
Precise Miss Analysis for Program Transformations
with Caches of Arbitrary Associativity

Somnath Ghosh Margaret Martonosi Sharad Malik

Department of Electrical Engineering
Princeton University

Princeton, NJ 08544-5263
{sghosh,martonosi,sharad}@ee.princeton.edu

Abstract

Analyzing and optimizing program memory performance is
a pressing problem in high-performance computer architec-
tures. Currently, software solutions addressing the processor-
memory performance gap include compiler- or programmer-
applied optimizations like data structure padding, matrix
blocking, and other program transformations. Compiler op-
timization can be effective, but the lack of precise analysis
and optimization frameworks makes it impossible to confi-
dently make optimal, rather than heuristic-based, program
transformations. Imprecision is most problematic in situa-
tions where hard-to-predict cache conflicts foil heuristic ap-
proaches. Furthermore, the lack of a general framework for
compiler memory performance analysis makes it impossi-
ble to understand the combined effects of several program
transformations.

The Cache Miss Equation (CME) framework discussed
in this paper addresses these issues. We express memory ref-
erence and cache conflict behavior in terms of sets of equa-
tions. The mathematical precision of CMEs allows us to
find true optimal solutions for transformations like block-
ing or padding. The generality of CMEs also allows us to
reason about interactions between transformations applied
in concert. Unlike our prior work, this framework applies
to caches of arbitrary associativity. This paper also demon-
strates the utility of CMEs by presenting precise algorithms
for intra-variable padding, inter-variable padding, and se-
lecting tile sizes. Our experiences with CMEs implemented
in the SUIF system show that they are a unifying mathemat-
ical framework offering the generality and precision impera-
tive for compiler optimizations on current high-performance
architectures.

1 Introduction

As the disparity between processor cycle times and main
memory access times grows, data cache performance be-
comes increasingly important. Although caches generally
work well, some programs have access patterns that fail to
use the cache effectively. Ideally, automatic compiler trans-
formations should improve the memory behavior of such

Permission to make dIgital or hard copies of all or part of this work for
personal or classroom use IS granted without fee provided that
copies are not made or distnbuted for profit or commercial advsn-
tage and that copws bear this notice and the full citation on the first page.
To copy otherwse, to republish. to post on servers or to
redwtribute to lists, requires pnor specific permission and/or a fee.
ASPLOS VIII 10198 CA, USA
0 1998 ACM l-58113.107-0/99/0010...$5.00

code, thereby reducing the programmer’s need to hand-tune.
While compiler transformations are often effective, the anal-
ysis and optimization techniques they employ are sometimes
insufficient for memory optimizations on particular programs
or machines. These shortcomings are often due to a lack
of precision or generality. In response, this paper describes
Cache Miss Equations (CMEs), a precise mathematical frame-
work for guiding a range of compiler optimizations.

There are two main approaches to automatically im-
proving the data locality of loop-oriented programs--loop
neat restructuring and data layout optimizationa. Restruc-
turing loop optimizations (e.g., permutation, tiling, and fu-
sion) are mechanisms widely used to reorder the access pat-
tern in a loop nest for better temporal and spatial local-
ity [g, 12, 15, 23, 241. The key issues here are determin-
ing appropriate analyses and policies for determining when
to apply these optimizations. In the past, such analyses
have primarily considered capacity misses, but loops can
also suffer heavily from conflict misses, particularly in caches
with low associativity [ll, 12, 16, 211. Moreover, conflict
misses are highly sensitive to slight variations in problem
size and base addresses [3, 121. As a result, previous com-
piler techniques, using simpler cost models to guide loop
transformations, have disappointing results when there are
unaccounted-for conflict misses. Researchers have also con-
sidered transformations on the underlying data layout. They
have developed specialized algorithms for selecting tile sizes
[i’, 121 and for specific data layout optimizations [3, 201 to
reduce conflict misses.

While compiler transformations have been effective in
optimizing some programs, they are frequently based on lim-
ited or heuristic analyses whose imprecision leads to poor re-
sults for some programs and cache organizations. Further-
more, these transformations are often based on individual
isolated insights, with little common base, perhaps a conse-
quence of the lack of a unified analytical model for program
cache behavior. It is therefore difficult to reason about the
combined effect of several transformations applied to the
same code.

To address these problems, we have introduced Cache
Miss Equations (CMEs), a mathematical framework that
precisely represents the cache misses of a loop nest. CMEs
are unique in unifying both the loop structure and the data
layout within a simple, equations-based analytical model
representing the cache misses. We can count cache misses in
a code segment by analyzing the number of solutions present
for a system of CMEs, where each solution corresponds to
a potential cache miss. CMEs are a system of linear Dio-
phantine equations. The precision of this framework allows

228

us to find optimal solutions to padding or blocking opti-
mizations by employing mathematical analysis to determine
when the equations will have zero solutions. The generality
of the framework allows us to concurrently reason about the
impact of multiple optimizations on the solution count; this
gives us a mechanism for analyzing several optimizations
applied at once. We have implemented our algorithm to au-
tomatically generate CMEs within SUIF [22]. We have also
tested our system by automatically generating the equations
for many numerical loop nests from the SPECfp benchmarks
and subsequently using them for optimizations.

This work makes several significant contributions. Our
prior work described CMEs and some initial manipulations
thereof [9], but that work was applicable only to direct-
mapped caches. The new CME framework presented in this
paper applies to caches of arbitrary associativity. Further-
more, our prior work employed a solution method based on
difficult aggregate set operations on the complete set of a
reference’s reuse vectors. The work we describe in this pa-
per ‘<re-invents” CMEs in a way that is both more broadly
useful and more conveniently manipulated. We have imple-
mented an entirely new algorithm for finding cache misses
from the CMEs; this algorithm enables one to trade off pre-
cision versus analysis complexity for practical loop nests.
The final contribution of this paper is to give new compiler
optimization algorithms that are concrete examples of the
sophisticated code optimization methodologies that CMEs
enable. While space limits preclude a comprehensive demon-
stration of CME’s broad utility, these examples and exper-
imental data demonstrate how the precision and generality
of our framework make CME-based optimizations more ef-
fective at reducing cache misses than other non-CME-based
optimizations previously described by the compiler commu-
nity.

The rest of this paper is organized as follows. Section 2
provides the underlying models and background information
along with an overview of CMEs. Section 3 describes the
algorithm to generate the CMEs. Since solutions to each
CME represent potential cache misses, Section 4 describes
how we can compose the effects of multiple CMEs to find
the loop’s actual cache misses. In addition, Section 4 gives
experimental results on the accuracy of this method. Sec-
tion 5 includes examples of using CMEs on a range of code
optimizations. Finally, Sections 6, 7, and 8 present related
work, future work, and conclusions respectively.

2 CMEs: Background and Overview

A system of CMEs couches a loop’s reference stream and
cache conflict patterns in a mathematical framework that
can be analytically manipulated. This section describes the
abstractions and terminology we use to facilitate this.

2.1 Program Model

Our model applies to references in which the array subscript
expressions and the bounds of the loop index are affine com-
binations of the enclosing loop indices, a common model
for research in compiler memory analysis. All loops are as-
sumed to be normalized such that the step value is 1 [2].
We consider only perfectly nested loops and some imper-
fectly nested loops if they have only a single basic block in
between the loops of a nest. We also assume that loops
contain no conditional expressions. Extending this work to
handle conditionals, by focusing on the frequently-taken pro-
gram paths is part of our future research. Our previous work

evaluated these restrictions for the SPECfp benchmarks and
found that the majority of loops satisfied them [9]. In this
paper, we consider each loop nest separately; inter-nest anal-
ysis is part of our ongoing research. For the sake of unifor-
mity, all arrays discussed here are assumed to be arranged
in column-major order as in Fortran, but the techniques do
not depend on a specific layout order. We also assume that
all the load/store references inside a nest correspond to only
the array references. Scalars can be considered as a special
case of 1-D arrays.

2.2 Compilation Model

CMEs are linear Diophantine equations in constrained solu-
tion spaces. While solving these is difficult, we note that it is
unnecessary for our approach. Mathematical techniques for
manipulating Diophantine equations allow us to relatively
easily compute and/or reduce the number of possible solu-
tions without solving them.

In addition to program restrictions, it is important to
clarify when CMEs are generated and used. CMEs are gen-
erated statically at compile-time, but may give data posi-
tioning hints to the linker. Since CMEs are analyzing pos-
sible cache conflicts, they need some information about the
relative positioning of different data structures, but they do
not need the absolute base address of any variable. Some
of the optimizations we describe could be implemented by
analyzing CMEs where relative variable spacings are a pa-
rameter, and then passing the linker information concerning
what numeric constraints on their spacing will lead to the
best performance.

In general, any variable whose value is dependent on run-
time information (e.g. loop bounds) or whose optimizing
value needs to be determined for some cache optimization is
kept as a parameter in the CMEs. Compiler optimizations
will then try to use these CMEs based on available informa-
tion. However, in order to find the exact number of cache
misses using CMEs for a precise evaluation, we will need to
know the values of all such parameters.

2.3 Architecture Model

The basic architecture we consider here is a uniprocessor
model with a memory hierarchy. We focus on analyzing a
single level of the data cache hierarchy. (Analyzing multiple
levels simultaneously is not precluded, but it would com-
plicate the equations.) The associativity of the cache is a
parameter in our models, and CME methods apply to caches
of any associativity from direct-mapped to fully-associative.
We assume a least-recently-used (LRU) replacement policy.
Writes and reads are modelled identically, so the model is of
a write-allocate cache with fetch-on-write.

2.4 Terminology

Our work with CMEs draws on the substantial body of re-
search in which iteration spaces and reuse vectors are used
to analyze memory reference behavior for dependence analy-
sis [18], locality optimizations [23], or prefetching algorithms
[17]. We build on these approaches and adopt more precise
mechanisms for using them.

Iteration Space: Every iteration of a loop nest is viewed
as a single entity termed an iteration point in the set of all
iteration points known as the iteration space. Formally, we
represent a loop nest of depth n as a finite convex polyhedron

229

DOi=l,N
DOk=l,N

is an 8KB a-way set-associative cache with 128 cache sets
and 4 data elements per cache line.

DOj-1,N
Z(j, i) +- X(k, i) * Y(j, k)

Figure 1: Matrix multiply loop nest.

i

Figure 2: Iteration space of the matrix multiply loop
nest. The iteration points are shown by the hollow dots.
T< = (0, 1,O) and T; = (O,O, 1) are two reuse vectors of
Z(j, ;) shown at the iteration point c’= (1,2,3). Ti is a
self-temporal reuse vector and T; is a self-spatial reuse
vector.

of the n-dimensional iteration space Z”, bounded by the
loop bounds [6, 231. Each iteration in the loop corresponds
to a node in the polyhedron and is called an iteration point.
Every iteration point is identified by its index vector ; =
(il, in,. . . , in), where i[is the loop index of the lth loop in
the nest with the outermost loop represented by the first
dimension. Figure 2 shows the iteration space of the matrix-
multiply loop nest in Figure 1. c’is an iteration point and
corresponds to the iteration i = 1, lc = 2, and j = 3. In this
representation, if iteration $2 executes after iteration $1 we
write pi + $1 and say that $2 is lexicographically greater
than $1. For example, in Figure 2, c’+ 3.

Memory terminology: We refer to a static read or
write in the program as a reference, while a particular exe-
cution of that read or write at runtime is a memory access.
A memory line refers to a cache-line-sized block in memory,
while a cache line refers to the actual cache block a memory
line maps to.

Throughout this paper, we denote the cache size as C,,
associativity of the cache as 12, line size as L,, and the num-
ber of cache sets as N,. As each cache set consists of k cache
lines, we can write C, = N, x k x L,. With all elements in
units of data element size, the cache set accessed by a ref-
erence Ra at the iteration point 7;s given by the following
expression:

MemR,(;i) = Memory-Address-of-R*(z)

Memory-LineRA = [MemR,(l)/&]

Cache-SetR,(l) = [MemR,(~)/L,] mod N, (1)

where MemR,(l), the memory address accessed by RR at
l, is an affine function of the loop indices and can be easily
computed from the subscript expressions of Rd.

For example, the cache set of the reference Z(j, ;) in the
matrix multiply loop nest of Figure 1 is given by (with all
numbers in units of data element size):

[(4192 + 32; + j - 1)/4] mod 128

where the base address of the array Z is 4192 and the num-
ber of elements per column of Z is 32. The cache considered

Reuse Vector: Reuse vectors provide a mechanism for
summarizing repeated memory access patterns in loop-oriented
code [23]. If a reference accesses the same memory line in
iterations ~~ and 6, where & + ;I, we say that there is reuse
in direction r’ = & - ll and r’is called a reuse vector. For ex-
ample, the reference Z(j, i) in Figure 1 can access the same
memory line at the iteration points (i, Ic, j) and (i, le, j + 1)
and hence one of its reuse vectors is (0, 0,l) as shown in
Figure 2.

If the reference is reusing a previously accessed memory
line we need to know when it was last accessed and the
reference that accessed it. Once we have the information
about the reuse we can check if any intervening memory
access evicts the memory line from the cache before it can
be reused; this would result in a cache miss. If a reuse
results in a cache hit we say that the reuse is realized and
the reference that enjoys the cache hit has l0cality.l The
central idea behind the CMEs is to find the loop instances
at which reuse does not result in cache hits.

We have extended reuse analysis as presented by Wolf
and Lam [23] and modified SUIF to generate, when needed,
additional reuse vectors for more accurate analysis. These
additional reuse vectors represent reuse directions that are
not provided by the basic reuse vectors generated by SUIF.
For example, in Figure 2, considering a cache line size of
2 data elements, there is a reuse of Z(j,;) in the direction
(0, 1, -1) which is not generated by SUIF. The approximate
model used by SUIF to quantify reuse needs only the basis
reuse vectors, while our precise analysis needs to know every
reuse direction. As we show in Section 4, however, the basic
SUIF reuse vectors are almost always sufficient for counting
cache miss points with no error.

Miss Along a Reuse Vector: Consider a miss of a
reference R at an iteration point i. We define the miss to
be along a reuse vector T’of R, if that miss would occur
if r’ were the only reuse vector present for R. Each CME
generated in our algorithm is for a particular reuse vector T’
of a reference R. In other words, that CME represents all
the misses of R along the reuse vector T: Section 4 shows
how all the reuse vectors interact to decide the cache misses
for a reference.

3 Generating the Cache Miss Equations

Our approach generates two types of CMEs: cold miss equa-
tions (or cold CMEs) and replacement miss equations (or
replacement CMEs). Solutions to the cold miss equations
represent potential cold or compulsory misses-misses that
occur on the first reference to a memory line. Solutions to
the replacement miss equations represent all other misses
including both capacity and conflict misses.

Figure 3 summarizes the algorithm to generate all CMEs
of a loop nest. The two major steps: generating a cold miss
equation and generating a replacement miss equation, are
described in the next two subsections.

1 We use wude and locality as defined in Wolf and Lam [23]. Reuse
is considered to be an intrinsic property of the references that oc-
curs whenever a reference accesses a memory line that was already
accessed before and locality is used to indicate that the reuse has re-
sulted in a cache hit. McKinley and Temam [16], however, follows a
different interpretation where the meanings of reuse and locality are
interchanged with respect to our interpretation.

230

Algorithm Generate
Generate the CMEs for a loop nest
Input:

Information about the loop nest, array references in
the nest, and the sequence in which those references
appear in the generated code.

Output: A set of CMEs for each reference.
Algorithm:

Generate the reuse vectors
For each reference in the loop nest

For each reuse vector of this reference
1. Generate a cold miss equation

(described in Section 3.1).
2. For each reference in the loop nest

Generate a replacement miss equation
(described in Section 3.2).

Figure 3: Algorithm to generate all the CMEs.

3.1 Forming Cold Miss Equations

Cold CMEs mathematically summarize the situations when
a memory line is brought into the cache for the first time.
Each loop nest is treated in isolation, so we assume none
of the data accessed in a loop nest is already present in
the cache before it starts execution. The simplest type of
cold CME is already fairly familiar. Namely, a relationship
like (; mod 4) = 0 summarizes that, in a sequence of unit-
stride accesses in which four data elements fit on a cache
line, every fourth access will result in a cold miss. Cold
CMEs become more complicated depending on loop nesting
depths, strides, access patterns or array alignments, but the
basic goal remains the same.

For each reference, we form cold CMEs that capture all
the cold misses along each reuse vector. We use reuse vectors
to help us determine when a cold access occurs; cold memory
accesses are encountered at the iteration points that contain
(1) either the first access along the direction of the vector or
(2) accesses that have just crossed a memory line boundary
along the direction of the vector. As a result, the cold misses
are dependent on the reuse vectors, iteration space, and the
line size. Since cold misses do not change with cache asso-
ciativity, the methods to generate the cold CMEs remain as
described in [9].

3.2 Forming Replacement Miss Equations

3.2.1 Intuition and Overview

Replacement CMEs summarize conflict and capacity misses
in which the currently accessed memory line was previously
resident but has been evicted from the cache. The intuition
behind these equations is fairly straightforward, if first con-
sidered in a direct-mapped cache. In a direct-mapped cache,
a miss occurs if, between consecutive accesses to a particu-
lar memory line, another access occurs to a distinct memory
line that maps to the same cache line.

For example, consider the tiny reference stream: Ra-
RB-RR. A conflict clearly occurs in a direct-mapped cache
if Cache-Line-of -Ra = Cache-Line-of -RB. This happens
if:

Memory-Address-of -RA = Memory-Address-of RB

+n x Cache-Size + Line-Size-Range (2)

That is, a conflict occurs, roughly speaking, between RA and
Rg whenever the memory addresses accessed by them differ
by multiples of the cache size. In order to be precise, we need

ache-size

Cache

Memory

Figure 4: An example of two memory addresses that map
to the same cache line. The addresses are marked by the
references that access them, namely RA and RB.

two further details. First, n cannot be zero, because in that
case the memory addresses reside on the same memory line.
Second, the Line-Size-Range is included in the equation to
capture the situations when the memory addresses do not
differ by exactly a multiple of the cache size, but they map
to the same cache line. (See Figure 4.) Line-Size-Range is
a range whose size is set to capture the offset effects based
on where the memory addresses sit in their respective mem-
ory lines. Since memory addressing is an affine function,
Equation 2 is a linear Diophantine equation.

For a Ic-way set-associative cache, a miss occurs if be-
tween consecutive accesses to a particular memory line, at
least k other accesses occur to distinct memory lines that
map to the same cache set. Each of these conflicts satisfy
an equation similar to Equation 2. Intuitively, a reuse vector
provides a closed form representation of a particular refer-
ence stream over the entire iteration space for a particular
reference. We utilize this representation to form equations
characterizing all the conflicts along that reference stream.
The formal method to form these equations is described be-
low.

3.2.2 Formal method

Every replacement CME represents a contention between
two references for the k cache lines in a cache set. Also, like
cold CMEs, each replacement CME is formed by considering
a single reuse vector at a time.

Say we want to find the replacement CMEs for the ref-
erence RA along the reuse vector r’= (~1, ~2, , T,,). These
will fall into two categories. Self-interference equations sum-
marize inter-iteration interactions of the same reference.2
Cross-interference equations summarize the interactions with
other references in the loop. Here we show how to form
the replacement CME representing the interferences with
the reference RB. For self-interference equation, references
RA and RB are identical. If the current iteration point is
: = (ii, iz, . . ,i,,) and the reuse vector is ?, then the last
iteration point where RA accessed the same memory line is
p’ = :- 6 Interferences between RA and Rg can occur at
all iteration points lying between @and l. Depending on the
relative access order of RA and RB, either p’ or : will also
be included in the set. (Our implementation extracts access
order information automatically from the code generation
phase.) An example of these potentially-interfering points
is shown in Figure 5.

‘Note the contrast to other research that may use self-interference
more broadly to refer to any cache interferences of a data structure
with itself.

231

i

Figure 5: An example of potentially-interfering points in a
3D loop nest. The current iteration point is : = (1,2,4),
the reuse vector is T’ = (0, l,O), and p’ = (l,l, 4). The
potentially-interfering points are shown by the filled dots.

Cache interference occurs when the cache set accessed by
Ra in iteration 2 is the same as any of the cache sets accessed
by Re at every potentially-interfering iteration j’ between
iteration p’ and iteration z. Equating the appropriate cache
sets accessed gives the condition for a cache set contention
along reuse vector T’:

cUCh&tR,(i) = cache-S&&j (3)

Substituting in the expressions from Equation 1, we can
simplify the resulting equation to the linear Diophantine
equation shown in Equation 4.

h’femR,(l) = hfemR,(I) + nC,/k + b (4)

where C, is the cache size and n is any non-zero integer.
The variable b can take on values in the range -L,n < b 5

La - 1 - Lofj where L,,J = Memn,(;) mod L,. Thus, L,8
shows the offset of the reference Rg in its cache line, and b
bounds the search for an interference within that cache line.
Since the loop indices are bounded, the equality holds for a
bounded region.

Every solution of Equation 4 is a vector of the form ++
(i,j, n) where 7 is the iteration where Ra might suffer a
miss. ; is the iteration, before RA’S access in iteration z,
where Rg accesses the same cache set. The memory lines
of RA and RB involved in this cache set contention are sep-
arated by n cache sizes. So, if n is 0 the memory lines are
identical and there is no conflict at all. That is why we dis-
allow all solutions with n = 0. In a k-way set associative
cache, there are k cache lines in every cache set, so k distinct
contentions are needed before a cache miss will occur along
the reuse vector f.

3.2.3 Example

For the matrix multiply example shown in Figure 1 with
N = 32, consider generating replacement CMEs for Z(j,i)
along the spatial reuse vector r’ = (O,O, 1). If : = (i, k,j)
then p’ = ? - T’ = (i, k, j - 1). For an 8KB a-way set-
associative cache with 128 cache sets and 4 array elements
per cache line, Equation 5 shows the replacement CME for
the interferences with X(k,i) along 7: (Here the access of
Z(j, ;) is after X(k, ;) in each loop nest iteration.)

Cache_Set-Z(j, i) = Cache-Set-X(k’, i’)

where (i’, k’, j’) E ((i, k, j - l), (i, k, j)]

=F l(4192 + 32i + j - 1)/4] mod 128
= L(2136 + 32i + k - 1)/4] mod 128

j 4192 $- 32i + j = 2136 + 32i + k $512n + b (5)

where n > 0, (;, j) E [(O,O), (31,31)], b E [-3,3]. 4192 and
2136 are the base addresses (in array elements) of the arrays

Z and X respectively, and 32 is the number of elements per
column in the arrays.

4 Finding Cache Misses from CMEs

This section describes the algorithm for finding all cache
misses in a loop nest by composing the effects of multiple
CMEs. This algorithm is useful for building intuition about
how CME solutions relate to cache miss instances. It is
important to note, however, that most of the cache opti-
mizations we describe in Section 5 would never be required
to execute this algorithm on a per-loop basis. Instead, as
described in Section 5, we typically use mathematical short-
cuts to derive cache optimization algorithms from the CMEs
once they are generated.

4.1 Algorithm

As described in Section 3, for every reference we generate a
set of equations for each of its reuse vectors. For each reuse
vector there are at most two cold CMEs representing cold
misses along that vector [9], as well as replacement CMEs
representing the self- and cross-interferences of this reference
with itself and others. CME solution points represent poten-
tial cache misses; to find actual cache misses, however, one
must consider the effects of multiple reuse vectors at once.
Figure 6 provides the algorithm that combines the effects of
multiple reuse vectors in order to determine the set of all
cache miss instances of a loop nest from the solutions of all
of its CMEs.

In our previous work, determining cache miss points from
solution points relied on computing unions and intersections
of solution sets, while considering all the reference’s reuse
vectors at once [9]. Our current methodology represents
a significant departure from this method; we instead con-
sider reuse vectors one-by-one in lexicographic order. While
both methods are of the same computational complexity,
our current method can be computed more quickly for prac-
tical loop nests commonly occurring in real programs. In
addition, this method applies more directly to caches of ar-
bitrary associativity, while our earlier approach was only for
direct-mapped caches.

Here, we will provide an intuitive explanation of the al-
gorithm shown in Figure 6 with the help of an illustrative
example. Formal proofs can be found in a more mathemat-
ical report [lo]. We will consider the iteration space shown
in Figure 7 as our example. The algorithm first sorts the
reuse vectors of a reference in lexicographically-increasing
order. In our example, assume that a reference X has three
reuse vectors ri , T:, and ~'j. This means it accesses the same
memory line at the iteration points i;, ii, ii, and ii. The lex-
icographic ordering of the reuse vectors is [T<, 77, T;]. For
each reuse vector, a number of CMEs are generated, each
producing a collection of CME solution points. The algo-
rithm investigates one reuse vector at a time, starting from
the shortest one which is T< here. After investigating a reuse
vector, some of its CME solution points are declared definite
miss points, while others are indeterminate. If any iteration
point is a solution for a cold CME of T:! there is a cold
miss along T: at that point. Hence, there is no reuse along
T; at that point. As we cannot take any further decision
about these iteration points without considering other reuse
vectors, we declare them as ‘indeterminate’ for T:. These
indeterminate points are passed on to the next reuse vector
for further investigation. However, if an iteration point is
not a solution for a cold CME but is a replacement miss

232

Algorithm FindCachcMisses-ofsLoopNest
Input: for each reference,

solution sets of the CMEa for every reuse vector
of the reference

Output: &ix for every reference X, where
Mx = set of miss points of X

t
1 .for each reference

/* Say the reference is X *I
2. Sort the reuse vectors lexicographically from

the shortest to the longest one;
3. Mx = 4 (null set);
4. C = Set of all iteration points;

/* n/ix keeps track of the cache miss points found */
/ * C keeps track of the iteration points that need */
I* further investigation */

5. for each reuse vector of the reference X
/* Say the reuse vector is T’ */

6. if (ICI < c) break;
/* No further investigation for this reference if ICI, */
/* the &elements in C is less than c */
i* d is iet to Cl for an exact output */

7. C’ = union of the solutions of cold CMEs of r’;
8.
9.
10.
11.

12.

13.

14.

15.
16.

17.

18.

R’ = union of the solutions of replacement &Es of r’;
R” = cf.,;
for each (:, ;, n) E R’

R” = R” u {(;,n)};
/* R” stores the distinct (<n) tuples */

I = I$;
for each (l,n) E R”

I =,I u {i}; Ill += 1;
/* lil keeps track of #occurrences of : */
/* So, 14 counts the distinct cache set contentions */
/* All Iii’s are initialieed to 0 before this loop */

I = In C; C = C n C’; /* Search inside C only */
I=I-c;
/* eliminate cold CME solution points from I */
for each :E I

if 14 > k /* k = associativity of the cache */
/* 7 is a replacement miss point along i */

19. M, = Mx u{;};

/* At this point C = cold misses of the reference */
/* and Mx = replacement misses of the reference */

20. M, = Mx u C;
1

Figure 6: Algorithm to find the cache miss points of a loop
nest from its CME solutions.

along r<, it is declared a definite miss point for the refer-
ence. This is because if the memory line is replaced after
its use at ;y, there is no further access (i.e., no other shorter
reuse vector) to prevent the cache miss at ;;. Finally, any
iteration point that is neither a cold CME solution point
nor a replacement miss along r< is a guaranteed hit. That
is, if the cache line is not replaced after its use at il, X will
enjoy a hit at i; irrespective of what happens along other
reuse vectors. For only the indeterminate points (i.e., cold
CME solution points) of T<, we move on to consider ri . All
the CME solutions of T< are treated similar to those of r:
as we can consider T< effectively absent for all its cold CME
solution points. Finally, we consider T; within the points
that are declared indeterminate after investigating both T<

and Ti.

So, in general the algorithm works as follows. We con-
sider reuse vectors one at a time in lexicographically-increasing

Figure ‘7: Illustration of the algorithm to find cache misses
for a 2D loop nest.

order. While considering each reuse vector, some of its CME
solution points are declared definite misses, while others are
indeterminate. Then, considering only the set of indeter-
minate solution points, we move on to consider the CMEs
from the lexicographically-next reuse vector for this refer-
ence. Intuitively, the indeterminate points form a reduced
iteration space that need further investigation. We continue
investigating further reuse vectors until the number of in-
determinate points is either sero, or is “sufficiently small”
(as defined by a user threshold). At that point, we can stop
the process, even if the reference has additional reuse vec-
tors that we have not yet considered. Since a replacement
miss point found along the current reuse vector in the algo-
rithm is a guaranteed miss point, it is included in the global
miss set Mx (Line 19 in Figure 6) immediately after it is
found. In Figure 6, C maintains the set of indeterminate it-
eration points and E is the tolerable error in miss count per
reference. Section 4.3 will show that in practical loop nests,
perfect accuracy can be obtained by considering a relatively
small number of reuse vectors per reference.

Figure 8 depicts the progress of the algorithm for the load
reference of Z(j, ;) in a 256 x 256 matrix multiply loop nest
(Figure 1). We have considered a 8KB direct-mapped cache
with 32B line size and 8 data elements per cache line. Every
iteration point is identified by the index vector (;, k, j). We
consider three reuse vectors Ti, ~2, and r’j of z(j,;). Reuse
vectors Ti and T; are self-spatial reuse vectors and T< is a
self-temporal reuse vector. Ti and T: are the basic reuse
vectors generated from SUIF, while T: is generated from
our extension to SUIF. Figure 8 shows the contribution of
every CME encountered towards the final miss count. Ev-
ery replacement CME is denoted by ReplEqn followed by
the names of the interfering references. Of the 2.1M in-
determinate points after considering ~1, only 8192 remain
indeterminate after ~2. Considering ~3, we can deduce that
all 8192 of these are true cold misses.

4:2 Set-Associative Caches

The preceding miss-finding discussion built intuition by con-
sidering a direct-mapped cache. Composing CME solutions
into cache miss points is more complex in a set-associative
cache. This is because a cache miss occurs in a k-way set-
associative cache only when k distinct conflicts occur.

Every solution to the CMEs can be summarized using
a triple of the form (T, 1, n). (The set of all such triples is
given by the set R’ in Figure 6.) The first component : of
each triple corresponds to the iteration point where a ref-
erence (the “victim”) potentially suffers a replacement miss
along a reuse vector. The second component of the triple,
;, denotes the iteration at which the potentially-conflicting
reference (the “perpetrator”) occurs. The third element of
the triple, IL, denotes how many “cache wraparounds” there

233

Reuse vector
Ti: (0 0 1) r;: (0 l-7) r;: (0 10)

Cold CMEs 2097152 8192 8192
ReplEqnZZ 0 a 0
ReplEqnZY 1835008 261120 0
ReplEqnZX 401408 64064 0 c-C ** C2(2%)
Repl. Misses 2236416 325184 0

p&rite Misses 2236416 2561600 2569792

Figure 8: Using the CME-based algorithm from Figure 4 to find cache misses for the load of Z(j, ;) in the matrix multiply loop
nest (Figure 1). The diagram and the table shows the progress of the algorithm as reuse vectors are considered one by one,
each time zeroing in on the previously indeterminate points. The table shows the solution count of the CMEs and the actual
misses found at every stage of considering a reuse vector. Ci, Cz, and Cs in the diagram represent the cold CME solution
points (from the row ‘Cold CMEs’ in the table) when we consider the reuse vectors Ti, T;, and T< respectively. Similarly, RI,

R2 and RJ represent the replacement misses found (from the row ‘Repl. Misses’ in the table). The indeterminate points are
identical to the cold CME solution points. The last row in the table shows the cumulative count of actual misses found so far
after each reuse vector is investigated.

are between the memory addresses of the two potentially-
conflicting references. In this analysis, n will never equal 0
since that is not a conflict but rather a reuse, and reuse will
always be summarized in the reuse vectors.

From this triple, we wish to derive distinct miss points.
For a particular iteration point :, all solutions with the same
value of n correspond to contention with the same memory
line (since they have the same wraparound factor). Thus, to
find distinct conflicts for an iteration z, we look for distinct
values of n. Note that I, the cause of the miss, does not

*1
impact miss-finding, so we map the space of (t,~,n) triples
down to a space, R”, of (z,n) pairs (Line 11 in Figure 6).

The cardinality of the set R” corresponds to the total
number of conflicts seen, but this is different from the num-
ber of cache misses. The points in R” are misses at : along T’
if and only if there are at least le (the associativity) elements
in R” with 7 as the first component. Hence, only these 2s
are selected as replacement miss points and included in the
set Mx (Lines 17-19 in Figure 6). The mapping from R”

to Mx performs the following: For each ;, if there are at
least k conflicts (for a k-way set-associative cache) then add
a point to Mx, If there are less than k conflicts, do not add
a point. Note that if there are greater than k conflicts, still
only a single point is added to Mx.

The equations generated here represent a set of linear
equalities or inequalities. Methods to solve these kind of
equations for most practical loops can be found in [5, 181.
Taking the unions and intersections shown in Figure 6 takes
polynomial time in the number of elements of the sets. In
the next section, however, we have shown how different op-
timizations can be analyzed without actually solving the
equations.

4.3 CME Accuracy

Next, we show the accuracy of our system for finding the
cache misses of loop nests using the reuse vectors generated
by our current reuse analysis. Table 1 compares the actual
misses (from Dinero111 cache simulation) of some example
loop nests with the misses measured from CMEs. Actual
runtime values of loop bounds, array sizes, and relative base
addresses of arrays are used to count the cache misses using
CMEs. We have considered an 8KB direct-mapped cache
with 32B line size. The loop nests considered include mmdt
(matrix multiply), gauss (Gaussian elimination), sor (suc-
cessive over-relaxation), adi (AD1 kernel after loop fusion

and interchange optimisations), tram (matrix transpose),
alv (loop nest from alvinn benchmark), and tom (loop nest
from tomcatv benchmark). For all the loop nests the prob-
lem size considered is 256 and each array element size is 4
bytes. The table shows that for most of these loop nests very
few reuse vectors (average of 2 per reference) are needed to
attain accuracy within 1%. Furthermore, the basic reuse
vectors given by SUIF are sufficient in all but one case. The
inaccuracies found for gauss and trans are due to the fact
that the reuse vectors used are not yet sufficient to represent
all the reuse directions present in the loop nest. As a result,
CME method finds more cache miss points than are actually
present.

5 Using CMEs for Automated and Interactive Analysis

CMEs form a mathematical underpinning for analyzing
many different cache optimizations. To highlight their gen-
erality, this section describes four distinct algorithm styles
for cache optimizations using CMEs. These cover a range
of automatic and semi-automatic techniques. Most impor-
tantly, none of these techniques explicitly require us to solve
the CMEs; instead, mathematical properties of CMEs di-
rectly facilitate the optimizations. As shown in Figure 9, we
broadly classify methods into the following categories:

l Automated CME Analysis

- Exploiting Special Cases
- Using a Solution Counting Engine

- Using Parametric Solutions

l Interactive CME Analysis

Space limits preclude detailed examples for each of the four
usages. Instead, we focus on the first, and give brief sketches
of example use for the rest.

5.1 Automated CME Analysis

5.1.1 Exploiting Special Cases

The general strategy for an algorithm to exploit mathemat-
ical special cases is to form the CMEs and study them to
determine a set of well-defined conditions that eliminate or
reduce their solution count, i.e. minimize cache misses. This
analysis is then codified into an algorithm that automati-
cally finds optimizing parameter values to reduce or elimi-
nate CME solutions.

234

M&X. MU. Distribution of
Loop #refs to #Data #Data cache misses #RVs used RVs used
?JTn.+ U A ,-,-avc a* ilrrav RCCl?SSl?S Dinero111 I CME %Error #Refs. per ref. SUIF-RV 1 Ext-RV

I 3
I.C”” ‘TTs..--.,-. , --- ----J

_---__-- ~~.~~

.w.‘“-16 1 7042336 (0.0 1 4 1 3 7
i6 I2~1omwI in I 5 I 2 I 4 I

Table 1: #Reuse vectors (RVs) used by our CME method to get the calculated miss count within 1% of the actual miss count
(measured by DineroIII). SUIF-RV corresponds to reuse vectors extracted from SUIF analysis and Ext-RV corresponds to
extra reuse vectors found from our extended reuse analysis. (In this table, max. stands for maximum and ref. stands for
reference.)

Generate CMEs

!_ Use optimization
algorithm that finds
the parameters of
mtercst

(optimization algorithm
formed by:
- Generating CMEs

Using CME properties
(without solving) to
find conditions that
reduce the number of
CME solutions)

t
Using Solution
Counting Engine

and after optimizations

2. Count CME solutions
before and after
optimizations

/ Usiyoarr;etricj

I. Generate CMEs

2. Express the number of CM1
solutions as a function of a
parameter to be optimized

3. Find the value of the
parameter that minimizes
the function

-
Interactive Methods

1. Fmd time-consuming loop
nests from preliminary
program profile

2. Generate CMEs for these loops

3. Find the effects of optimlzations
on the CMEs by:

a) direct analysis of CMEs, OI

b) counting CME solutions
before and after optimization

4. Find the optimizations that
reduce the total number of
solutions to CMEs

Figure 9: Overview of the methods using CMEs for optimizations.

Example: Padding In the first of the automated method-
ologies we give an example of a padding algorithm that uses
mathematical properties available through CMEs. Our al-
gorithm finds appropriate intra-variable padding (increas-
ing array dimension size) and inter-variable padding (repo-
sitioning variable base addresses) that reduce both the self-
interferences of a reference and its cross-interferences with
other references.

In the padding example, the parameters of interest are
the column size and the base addresses of the arrays. Our
target equations are the replacement CMEs. For our analy-
sis, we consider the interference between two arbitrary ref-
erences Rx and Ry. For the self-interference equation of a
reference, Rx and Ry are identical. Let us consider that
the references Rx and Ry access the arrays X and Y whose
base addresses are Bx and By respectively. We assume
that these conflicting arrays have the same column size C.
Using Equation 1, the memory addresses of Rx and Ry at
iteration point : can also be written as: Bx + C(f(l) + c) +
(fo(z) + c’) and By + C(,f’(l) + d) + (f;(z) + d’) respectively,

where f, fo, f’, J$ are linear functions of the loop indices and
c, c’, d, d’ are constants.

The replacement CMEs that correspond to the interfer-
ences between two references that access the same array are
of the following type (called Type 1 in Fig. 10):

C(6f + c - d) - nC, = b - (Sf,, + c’ - d’) (6)

where TZ # 0, b E [--(La - l),(L, - l)], 6f = f(q - f’(i),

and Sfo = f~(z) - f,$(;). The range of the intervening points
j’ is determined by the corresponding reuse vector. From
straightforward number theory [l, 51, this linear Diophantine
equation has no solution if the following two conditions are
satisfied:

1. gcd(C, Cs) > max lb - (6f0 + c’ - d’)l

2. gcd(C, C,) < C,/ max 16f + c - dj)

if (b - (6fo + c’ - d’)) = 0

All the other replacement CMEs are of the following type

235

(say, Type 2):
(Bx - By) + C(6f + c - d) - nc, = b - (6fo + c’ - d’) (7)
Again from number theory, Equation 7 has no solution if
the following conditions are satisfied:

3. gcd(]Bx - By], C, C,) > max 15 - (6f0 + c’ - d’)]

4. gcd(C,C,)>]Bx-By]if(b-((bfc+c’-d’))=O

Our algorithm finds appropriate values of C and]Bx -
ByI that satisfy all four conditions. Since cache size C,
is a power of two, the GCDs in all the conditions are also
powers of two. We consider C = 2”ti and IBx - BY 1 = 2Ytz
where tr , tz are nonzero odd positive integers. The following
constraints follow from the four conditions:

From Condition 1 : z > lg(max lb - (6fo + C’ - d’)])

From Condition 2 : z < lg(C,/(max]6f + c - d]))
From Condition 3 : Z, y > lg(max lb - (6fo + C’ - d’)])
From Condition 4 : z > y

Once z is known, the compiler can easily choose any value
of ti such that C is at least equal to the original column
size. Similarly, once y is known, it can choose any value of
t2 such that]Bx - By] is at least equal to the size of the
arrays lying between Bx and By.

Based on these constraints, we have developed the algo-
rithm sketched out as pseudo-code in Figure 10. The core
of the algorithm finds the z and y values. For every pair
of conflicting arrays X and Y we need to find y(XY), but
we need only one z since all the array column sizes are as-
sumed to be same. The algorithm iterates through each
equation and updates the bounds of z and y’s according to
the constraints. The max values are easily evaluated from
the ranges of the intervening points I; these depend on the
reuse vector. Finally, the minimum possible C and inter-
array paddings are evaluated satisfying the constraints on z
and y’s in Get-paddings. This algorithm guarantees a solu-
tion if there exists e,y’s that satisfy all the conditions. In
practice, however, most cases satisfy these conditions.

As discussed in Section 4, our CME methods let us trade-
off precision and compute time by choosing how many reuse
vectors to consider. We have implemented the described al-
gorithm considering only the nearest reuse vector for every
reference.3 The algorithm is quite fast-quadratic on the
number of references, which is a small number in all practi-
cal loop nests.

Table 2 shows the results of applying this padding algo-
rithm to our benchmark suite. Of the six programs with
non-zero replacement misses, our padding algorithm dra-
matically reduces replacement misses in all but one, namely
the trans loop nest. There exists no padding solution for
our algorithm to reduce the replacement misses in the trans
loop nest. We believe no other padding algorithm can find
effective solutions for this loop nest. In fact, both the pre-
cision and generality of the CME approach allow our algo-
rithm to eliminate more conflict misses than the padding
methods recently described by Rivera and Tseng [20]. For
example, their methods cannot decrease any conflict misses
for the mm& loop (Figure l), because they do not address
inter-array padding for the Y(j,k) and Z(j,i) references that
are not uniformly generated. Rivera and Tseng’s method
also lacks sufficient generality to handle replacement misses
between references of the form A(i,j) and B(i,j) as in alu

3For even more precise results, one could increase the number of
reuse vectors considered.

-

Algorithm Find_ColumnSizeimdBaseAddresses
Input: CMEs of the loop nest
Output: C, and Bx for every reference X
1
For each reference

For each reuse vector
For each replacement CME

Lb = lg(max(b - (6fo + c’ - d’)l);
Ub = lg(C,/ max ISf + c - dj);

If (Type 1 equation)
update lower-bound(z) with Lb
update upperhound with Ub

Else
/* Say the arrays are X and Y *I

uodate lower-bound(r) with Lb
update lower_bound(y(XY)) with Lb
add constraint (Z > y(XY))

Get-padding from above ranges and constraints
I

Figure 10: Algorithm for padding arrays and setting base
addresses to reduce cache interferences.

(Figure 11); this is because it does not attempt intra-array
padding to reduce cross-interferences. In contrast, our algo-
rithm decreased conflict misses in these loops by 50.8% and
100% respectively.

Figure 12 shows the sensitivity of cache misses in the
alv loop to different choices of row sizes and base addresses.
Such an irregular pattern makes it difficult to find effective
padding choices through a heuristic, iterative framework.
Manipulating CMEs allows our algorithm to directly and
precisely identify the padding values that will eliminate all
replacement misses in this case. The generality of the CME
framework also allows our algorithm to simultaneously con-
sider (and eliminate) both self- and cross-interferences.

Thus, we have shown how effective compiler optimiza-
tions can be derived directly from the solution properties of
linear Diophantine equations. Our padding algorithm only
needs the CMEs, not their explicit solutions.

Example: Selecting Tile Size to Eliminate both Self and
Cross Interferences In this example we use CMEs to find
effective tile sizes given a tiled loop nest. Cache conflicts
are highly sensitive to the problem size and the tile size 1121,
motivating researchers to find tile sizes based on program
and cache parameters [‘7, 121. Our approach here is novel in
that we integrate tile size selection and padding in order to
reduce both self and cross interferences. We briefly describe
the process for a tiled matrix multiply loop nest, determin-
ing a tile size of Tk by Tj. Say we want to reduce self-
interferences of Y(j, k) and also its cross-interferences with
Z(j, i). Hence, the equations we analyze are Y(j, k)‘s self-
interference equation and also its cross-interference equation
with Z(j,;). For the tiled code they are:

C6k-nC,=b-6j, where 6k<Tk, 6j<Tj (8)
(By - Bz) + C(k - i’) - nC, = b - 6j,

where kE[O,N-11, ?E[O,N-l], 6j<Bj (9)

The forms of these equations are similar to those used for
padding. The variables to be optimized here are Tk, Tj, By,
and Bz. There are a lot of ways one can proceed here. We
have developed an algorithm where we first find Tk, Tj from
Equation 8, and then optimize By, Bz from Equation 9 by
an algorithm similar to Figure 10. The tile size selection
algorithm conceptually finds all combinations of (Tk, Tj)

236

#Data cache misses ?&Reduction in
Loop #Data Original Optimized cache misses
Nest accesses Replacement 1 Total Replacement] Total Replacement Total
~TMIlt 67108864 7017760 1 7042336 3454304 1 3478880 50.8 50.6
a I48 55.3 54.9
_____-..

puss 16744320 1974689 1998466 883473 901c
SOT 387096 0 8192 0 81
adi 587520 367104 391680 0 245
trans 262144 57344 73456 57344 734
alv 183150 4880 14090

“i g2*i
I I I

tom 1 387096 (225552) 258064 1 6) 32512 1 100.0 1 87.4

Table 2: Impact of our padding algorithm: Data cache misses in the original and optimized code. Both replacement miss and
total miss counts are shown.

DO iu = 1, 1221
DO hu = 1, 30

ih-weights(iu, hu) += ih-w-ch-sumarray(iu, hu)
* ihlrc ;

ih-w_chsumarray(iu, hu) *= ALPHA ;

Figure 11: Loop nest from &inn benchmark.

SE mod Cs Row size

Figure 12: Surface plot of #cache misses for different
row sizes and base address positioning of the two ar-
rays accessed in the olv loop of Figure 11. (6B is the
difference in base addresses of the two arrays.)

that ensure no solution to Equation 8 for a direct-mapped
cache. For a k-way set-associative cache, it finds (Tk, 7’j)‘s
that allow at most (k-l) solutions to Equation 6. As our
algorithm combines padding along with selecting tile sizes, it
would be interesting to compare this algorithm with the tile
size selection algorithm presented by Coleman and McKinley
PI.

5.1.2 Using Solution Counting Engines

As with the previous subsection, the methodology described
here does not require generating CME solutions. Rather,
the example presented here relies on being able to count the
number of CME solutions, which is potentially much faster.
Counting cache misses for a set of CMEs is equivalent to
counting the number of lattice points in some projection of
a union of polytopes. This problem has received attention
recently in the context of parallel compilers, and several re-
searchers have presented solutions for this that work reason-
ably well in practice [6, 191. The method presented in this

section uses these lattice point counting engines to directly
compute the number of solutions of CMEs and uses this to
drive optimizations. The general strategy is sketched out in
Figure 9. We illustrate its use here in determining when to
apply loop fusion.

Example: loop fusion Consider the example loop nest
shown in Figure 13(a). The example is similar to a loop nest
found in the AD1 kernel used by McKinley and Temam [16].
We consider a 4-byte array element size and an 8KB direct-
mapped cache with 32-byte lines. The base addresses of the
arrays A, B,X are 0210000110,0210004130,0010008150 re-
spectively. Figure 13(b) shows the transformed code after
loop fusion. We use our automated CME generator to gen-
erate the CMEs before and after applying loop fusion to this
loop nest. Then, we count the cache misses in both cases by
counting the number of solutions to the CMEs using a solu-
tion counting engine. Before the transformation, there were
roughly 21K cache misses. After loop fusion, the CMEs in-
dicate a drop to roughly 15K cache misses. Thus, CMEs can
be effectively used with solution point counters to determine
when to apply particular optimizations like loop fusion. The
precision of CMEs allows us to consider a particular cache
organization when making this decision.

5.1.3 Using Parametric Solutions

In this third category of automated CME optimization, compiler-
writers determine the functional relationship between the
number of CME solutions (i.e., cache misses) and a set of
input parameters related to the desired optimization. There-
after, they use function optimization techniques to find the
parameter values that optimizes the CME solution function.
This technique again uses a lattice point counting engine, ex-
cept that instead of finding a numeric value for the number
of misses, it determines the number of misses as a function
of some parameter. (Such parameterized optimizations are
possible with lattice point counting techniques presented in
the literature [6, 191.)

For example, we have used this approach as an alterna-
tive technique for implementing the padding optimization.
In this case, the value the compiler controls (such as the
inter-variable spacing) appears as a parameter in the CMEs.
To determine the number of solutions as a function of this
parameter, we generate Ehrhart Pseudo-Polynomials (EPs)
[6] for the above CMEs. Finally, one can analyze the specific
EPs generated to find the parameter value that minimizes
the EPs.

For a specific optimization, this methodology is com-
pletely automatic. When optimizations can be expressed

237

(a) Input code (from AD1 Kernel) (b) Transformed code after loop fusion

DO i = 2, 64
DO k = 1, 64

DO i= 2, 64
DO k = 1, 64

X(i, k) -= X(i-I, k) * A(i, k) / B(i-1, k)
DO i = 2, 64

DOk= 1,64

X(i, k) -= X(i-1, k) * A(i, k) / B(i-1, k)
B(i, k) -= A(i, k) * A(i, k) / B(i-1, k)

B(i, k) -= A(i, k) * A(i, k) / B(i-1, k)

Figure 13: AD1 loop used for evaluating loop fusion by CME solution counting.

parametrically, determining the optimal parameter value with-
out enumerating all possible values can be computationally
advantageous compared to brute-force solution point count-
ing. While solution counting provides a precise count, it re-
quires an iterative search-and-evaluate process through pas-
sible parameter values. Parametric approaches, when they
apply, can zero in on the functionally-optimal choice.

5.2 Interactive CME Analysis

Automated optimization techniques are preferable, but of-
ten programmers supplement them with hand-tuned mem-
ory optimisations as well. To the astute user, CMEs may
also be useful for interactively exploring the possible impact
of different cache optimieations. As summarized in Figure
9, interactive methods share characteristics with the auto-
mated methodologies, but interactive analysis allows more
complex decision-making that is hard to automate. CME
manipulations can often be helpful for reasoning about the
impact of cache optimizations which would otherwise be
possible only through elaborate cache simulations [13, 141.
In addition to the direct benefit of helping programmers in
hand-tuning code, interactive approaches are also the first
step in discovering optimieations, automating them, and in-
cluding them in compilers. We have used interactive analysis
extensively to develop our optimization algorithms, and also
to study the combined effects of various cache optimizations
on loop nests taken from the SPECfp benchmarks.

5.3 Computational Requirements

Here we discuss the computational requirements of the dif-
ferent usage scenarios. The first step in generating CMEs
is calculating reuse vectors. If the number of array ref-
erences in a loop nest of depth n is n,~ and d,,, is the
maximum number of dimensions of any of those arrays, the
worst case complexity of calculating all the reuse vectors is
O(& x (maz(n, dm,z))3).

Once the reuse vectors are calculated, the time taken to
generate all the CM equations of the loop nest is given by
O(n x dmu x neqVL), where neqn = #Equations = nyv x nrefr
n7.?, = Total #reuse vectors of all the references.

We have implemented our CME generator in the SUIF
compiler system [22] and have tested our system on SPECfp
and other benchmarks. In these experiences, we have found
the CME generator to be quite fast. In fact, for the SPECfp
benchmarks, CME generation always executes in less than
10s per program on an SGI/INDY with a 133MHz MIPS
R4600 CPU.

Once the CMEs are generated, further computational
requirements depend on the methodology used. The “special
case” approach of Section 5.1.1 simply computes GCDs, and
is a linear algorithm in the number of loop indices.

Section 5.1.2 discussed methods that require counting
the number of CME solutions. CMEs and their related
inequalities are similar in form to other equation systems
previously discussed for dependence analysis in parallelizing
compilers. Methods for counting solutions to such systems
of equations are, worst-case, exponential-time algorithms.
For practical loop nests, however, solution counting meth-
ods have been given in [6, 191.

When using parametric methods to manipulate CMEs,
as in Section 5.1.3, the computation time includes first gen-
erating a parametric function, and then second, determin-
ing the parameter value that optimizes the function. As
with solution counting, the former task is exponential in the
worst-case, but remains computationally tractable for prac-
tical loop nests [6]. The latter task, function optimization,
can be simply passed to a mathematical software package.

Interactive methods clearly depend on how the user ma-
nipulates the equations, but are likely to include one or more
of the steps described above.

6 Related Work

Extensive research has focussed on improving the cache per-
formance of numerical programs. Most of the previous work
explores the techniques to reduce capacity misses in scientific
loops [15, 23, 241. For example, most of these explore the
popular technique of loop tiling to reduce capacity misses.
There are also several case studies that report the severe
adverse effects of cache interference or conflicts on cache
performance [12, 16, 211. Due to the difficulty in predicting
and estimating cache conflicts, however, there are relatively
few studies on analyzing and reducing interference misses.

Methods for predicting and estimating cache misses in
the presence of cache interferences have been considered by
Ferrante et al. [8] and Temam et al. [21]. Due to several .
approximations m their cost model, these methods are not
as precise as ours. More importantly, these methods only
estimate the number of cache misses, while our approaches
can give insights as to their cause.

Some of the optimizations described in this paper have
been addressed in isolation in previous work. Algorithms to
select efficient padding amounts have been proposed [3, 4,
201. There are also some papers on choosing problem-size-
dependent tile sizes that eliminate self-interference and ca-
pacity misses in a tiled loop nest [7, 121. We have shown how
our general framework of CMEs can also be used for guiding
these optimizations, sometimes more precisely. Moreover,
CMEs provide a mechanism for analyzing several of these
optimizations applied at once.

Finally, there has been some work on automatic analy-
sis and counting the number of solutions to a set of linear
equalities and inequalities [6, 18, 191. This complementary
work would help to automate the analysis of the CMEs.

238

7 Future Work

In order to make our analysis framework more general, it
needs to handle the effects of multiple loop nests in the pro-
gram. This needs efficient methods to calculate reuse vectors
across loop nests. Fortunately, most inter-nest misses occur
between adjacent nests [16] and so it may be enough to find
reuse vectors only between adjacent nests for most practi-
cal purposes. In order to automate our parametric analy-
sis for cache optimizations, we hope to extend the methods
presented by Pugh [18] and Clauss [6]. Finally, we would
like to use CMEs for developing an automatic algorithmic
framework for diagnosing poor cache behavior and selecting
appropriate transformations.

8 Conclusions

The widening processor-memory performance gap makes a
program’s memory referencing behavior increasingly impor-
tant. Compiler optimizations for cache accesses are fre-
quently effective, but often a lack of precision or generality
can cause them to provide disappointing performance for
some programs or cache organizations. Our work has devel-
oped Cache Miss Equations, a detailed, analytic, compile-
time framework for representing the caching behavior of
loop-oriented programs. CMEs unify the effects of both loop
structure and data layout, and thus can be used as the foun-
dation for a range of control and data optimizations. CMEs
are a general framework with the mathematical precision
needed to accurately predict cache behavior at compile-time.

This paper demonstrates how to generate a program’s
CMEs for caches of arbitrary associativity and how to de-
termine cache misses from the equations formed. We have
implemented this method within the SUIF compiler frame-
work. We also describe a variety of automatic and interac-
tive program transformations based on different CME us-
ages. These examples serve two purposes. First, in some
cases, the algorithms are improvements on current compiler
optimizations for padding and blocking. Second, these al-
gorithms serve as examples of how CMEs facilitate precise
optimization techniques. Furthermore, their generality pro-
vides a framework for reasoning about the combined effects
of optimizations applied in concert. In summary, CMEs rep-
resent a general and precise foundation that will serve as an
enabling technology for effective cache optimizations in the
future.

References

[II

PI

[31

[41

[51

161

A. Adler and .I. E. Coury. The theory of numbers: A text
and ~01~rce book of problems. Jones and Bartlett Publishers,
Boston, MA, 1995.
R. Allen and K. Kennedy. Automatic translation of FOR-
TRAN programs to vector form. ACM Trans. Prog. Lang.
Syst., 9(4):491-542, 1987.

D. F. Bacon et al. A compiler framework for restructuring
data declarations to enhance cache and TLB effectiveness.
In Proc. CASCON’94 conf., Nov. 1994.
D. Bailey. Unfavorable strides in cache memory systems.
Technical Report RNR-92-015, NASA Ames Research Cen-
ter, CA, 1992.

U. Banerjee. Loop transformationa for restructuring compil-

era. Kluwer Academic Publishers, Norwell, MA, 1993.

P. Clauss. Counting solutions to linear and nonlinear con-
straints through Ehrhart polynomials: Applications to ana-
lyze and transform scientific programs. In Proc. Int’l Conf.
on Supercomputing, May 1996.

[71

PI

PI

[lOI

[Ill

1121

[I31

[I41

[I51

[I61

1171

[I81

[191

[201

1211

PI

[231

[241

S. Coleman and K. S. McKinley. Tile size selection using
cache organization and data layout. In PTOC. SIGPLAN ‘95
Conf. on Programming Language Design and Implementa-
tion, June 1995.

J. Ferrante, V. Sarkar, and W. Thrash. On estimating and
enhancing cache effectiveness (extended abstract). In PTOC.

4th Int’l Workshop on Languages and Compilers for Parallel
Computing, Aug. 1991.

S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations:
An analytical representation of cache misses. In Proc. Int’l
Conf. on Supercomputing, July 1997.

S. Ghosh, M. Martonosi, and S. Malik. Cache Miss Equa-
tions: An analytical representation of cache misses. Techni-
cal report, Dept. of Electrical Engineering, Princeton Uni-
versity, 1998.

J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers,
San Mateo, CA., 1996.

M. Lam, E. E. Rothberg, and M. E. Wolf. The cache per-
formance of blocked algorithms. In PTOC. 4th Int’l Conf. on
Architectural Support for Programming Languagea and Op-
erating Syatema, Apr. 1991.

A. R. Lebeck and D. A. Wood. Cache profiling and the SPEC
benchmarks: A case study. IEEE Computer, pages 15-26,
act 1994.

M. Msrtonosi, A. Gupta, and T. Anderson. MemSpy: An-
alyzing memory system bottlenecks in programs. In Proc.
ACM SIGMETRICS Conf. on Measurement and Modeling
of Computer Syatema, pages l-12, June 1992.

K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data
locality with loop transformations. ACM Trans. Prog. Lang.
Syst., 18(4):424-453, 1996.

K. S. McKinley and 0. Temam. A quantitative analysis
of loop nest locality. In Proc. 7th Int’l Conf. on Archi-
tectural Support for Programming Languages and Operating

Sy8tem8, Oct. 1996.

T. C. Mowry, M. S. Lam, and A. Gupta. Design and eval-
uation of a compiler algorithm for prefetching. In Proc. 5th
Int’l Conf. on Architectural Support for Programming Lan-
guagea and Operating Syatema, Oct. 1992.

W. Pugh. The Omega test: A fast and practical integer
programming algorithm for dependence analysis. Commun.
ACM, 35(8):102-114, Aug. 1992.

W. Pugh. Counting solutions to Presburger formulas: How
and Why. In Proc. ACM SIGPLAN’94 Conference on Pro-
gramming Language Design and Implementation, pages 121-
134, June 1994.

G. Rivera and C.-W. Tseng. Data transformations for elim-
inating conflict misses. In Proc. ACM SIGPLAN’98 Con-
ference on Programming Language Design and Implementa-
tion, July 1998.

0. Temam, C. Fricker, and W. Jelby. Cache interference
phenomena. In Proc. ACM SIGMETRICS Conf. on Mea-
aurement El Modeling of Computer Syatema, May 1994.

R. P. Wilson et al. SUIF: An infrastructure for research
on parallelising and optimizing compilers. ACM SIGPLAN
Noticea, 29(12), Dec. 1994.

M. E. Wolf and M. S. Lam. A data locality optimization
algorithm. In Proc. SIGPLAN ‘91 Conf. on Programming
Language Design and Implementation, June 1991.

M. J. Wolfe. More iteration space tiling. In Proc. Supercom-
puting ‘89, Nov 1989.

239

