor (suc- 
cessive over-relaxation), adi (AD1 kernel after loop fusion 

and interchange optimisations), tram (matrix transpose), 
alv (loop nest from alvinn benchmark), and tom (loop nest 
from tomcatv benchmark). For all the loop nests the prob- 
lem size considered is 256 and each array element size is 4 
bytes. The table shows that for most of these loop nests very 
few reuse vectors (average of 2 per reference) are needed to 
attain accuracy within 1%. Furthermore, the basic reuse 
vectors given by SUIF are sufficient in all but one case. The 
inaccuracies found for gauss and trans are due to the fact 
that the reuse vectors used are not yet sufficient to represent 
all the reuse directions present in the loop nest. As a result, 
CME method finds more cache miss points than are actually 
present. 

5 Using CMEs for Automated and Interactive Analysis 

CMEs form a mathematical underpinning for analyzing 
many different cache optimizations. To highlight their gen- 
erality, this section describes four distinct algorithm styles 
for cache optimizations using CMEs. These cover a range 
of automatic and semi-automatic techniques. Most impor- 
tantly, none of these techniques explicitly require us to solve 
the CMEs; instead, mathematical properties of CMEs di- 
rectly facilitate the optimizations. As shown in Figure 9, we 
broadly classify methods into the following categories: 

l Automated CME Analysis 

- Exploiting Special Cases 
- Using a Solution Counting Engine 

- Using Parametric Solutions 

l Interactive CME Analysis 

Space limits preclude detailed examples for each of the four 
usages. Instead, we focus on the first, and give brief sketches 
of example use for the rest. 

5.1 Automated CME Analysis 

5.1.1 Exploiting Special Cases 

The general strategy for an algorithm to exploit mathemat- 
ical special cases is to form the CMEs and study them to 
determine a set of well-defined conditions that eliminate or 
reduce their solution count, i.e. minimize cache misses. This 
analysis is then codified into an algorithm that automati- 
cally finds optimizing parameter values to reduce or elimi- 
nate CME solutions. 
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M&X. MU. Distribution of 
Loop #refs to #Data #Data cache misses #RVs used RVs used 
?JTn.+ U A ,-,-avc a* ilrrav RCCl?SSl?S Dinero111 I CME %Error #Refs. per ref. SUIF-RV 1 Ext-RV 

I 3 
I.C”” ‘TTs..--.,-. , --- ----J 

_---__-- ~~.~~ 

.w.‘“-16 1 7042336 ( 0.0 1 4 1 3 7 
i6 I2~1omwI in I 5 I 2 I 4 I 

Table 1: #Reuse vectors (RVs) used by our CME method to get the calculated miss count within 1% of the actual miss count 
(measured by DineroIII). SUIF-RV corresponds to reuse vectors extracted from SUIF analysis and Ext-RV corresponds to 
extra reuse vectors found from our extended reuse analysis. (In this table, max. stands for maximum and ref. stands for 
reference.) 

Generate CMEs 

!_ Use optimization 
algorithm that finds 
the parameters of 
mtercst 

( optimization algorithm 
formed by: 
- Generating CMEs 

Using CME properties 
(without solving) to 
find conditions that 
reduce the number of 
CME solutions ) 

t 
Using Solution 
Counting Engine 

and after optimizations 

2. Count CME solutions 
before and after 
optimizations 

/ Usiyoarr;etricj 

I. Generate CMEs 

2. Express the number of CM1 
solutions as a function of a 
parameter to be optimized 

3. Find the value of the 
parameter that minimizes 
the function 

- 
Interactive Methods 

1. Fmd time-consuming loop 
nests from preliminary 
program profile 

2. Generate CMEs for these loops 

3. Find the effects of optimlzations 
on the CMEs by: 

a) direct analysis of CMEs, OI 

b) counting CME solutions 
before and after optimization 

4. Find the optimizations that 
reduce the total number of 
solutions to CMEs 

Figure 9: Overview of the methods using CMEs for optimizations. 

Example: Padding In the first of the automated method- 
ologies we give an example of a padding algorithm that uses 
mathematical properties available through CMEs. Our al- 
gorithm finds appropriate intra-variable padding (increas- 
ing array dimension size) and inter-variable padding (repo- 
sitioning variable base addresses) that reduce both the self- 
interferences of a reference and its cross-interferences with 
other references. 

In the padding example, the parameters of interest are 
the column size and the base addresses of the arrays. Our 
target equations are the replacement CMEs. For our analy- 
sis, we consider the interference between two arbitrary ref- 
erences Rx and Ry. For the self-interference equation of a 
reference, Rx and Ry are identical. Let us consider that 
the references Rx and Ry access the arrays X and Y whose 
base addresses are Bx and By respectively. We assume 
that these conflicting arrays have the same column size C. 
Using Equation 1, the memory addresses of Rx and Ry at 
iteration point : can also be written as: Bx + C(f(l) + c) + 
(fo(z) + c’) and By + C(,f’(l) + d) + (f;(z) + d’) respectively, 

where f, fo, f’, J$ are linear functions of the loop indices and 
c, c’, d, d’ are constants. 

The replacement CMEs that correspond to the interfer- 
ences between two references that access the same array are 
of the following type (called Type 1 in Fig. 10): 

C(6f + c - d) - nC, = b - (Sf,, + c’ - d’) (6) 

where TZ # 0, b E [--(La - l),(L, - l)], 6f = f(q - f’(i), 

and Sfo = f~(z) - f,$(;). The range of the intervening points 
j’ is determined by the corresponding reuse vector. From 
straightforward number theory [l, 51, this linear Diophantine 
equation has no solution if the following two conditions are 
satisfied: 

1. gcd(C, Cs) > max lb - (6f0 + c’ - d’)l 

2. gcd(C, C,) < C,/ max 16f + c - dj) 

if (b - (6fo + c’ - d’)) = 0 

All the other replacement CMEs are of the following type 
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(say, Type 2): 
(Bx - By) + C(6f + c - d) - nc, = b - (6fo + c’ - d’) (7) 
Again from number theory, Equation 7 has no solution if 
the following conditions are satisfied: 

3. gcd(]Bx - By], C, C,) > max 15 - (6f0 + c’ - d’)] 

4. gcd(C,C,)>]Bx-By]if(b-((bfc+c’-d’))=O 

Our algorithm finds appropriate values of C and ]Bx - 
ByI that satisfy all four conditions. Since cache size C, 
is a power of two, the GCDs in all the conditions are also 
powers of two. We consider C = 2”ti and IBx - BY 1 = 2Ytz 
where tr , tz are nonzero odd positive integers. The following 
constraints follow from the four conditions: 

From Condition 1 : z > lg(max lb - (6fo + C’ - d’)]) 

From Condition 2 : z < lg(C,/(max ]6f + c - d])) 
From Condition 3 : Z, y > lg(max lb - (6fo + C’ - d’)]) 
From Condition 4 : z > y 

Once z is known, the compiler can easily choose any value 
of ti such that C is at least equal to the original column 
size. Similarly, once y is known, it can choose any value of 
t2 such that ]Bx - By] is at least equal to the size of the 
arrays lying between Bx and By. 

Based on these constraints, we have developed the algo- 
rithm sketched out as pseudo-code in Figure 10. The core 
of the algorithm finds the z and y values. For every pair 
of conflicting arrays X and Y we need to find y(XY), but 
we need only one z since all the array column sizes are as- 
sumed to be same. The algorithm iterates through each 
equation and updates the bounds of z and y’s according to 
the constraints. The max values are easily evaluated from 
the ranges of the intervening points I; these depend on the 
reuse vector. Finally, the minimum possible C and inter- 
array paddings are evaluated satisfying the constraints on z 
and y’s in Get-paddings. This algorithm guarantees a solu- 
tion if there exists e,y’s that satisfy all the conditions. In 
practice, however, most cases satisfy these conditions. 

As discussed in Section 4, our CME methods let us trade- 
off precision and compute time by choosing how many reuse 
vectors to consider. We have implemented the described al- 
gorithm considering only the nearest reuse vector for every 
reference.3 The algorithm is quite fast-quadratic on the 
number of references, which is a small number in all practi- 
cal loop nests. 

Table 2 shows the results of applying this padding algo- 
rithm to our benchmark suite. Of the six programs with 
non-zero replacement misses, our padding algorithm dra- 
matically reduces replacement misses in all but one, namely 
the trans loop nest. There exists no padding solution for 
our algorithm to reduce the replacement misses in the trans 
loop nest. We believe no other padding algorithm can find 
effective solutions for this loop nest. In fact, both the pre- 
cision and generality of the CME approach allow our algo- 
rithm to eliminate more conflict misses than the padding 
methods recently described by Rivera and Tseng [20]. For 
example, their methods cannot decrease any conflict misses 
for the mm& loop (Figure l), because they do not address 
inter-array padding for the Y(j,k) and Z(j,i) references that 
are not uniformly generated. Rivera and Tseng’s method 
also lacks sufficient generality to handle replacement misses 
between references of the form A(i,j) and B(i,j) as in alu 

3For even more precise results, one could increase the number of 
reuse vectors considered. 

- 

Algorithm Find_ColumnSizeimdBaseAddresses 
Input: CMEs of the loop nest 
Output: C, and Bx for every reference X 
1 
For each reference 

For each reuse vector 
For each replacement CME 

Lb = lg(max(b - (6fo + c’ - d’)l); 
Ub = lg(C,/ max ISf + c - dj); 

If (Type 1 equation) 
update lower-bound(z) with Lb 
update upperhound with Ub 

Else 
/* Say the arrays are X and Y *I 

uodate lower-bound(r) with Lb 
update lower_bound(y(XY)) with Lb 
add constraint (Z > y(XY)) 

Get-padding from above ranges and constraints 
I 

Figure 10: Algorithm for padding arrays and setting base 
addresses to reduce cache interferences. 

(Figure 11); this is because it does not attempt intra-array 
padding to reduce cross-interferences. In contrast, our algo- 
rithm decreased conflict misses in these loops by 50.8% and 
100% respectively. 

Figure 12 shows the sensitivity of cache misses in the 
alv loop to different choices of row sizes and base addresses. 
Such an irregular pattern makes it difficult to find effective 
padding choices through a heuristic, iterative framework. 
Manipulating CMEs allows our algorithm to directly and 
precisely identify the padding values that will eliminate all 
replacement misses in this case. The generality of the CME 
framework also allows our algorithm to simultaneously con- 
sider (and eliminate) both self- and cross-interferences. 

Thus, we have shown how effective compiler optimiza- 
tions can be derived directly from the solution properties of 
linear Diophantine equations. Our padding algorithm only 
needs the CMEs, not their explicit solutions. 

Example: Selecting Tile Size to Eliminate both Self and 
Cross Interferences In this example we use CMEs to find 
effective tile sizes given a tiled loop nest. Cache conflicts 
are highly sensitive to the problem size and the tile size 1121, 
motivating researchers to find tile sizes based on program 
and cache parameters [‘7, 121. Our approach here is novel in 
that we integrate tile size selection and padding in order to 
reduce both self and cross interferences. We briefly describe 
the process for a tiled matrix multiply loop nest, determin- 
ing a tile size of Tk by Tj. Say we want to reduce self- 
interferences of Y(j, k) and also its cross-interferences with 
Z(j, i). Hence, the equations we analyze are Y(j, k)‘s self- 
interference equation and also its cross-interference equation 
with Z(j,;). For the tiled code they are: 

C6k-nC,=b-6j, where 6k<Tk, 6j<Tj (8) 
(By - Bz) + C(k - i’) - nC, = b - 6j, 

where kE[O,N-11, ?E[O,N-l], 6j<Bj (9) 

The forms of these equations are similar to those used for 
padding. The variables to be optimized here are Tk, Tj, By, 
and Bz. There are a lot of ways one can proceed here. We 
have developed an algorithm where we first find Tk, Tj from 
Equation 8, and then optimize By, Bz from Equation 9 by 
an algorithm similar to Figure 10. The tile size selection 
algorithm conceptually finds all combinations of (Tk, Tj) 
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#Data cache misses ?&Reduction in 
Loop #Data Original Optimized cache misses 
Nest accesses Replacement 1 Total Replacement ] Total Replacement Total 
~TMIlt 67108864 7017760 1 7042336 3454304 1 3478880 50.8 50.6 
a I48 55.3 54.9 
_____-.. 

puss 16744320 1974689 1998466 883473 901c 
SOT 387096 0 8192 0 81 
adi 587520 367104 391680 0 245 
trans 262144 57344 73456 57344 734 
alv 183150 4880 14090 

“i g2*i 
I I I 

tom 1 387096 ( 225552 ) 258064 1 6 ) 32512 1 100.0 1 87.4 

Table 2: Impact of our padding algorithm: Data cache misses in the original and optimized code. Both replacement miss and 
total miss counts are shown. 

DO iu = 1, 1221 
DO hu = 1, 30 

ih-weights(iu, hu) += ih-w-ch-sumarray(iu, hu) 
* ihlrc ; 

ih-w_chsumarray(iu, hu) *= ALPHA ; 

Figure 11: Loop nest from &inn benchmark. 

SE mod Cs Row size 

Figure 12: Surface plot of #cache misses for different 
row sizes and base address positioning of the two ar- 
rays accessed in the olv loop of Figure 11. (6B is the 
difference in base addresses of the two arrays.) 

that ensure no solution to Equation 8 for a direct-mapped 
cache. For a k-way set-associative cache, it finds (Tk, 7’j)‘s 
that allow at most (k-l) solutions to Equation 6. As our 
algorithm combines padding along with selecting tile sizes, it 
would be interesting to compare this algorithm with the tile 
size selection algorithm presented by Coleman and McKinley 
PI. 

5.1.2 Using Solution Counting Engines 

As with the previous subsection, the methodology described 
here does not require generating CME solutions. Rather, 
the example presented here relies on being able to count the 
number of CME solutions, which is potentially much faster. 
Counting cache misses for a set of CMEs is equivalent to 
counting the number of lattice points in some projection of 
a union of polytopes. This problem has received attention 
recently in the context of parallel compilers, and several re- 
searchers have presented solutions for this that work reason- 
ably well in practice [6, 191. The method presented in this 

section uses these lattice point counting engines to directly 
compute the number of solutions of CMEs and uses this to 
drive optimizations. The general strategy is sketched out in 
Figure 9. We illustrate its use here in determining when to 
apply loop fusion. 

Example: loop fusion Consider the example loop nest 
shown in Figure 13(a). The example is similar to a loop nest 
found in the AD1 kernel used by McKinley and Temam [16]. 
We consider a 4-byte array element size and an 8KB direct- 
mapped cache with 32-byte lines. The base addresses of the 
arrays A, B,X are 0210000110,0210004130,0010008150 re- 
spectively. Figure 13(b) shows the transformed code after 
loop fusion. We use our automated CME generator to gen- 
erate the CMEs before and after applying loop fusion to this 
loop nest. Then, we count the cache misses in both cases by 
counting the number of solutions to the CMEs using a solu- 
tion counting engine. Before the transformation, there were 
roughly 21K cache misses. After loop fusion, the CMEs in- 
dicate a drop to roughly 15K cache misses. Thus, CMEs can 
be effectively used with solution point counters to determine 
when to apply particular optimizations like loop fusion. The 
precision of CMEs allows us to consider a particular cache 
organization when making this decision. 

5.1.3 Using Parametric Solutions 

In this third category of automated CME optimization, compiler- 
writers determine the functional relationship between the 
number of CME solutions (i.e., cache misses) and a set of 
input parameters related to the desired optimization. There- 
after, they use function optimization techniques to find the 
parameter values that optimizes the CME solution function. 
This technique again uses a lattice point counting engine, ex- 
cept that instead of finding a numeric value for the number 
of misses, it determines the number of misses as a function 
of some parameter. (Such parameterized optimizations are 
possible with lattice point counting techniques presented in 
the literature [6, 191.) 

For example, we have used this approach as an alterna- 
tive technique for implementing the padding optimization. 
In this case, the value the compiler controls (such as the 
inter-variable spacing) appears as a parameter in the CMEs. 
To determine the number of solutions as a function of this 
parameter, we generate Ehrhart Pseudo-Polynomials (EPs) 
[6] for the above CMEs. Finally, one can analyze the specific 
EPs generated to find the parameter value that minimizes 
the EPs. 

For a specific optimization, this methodology is com- 
pletely automatic. When optimizations can be expressed 

237 



(a) Input code (from AD1 Kernel) (b) Transformed code after loop fusion 

DO i = 2, 64 
DO k = 1, 64 

DO i= 2, 64 
DO k = 1, 64 

X(i, k) -= X(i-I, k) * A(i, k) / B(i-1, k) 
DO i = 2, 64 

DOk= 1,64 

X(i, k) -= X(i-1, k) * A(i, k) / B(i-1, k) 
B(i, k) -= A(i, k) * A(i, k) / B(i-1, k) 

B(i, k) -= A(i, k) * A(i, k) / B(i-1, k) 

Figure 13: AD1 loop used for evaluating loop fusion by CME solution counting. 

parametrically, determining the optimal parameter value with- 
out enumerating all possible values can be computationally 
advantageous compared to brute-force solution point count- 
ing. While solution counting provides a precise count, it re- 
quires an iterative search-and-evaluate process through pas- 
sible parameter values. Parametric approaches, when they 
apply, can zero in on the functionally-optimal choice. 

5.2 Interactive CME Analysis 

Automated optimization techniques are preferable, but of- 
ten programmers supplement them with hand-tuned mem- 
ory optimisations as well. To the astute user, CMEs may 
also be useful for interactively exploring the possible impact 
of different cache optimieations. As summarized in Figure 
9, interactive methods share characteristics with the auto- 
mated methodologies, but interactive analysis allows more 
complex decision-making that is hard to automate. CME 
manipulations can often be helpful for reasoning about the 
impact of cache optimizations which would otherwise be 
possible only through elaborate cache simulations [13, 141. 
In addition to the direct benefit of helping programmers in 
hand-tuning code, interactive approaches are also the first 
step in discovering optimieations, automating them, and in- 
cluding them in compilers. We have used interactive analysis 
extensively to develop our optimization algorithms, and also 
to study the combined effects of various cache optimizations 
on loop nests taken from the SPECfp benchmarks. 

5.3 Computational Requirements 

Here we discuss the computational requirements of the dif- 
ferent usage scenarios. The first step in generating CMEs 
is calculating reuse vectors. If the number of array ref- 
erences in a loop nest of depth n is n,~ and d,,, is the 
maximum number of dimensions of any of those arrays, the 
worst case complexity of calculating all the reuse vectors is 
O(& x (maz(n, dm,z))3). 

Once the reuse vectors are calculated, the time taken to 
generate all the CM equations of the loop nest is given by 
O(n x dmu x neqVL), where neqn = #Equations = nyv x nrefr 
n7.?, = Total #reuse vectors of all the references. 

We have implemented our CME generator in the SUIF 
compiler system [22] and have tested our system on SPECfp 
and other benchmarks. In these experiences, we have found 
the CME generator to be quite fast. In fact, for the SPECfp 
benchmarks, CME generation always executes in less than 
10s per program on an SGI/INDY with a 133MHz MIPS 
R4600 CPU. 

Once the CMEs are generated, further computational 
requirements depend on the methodology used. The “special 
case” approach of Section 5.1.1 simply computes GCDs, and 
is a linear algorithm in the number of loop indices. 

Section 5.1.2 discussed methods that require counting 
the number of CME solutions. CMEs and their related 
inequalities are similar in form to other equation systems 
previously discussed for dependence analysis in parallelizing 
compilers. Methods for counting solutions to such systems 
of equations are, worst-case, exponential-time algorithms. 
For practical loop nests, however, solution counting meth- 
ods have been given in [6, 191. 

When using parametric methods to manipulate CMEs, 
as in Section 5.1.3, the computation time includes first gen- 
erating a parametric function, and then second, determin- 
ing the parameter value that optimizes the function. As 
with solution counting, the former task is exponential in the 
worst-case, but remains computationally tractable for prac- 
tical loop nests [6]. The latter task, function optimization, 
can be simply passed to a mathematical software package. 

Interactive methods clearly depend on how the user ma- 
nipulates the equations, but are likely to include one or more 
of the steps described above. 

6 Related Work 

Extensive research has focussed on improving the cache per- 
formance of numerical programs. Most of the previous work 
explores the techniques to reduce capacity misses in scientific 
loops [15, 23, 241. For example, most of these explore the 
popular technique of loop tiling to reduce capacity misses. 
There are also several case studies that report the severe 
adverse effects of cache interference or conflicts on cache 
performance [12, 16, 211. Due to the difficulty in predicting 
and estimating cache conflicts, however, there are relatively 
few studies on analyzing and reducing interference misses. 

Methods for predicting and estimating cache misses in 
the presence of cache interferences have been considered by 
Ferrante et al. [8] and Temam et al. [21]. Due to several . 
approximations m their cost model, these methods are not 
as precise as ours. More importantly, these methods only 
estimate the number of cache misses, while our approaches 
can give insights as to their cause. 

Some of the optimizations described in this paper have 
been addressed in isolation in previous work. Algorithms to 
select efficient padding amounts have been proposed [3, 4, 
201. There are also some papers on choosing problem-size- 
dependent tile sizes that eliminate self-interference and ca- 
pacity misses in a tiled loop nest [7, 121. We have shown how 
our general framework of CMEs can also be used for guiding 
these optimizations, sometimes more precisely. Moreover, 
CMEs provide a mechanism for analyzing several of these 
optimizations applied at once. 

Finally, there has been some work on automatic analy- 
sis and counting the number of solutions to a set of linear 
equalities and inequalities [6, 18, 191. This complementary 
work would help to automate the analysis of the CMEs. 
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7 Future Work 

In order to make our analysis framework more general, it 
needs to handle the effects of multiple loop nests in the pro- 
gram. This needs efficient methods to calculate reuse vectors 
across loop nests. Fortunately, most inter-nest misses occur 
between adjacent nests [16] and so it may be enough to find 
reuse vectors only between adjacent nests for most practi- 
cal purposes. In order to automate our parametric analy- 
sis for cache optimizations, we hope to extend the methods 
presented by Pugh [18] and Clauss [6]. Finally, we would 
like to use CMEs for developing an automatic algorithmic 
framework for diagnosing poor cache behavior and selecting 
appropriate transformations. 

8 Conclusions 

The widening processor-memory performance gap makes a 
program’s memory referencing behavior increasingly impor- 
tant. Compiler optimizations for cache accesses are fre- 
quently effective, but often a lack of precision or generality 
can cause them to provide disappointing performance for 
some programs or cache organizations. Our work has devel- 
oped Cache Miss Equations, a detailed, analytic, compile- 
time framework for representing the caching behavior of 
loop-oriented programs. CMEs unify the effects of both loop 
structure and data layout, and thus can be used as the foun- 
dation for a range of control and data optimizations. CMEs 
are a general framework with the mathematical precision 
needed to accurately predict cache behavior at compile-time. 

This paper demonstrates how to generate a program’s 
CMEs for caches of arbitrary associativity and how to de- 
termine cache misses from the equations formed. We have 
implemented this method within the SUIF compiler frame- 
work. We also describe a variety of automatic and interac- 
tive program transformations based on different CME us- 
ages. These examples serve two purposes. First, in some 
cases, the algorithms are improvements on current compiler 
optimizations for padding and blocking. Second, these al- 
gorithms serve as examples of how CMEs facilitate precise 
optimization techniques. Furthermore, their generality pro- 
vides a framework for reasoning about the combined effects 
of optimizations applied in concert. In summary, CMEs rep- 
resent a general and precise foundation that will serve as an 
enabling technology for effective cache optimizations in the 
future. 
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