
The XTREM Power and Performance Simulator for

the Intel XScale R© Core: Design and Experiences

GILBERTO CONTRERAS and MARGARET MARTONOSI

Department of Electrical Engineering, Princeton University

JINZHANG PENG and GUEI-YUAN LUEH

Microprocessor Technology Lab, Intel Corp.

ROY JU*

Google

Managing power concerns in microprocessors has become a pressing research problem across the
domains of computer architecture, CAD, and compilers. As a result, several parameterized cycle-
level power simulators have been introduced. While these simulators can be quite useful for
microarchitectural studies, their generality limits how accurate they can be for any one chip fam-

ily. Furthermore, their hardware focus means that they do not explicitly enable studying the
interaction of different software layers, such as Java applications and their underlying runtime
system software. This paper describes and evaluates XTREM, a power simulation tool tailored
for the Intel XScale microarchitecture. In building XTREM, our goals were to develop a microar-
chitecture simulator that, while still offering size parameterizations for cache and other structures,
more accurately reflected a realistic processor pipeline. We present a detailed set of validations
based on multimeter power measurements and hardware performance counter sampling. XTREM
exhibits an average performance error of only 6.5% and an even smaller average power error: 4%.
The paper goes on to present an application study enabled by the simulator. Namely, we use
XTREM to produce an energy consumption breakdown for Java CDC and CLDC applications.
Our simulator measurements indicate that a large percentage of the total energy consumption (up
to 35%) is devoted to the virtual machine’s support functions.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Runtime
environments; C.3 [Special-Purpose and Application-Based Systems]: Real-time and em-
bedded systems

General Terms: Measurements, Performance, Experimentation, Languages

Additional Key Words and Phrases: Power Modeling, Java, Power Measurements, Intel XScale
Technology

This work was supported in part by an NSF Information Technology Research Grant CCR-0086031

and by SRC contract number 2003-HJ-1121. Authors’ Address: Department of Electrical Engi-
neering, Princeton University, Princeton, NJ 08540. Email: {gcontrer,mrm}@princeton.edu. *The
author contributed to this work while working at Intel Corporation. We gratefully acknowledge
funding and equipment donations from Intel Corp.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 1529-3785/2006/0700-0001 $5.00

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006, Pages 1–0??.

2 · G. Contreras et al.

1. INTRODUCTION

Recent years have seen a proliferation of embedded devices in many aspects of
life, from cell phones to automated controllers. Each new generation of embed-
ded devices includes new features and capabilities, which are made possible by
the greater data processing speeds of embedded microprocessors and larger data
storage capacities of RAM and FLASH chips. For device designers and software
engineers however, these attractive features can mean more challenging power and
thermal design issues, resulting in added complexity and design/test time of target
applications.

Under such constraints, understanding the power consumption of running soft-
ware during the first design stages is of extreme importance. This is because know-
ing power consumption can help realize early power/performance optimizations.
This scenario, in reality, is difficult to achieve since software performance and power
consumption are very dependent on implementation details of the processing device,
which at early stages might not be fully defined. Furthermore, with complex soft-
ware platforms like Java runtime systems running on embedded devices, the task
of understanding power and performance becomes even more challenging. This is
where high-level design tools come into play. Research in low-power architectures
and energy-efficient programming techniques has led to an extensive suite of high-
level tools with the purpose of estimating power and performance characteristics of
existing and theoretical microprocessor designs [Brooks et al. 2000][Krishnaswamy
and Gupta 2002][The SimpleScalar-ARM Power Modeling Project 2004][Ye et al.
2000]. Some of these tools have been used to estimate power consumption of high-
end superscalar processors while others have been used to investigate the effects of
software transformations on power consumption. Existing power estimation tools
generally offer great flexibility in their usage and configuration since they do not
model a particular pipeline implementation. Furthermore, they are mostly aimed
at studying C and assembly-based benchmarks; we are more interested in Java
applications and Java runtime systems.

This paper introduces XTREM, a microarchitectural functional power simulator
for the Intel XScale core. XTREM is a comprehensive infrastructure capable of
providing power and performance estimates of software applications designed to
run on Intel XScale technology-based platforms. XTREM models the effective
switching node capacitance of various functional units inside the core, following a
similar modeling methodology to the one found in [Brooks et al. 2000].

The entire XTREM infrastructure has been tailored for the Intel XScale core
and validated against real hardware for improved accuracy, yet it has been kept
flexible enough to be used during the first design and exploration stages of software
and hardware design ideas. We were able to obtain a 4% average error on power
estimates and an error of less than 7% on average performance (IPC) across a diverse
set of nine different benchmarks composed of C-based embedded benchmarks and
Java CLDC applications.

Cycle-level simulation of Java applications by our base simulator is made possible
through added system calls and soft-float support. This adds an extra dimension
of analysis to XTREM since it is possible to separately analyze power and perfor-
mance characteristics of the JVM and Java application code (JITted code). In fact,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

The XTREM Power and Performance Simulator for the Intel XScale Core · 3

detailed knowledge of the JVM memory map allows performance/power analysis of
individual JVM phase components such as the class loader, the execution engine,
the JIT compiler and/or the garbage collector. This is done for our case study
in Section 8. For tested CLDC Java benchmarks, we observed that power usage
between JITted code and JVM code is quite varied, as our simulation results show
the JVM can consume as little as 14% or as much as 70% of the total average
power.

This paper makes the following contributions to the area of embedded power
estimation and performance analysis tools:

—We have developed power models for the various functional units of the Intel
XScale core.

—Our tools enable one to run a JVM on top of a functional simulator, which
allows a much broader application analysis of many important Java embedded
applications.

—Our simulation framework is the first to support deeper application-aware analysis—
such as distinguishing execution of Java JITted application code and Java run-
time system procedures.

—Having developed a data acquisition methodology consisting of physical multi-
meter measurements, Hardware Performance Counter (HPC) statistics and sim-
ulation results, we present a broad comprehensive analysis of Java and Non-Java
systems through the use of a validated cycle-accurate power and performance
simulator.

This paper is organized as follows: Section 2 begins with a brief description
of the Intel XScale microarchitecture, detailing some architectural features that
make the Intel XScale core unique. Section 3 describes the microarchitectural
functional simulator that models the pipeline structure of the Intel XScale core,
which is the heart of XTREM. Section 4 describes various measuring techniques
used in the acquisition of necessary run-time information for the study of the Intel
XScale core and validation of XTREM’s power models. Sections 5 and 6 describe
in detail performance and power modeling validation results for various Java and
Non-Java applications by comparing simulation versus hardware measurements.
Section 7 discusses the influence of data activity factors on the power consumption
of the Intel XScale-based PXA255 microcontroller. Section 8 presents our case
study where XTREM is used to study the energy consumption of a Java runtime
system by dissecting the virtual machine into various software components. Section
9 describes related work and highlights existing differences between XTREM and
other power estimation tools. Future work is described in Section 10. The summary
for our work can be found in Section 11.

2. THE INTEL XSCALE CORE

The Intel XScale core is a high-performance, low-power microarchitecture specifi-
cally targeted for embedded applications [Intel Corporation 2003b]. It is compatible
with the ARMv5TE instruction set and includes support for eight new DSP instruc-
tions that take advantage of a fast DSP coprocessor. We chose to study the Intel

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

4 · G. Contreras et al.

Fig. 1. Block diagram of the Intel XScale microarchitecture pipeline.

XScale core largely because of its wide use in embedded high-performance applica-
tions. Furthermore, its support for dynamic voltage and frequency scaling (DVFS)
makes it a good candidate for power/performance research studies.

The Intel XScale core is a seven to eight stage (depending on the type of execut-
ing instruction) single issue superpipelined microprocessor with many architectural
features that make it suitable for general purpose embedded applications. Figure 1
shows the Intel XScale microarchitecture pipeline organization.

Among the most characteristic features of the Intel XScale core we find a 32KB
32-way set associative instruction cache and a 32KB 32-way set associative data
cache. Access to data and instruction caches is distributed between two pipeline
stages. The first access stage is dedicated for address TAG comparison and veri-
fying memory access permissions, which are stored in a 32-entry fully-associative
Translation Lookaside Buffer (TLB). The second stage is spent retrieving data from
the cache. This two-cycle cache access distribution allows the Intel XScale core to
be clocked at faster rates than previous ARM cores.

As illustrated in Figure 1, instruction decoding and register file data access are
performed in separate stages, as opposed to a unified decode-read stage commonly
found in other ARM devices [M. Levy 2002]. The decoding engine of the Intel
XScale core supports 32-bit ARMv5 and 16-bit ARMv5T Thumb instructions by
including a special decoding unit that expands 16-bit instructions into 32-bit in-
structions. This assists devices with a very limited amount of memory since 16-bit

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

The XTREM Power and Performance Simulator for the Intel XScale Core · 5

instructions can yield more compact program code. A 128-entry direct mapped
Branch Target Buffer (BTB) with a 2-bit branch predictor is included in the Intel
XScale microarchitecture to improve performance.

The high clock rates of the Intel XScale core exacerbate the latency difference
between core and main memory. To alleviate this problem, the core includes two
specialized data buffers called the fill buffer and the write buffer that sit between
the processor’s core and main memory [Intel Corporation 2000]. The 32-byte,
four-entry fill buffer is responsible for sending and receiving all external memory
requests, allowing up to four outstanding memory request before the core needs
to stall. The coalescing 16-byte, eight-entry write buffer captures all data write
operations from the core to external memory, storing data temporarily until the
memory bus becomes available.

The Intel XScale core supports demanding DSP applications by including a 40-
bit Multiply-Accumulate (MAC) unit. The MAC is a variable-latency, high-speed,
low-power multiply unit. It takes two to five clock cycles to complete an operation
depending on instruction type and data width. Intel XScale technology engineers
have also extended memory page attributes of the microprocessor memory manage-
ment unit to enhance memory-caching dynamics. Memory pages can be configured
to be non-cacheable, cacheable by the data cache or cacheable by a 2KB 32-way
set associative mini-data cache.

We have integrated many of the above architectural features into XTREM’s mod-
els: Data and instruction cache accesses have been split into two stages, buffers
assimilating fill and write buffers have been modeled into our simulator and our
branch predictor has been modified to match the hardware’s 2-bit prediction algo-
rithm. Thumb instructions and special memory page attributes are not supported
by our simulator since none of our tested benchmarks make use of these features.
The addition of supported microarchitectural features into XTREM provides us
with an accurate simulator that reports an average performance error of less than
1% for micro-kernels and an average error of less than 7% for our tested set of
benchmarks as described in Section 5.

2.1 Performance Counters

The Intel XScale core includes two specialized 32-bit registers, CNT0 and CNT1,
that can be configured to monitor and count any of the 14 possible performance
events available to the Intel XScale core [Intel Corporation 2003b]. These perfor-
mance counters are accessible in privileged OS mode and only two events may be
monitored at a time. A third specialized 32-bit register, CLKCNT, is triggered on
every clock cycle and its value can be used in conjunction with CNT0 and CNT1 to
compute interesting performance metrics that can reveal major performance losses
of running applications. Since performance monitoring of software happens during
runtime, performance counters are a reliable source of performance data. We use
these counters to validate our performance and power models.

3. XTREM POWER AND PERFORMANCE SIMULATOR

The methodology for defining the granularity of power distribution (i.e. the number
of functional units to model) is not straightforward since the Intel XScale core is
embedded inside a complex microcontroller surrounded by various peripherals that

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

6 · G. Contreras et al.

Fig. 2. Processor block diagram. The Intel XScale core is surrounded by support functional units
that contribute to the processor’s overall power consumption. Not all peripheral units are shown
in this figure.

interface to external components. For example, Figure 2 shows a block diagram of
the Intel XScale-based PXA255 microcontroller showing the spatial placement of
the main core within the processor. This work focuses on the power behavior of the
main processing core and less so on the energy usage of the external components
such as the UARTs, LCD drivers and PCMCIA on-chip modules. It is, of course,
to some extent impossible to ignore the effects of these units when power sampling
is done on the microcontroller in real time. We minimize these effects by turning
off as many unused peripherals as possible.

The starting point in the construction of power models is a detailed description
of the Intel XScale technology and microarchitecture as described by Clark et al.
[2001]. This paper describes the logic-level implementation of caches and clock
distribution logic, among other important functional blocks. From this lower-level
description and available Intel XScale technology documentation, an initial set of
power models using Wattch [Brooks et al. 2000] power models as templates were
created. Some of Wattch’s power models have been adapted into XTREM with
minor changes, while other power models were adjusted and revised to reflect more
accurately the Intel XScale microarchitecture and new technology implementations
(as in the case of memory arrays and caches).

Our power models are mathematical equations that provide node switching ca-
pacitance estimates. We constructed power equations based on transistor-level
schematics of functional units and a high-level view of transistor gate and drain
capacitances. A single equation does not describe an entire functional unit, but
rather basic sub-blocks that can be reused. For example, the register file unit is
sub-divided into a row decoder, an SRAM array and pre-charge logic.

Our power models are based on the following CMOS energy equation:

E = CLV 2 (1)

Estimating the node capacitance is the first step to estimating energy (and con-
sequently power) requirements of various processor structures. For example, the
SRAM array shown in Figure 3 is used for fast data structures within the CPU such

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

The XTREM Power and Performance Simulator for the Intel XScale Core · 7

as the register file and cache arrays. Therefore, given the mathematical equations
that describe the power requirements of an SRAM array suffices to describe the
power usage of variety of data structures within the core.

For the SRAM array shown, M data elements are arranged vertically and their
constituent N bits are spread horizontally. On every clock cycle, all the bitlines
(columns) of the structures are pre-charged. When a particular data element is
accessed, the decoder selects a data element (a word in the structure) by enabling
the wordline driver attached to the desired data element. Selecting a data element
requires raising the wordline from 0 to 1, which according to Equation (1), will
consume energy proportional to the capacitance seen by the power supply. Looking
at Figure 3, we see that this capacitance consists of the diffusion capacitance of the
wordline driver, two gate capacitances for every bit attached to the wordline, and
finally the wire capacitance of the wordline. The addition of these capacitances is
expressed in Equation (2).

Power dissipation by the pre-charge logic happens as follows: On every cycle,
the pre-charge logic pre-charges all bitlines to a predetermined value, VDD. If a
particular bitline is already charged, no energy is invested for that bitline. If a
bitline was discharged by a previous element access, however, one of the bitlines
will be discharged and the pre-charge logic will invest energy proportional to the
capacitance of the bitline, which is equal to the diffusion capacitance of the pre-
charge transistor, the diffusion capacitance of the bit cell access transistor, and the
capacitance of the bitline wire. The addition of these capacitances is expressed in
Equation (3). Equations (2) and (3) are given as an example of the analysis and
modeling detail used in the construction of power models for various functional
units.

Cwordline = Cdiff (WordLineDriver) + (2)

2 ∗ Cgate(CellAccess) ∗ N + Cmetal ∗ WordLineLength

Cbitline = Cdiff (PreCharge) + (3)

Cdiff (CellAccess) ∗ M + Cmetal ∗ BitLineLength

Not all necessary power models for the Intel XScale core are found in Wattch.
For example, the unique T-shaped clock structure common in the Intel XScale
core had to be created based on work by Clark et al. [2001] since Wattch power
models assume an H-tree clock distribution network. Functional units for which no
complete circuit-level diagram is available are assumed to consume constant power
on every access. The power consumption value of these units is either approximated
using functional-unit isolation techniques or a power consumption estimate found
in existing literature. The MAC unit is an example for which no complete circuit-
level diagrams are published. Liao and Roberts [2002] describe the architecture of
the MAC unit used by the Intel XScale core. The level of detail presented by Liao
and Roberts [2002], however, is not enough to construct a comprehensive circuit-
level description of the MAC unit. The paper, however, provides the nominal
power consumption of the unit, which is used by XTREM as the per-access power
consumption cost.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

8 · G. Contreras et al.

Fig. 3. RAM array schematic. Transistor-level schematics like the one shown here are used to
create mathematical equations that estimate internal node switching capacitance.

The power consumption of other functional units for which no circuit-level de-
scription is available, such as the ALU and the memory manager unit (MMU), is
derived empirically using functional-unit isolation techniques.

Functional unit isolation works by executing a carefully-crafted micro-stressmark
on our development board. Since the Intel XScale core is a single-issue, in-order
processor, the behavior of the execution pipeline as well as data interdependence
between instructions can be accurately predicted based on the input instruction
stream. An approximation of the power usage of a particular functional unit can
thus be obtained by measuring the delta change in power consumption between
a micro-stressmark that uses a partular functional unit, say, every cycle, and the
power consumed by a second micro-stressmark that does not use the functional unit
in question. Given this delta power difference and the access rate of the function
unit, an average per-access power consumption can be estimated.

While functional unit power isolation is useful, it is not our primary approach
to power modeling. As stated before, we only use power isolation techniques on
selected functional units for which no other techniques were available. We do,
however, use power isolation techniques more extensively for validation purposes,
as covered in Section 6.

3.1 The XTREM Functional Simulator

XTREM is in part derived from the ARM-SimpleScalar simulator [The SimpleScalar
Toolset 2001], a highly flexible microarchitectural-level simulator with a five-stage
superscalar-like pipeline organization. The ARM-SimpleScalar simulator provides
reasonably good accuracy for many applications, but for some stressmarks with
heavy emphasis on the memory subsystem, significant differences can be observed
between the IPC (instructions per cycle) it predicts and that measured by the hard-
ware performance counters of the Intel XScale core. This large performance error
is primarily caused by the pipeline and memory sub-system differences between the
general ARM-SimpleScalar microarchitecture and that of the Intel XScale microar-
chitecture.

XTREM includes architectural features not available in ARM-SimpleScalar such

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

The XTREM Power and Performance Simulator for the Intel XScale Core · 9

as fill and write buffers, a 4-entry pend buffer, a revised version of the well-known
2-bit branch predictor algorithm and a read/write cache-line allocation policy. Sup-
porting architectural features such as these makes XTREM more closely-matched
to the microprocessors we target.

In the same way we implemented new units into XTREM we also removed
microarchitectural units inherited from ARM-SimpleScalar that have no parallel
within a true Intel XScale microarchitecture. For example, the Register Update
Unit common to many SimpleScalar simulations is not present in our framework.

XTREM allows monitoring of 14 different functional units of the Intel XScale
core: Instruction Decoder, BTB, Fill Buffer, Write Buffer, Pend Buffer, Register
File, Instruction Cache, Data Cache, Arithmetic-Logic Unit, Shift Unit, Multiplier
Accumulator, Internal Memory Bus, Memory Control and Clock.

3.2 XTREM JVM Simulation Support

To support research on power and performance of Java runtime system for embed-
ded devices, XTREM gives researchers the ability to run complex Java runtime
systems such as Sun’s KVM reference CLDC design [Sun Microsystems 2000] or
Intel’s XORP1 JVM. It is required, however, that the JVM binary be compiled
using the -static linking flag, meaning no dynamic libraries can be used. We have
used a statically linked XORP JVM for all the experiments presented in this paper.

A dynamically linked XORP JVM (designed to run on top of an OS) employs a
one-to-one Java thread to native thread policy, which means that each Java thread
is mapped to a native thread. In order for us to be able to run a statically linked
XORP JVM directly on top of our functional simulator without emulating an OS,
we have to remove multi-thread support and thread synchronization from the JVM.
The direct implication of this modification is that multi-threaded Java applications
cannot run using our statically linked (modified) JVM. We hope to add multi-
thread support to our infrastructure in the near future by either emulating an OS
between our simulator and the JVM or by mapping M Java threads into a single
native thread.

Our “static” XORP should not affect the performance of the running Java appli-
cation significantly. This was verified by comparing hardware performance counter
statistics from various Java applications using a modified “static” link and an un-
modified “dynamic” link of the XORP. For four CLDC Java benchmarks, our exper-
iments showed an average difference of less than 2% between hardware performance
counter values. Physical power measurements between the two XORP configura-
tions are also very similar, with an average difference of less than 0.5% across the
same set of four CLDC Java benchmarks.

4. MEASURING TECHNIQUES FOR XTREM VALIDATION

4.1 The DBPXA255 Development Board

Our testing equipment consists of the DBPXA255 development board [Intel Cor-
poration 2003a] powered by the Intel PXA255 microcontroller running the Linux

1The XORP JVM is a clean-room runtime system designed specifically for high performance and
small memory footprint. At current development stage, XORP has full-fledged support for J2ME
CLDC/CDC on XScale platforms.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

10 · G. Contreras et al.

2.4.19-rmk7-pxa1 patched kernel. The DBPXA255 is a multi-purpose development
board that includes many of the device features commonly found in embedded de-
vices such as SRAM and FLASH memory banks, a LCD touch screen, ethernet
adapter and keyboard.

The DBPXA255 development board does not include a tertiary storage device
such as a hard disk or a CD-ROM. Since it is infeasible to store all benchmarks and
their associated data sets on the board’s limited flash memory, a network connection
was set up between the development board and a host PC.

The DBPXA255 board has two sets of jumpers that facilitate voltage and current
measurements of hardware. The first set allows the user to tap into the main
power supply of the processor. The second set exposes the CPU’s memory bus
voltage pins. We use the Agilent 34401A digital multimeter to sample current
consumption of the Intel PXA255 microcontroller while running our selected set of
benchmarks. Voltage can be measured in a similar way, but in all measurements the
voltage remained nearly constant throughout our experiments, so we perform our
calculations using a constant voltage of 1.5V. Since voltage is assumed to remain
constant, we only sample current, which is then multiplied by voltage to get a power
figure as defined by the basic equation P = V · I.

We set the PXA255 microcontroller to use a core frequency of 200Mhz, a bus
clock frequency of 100MHz and memory frequency of 100Mhz. The microprocessor
core’s voltage was adjusted to 1.5V and all I/O pins are driven by a 3.3V power
supply. Under this setup we measured a CPU idle power of 80mW and an average
CPU power consumption close to 270mW. Although main memory power consump-
tion is not part of our study, we measured an idle SDRAM power consumption of
40mW and an active average power consumption close to 90mW (for one SDRAM
HYB39S25610DT module).

4.2 Runtime Power Sampling

We perform power sampling at runtime of various test benchmarks using the Agilent
34401A digital multimeter. The digital multimeter interfaces to a PC through a
GPIB cable. A GPIB interface allows us to obtain sampling rates of up to 1000
samples per second. Figure 4 shows the the physical measurements setup. In
order to better focus on the microarchitectural core, we turned off various unused
peripherals such as the LCD clock driver, UART clock drivers, and the AC97 clock
driver. Turning these components off reduces idle power consumption by as much
as 7 to 8mW (out of a total of roughly 270mW non-idle power consumption) for
the 200Mhz and 1.5V processor setup.

4.3 Runtime Performance Sampling

In addition to power sampling via multimeter, we also use hardware performance
counters for simulator validation. We interfaced to the hardware performance coun-
ters using a Loadable Kernel Module (LKM) that adds system calls to the Linux
OS kernel. These additional system calls are used to configure and read hardware
performance counters. Each call is no more than three assembly instructions long,
keeping performance overhead low. Overflow of performance counters is detected
by a special bit location on the performance’s counters configuration register. Our
LKM is based on a similar performance counter reader previously designed for

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

The XTREM Power and Performance Simulator for the Intel XScale Core · 11

Intel

XScale

Microcontroller

HHHHHj

Digital

Multimeter�

Fig. 4. Physical measurements setup. The Agilent 34401A Digital Multimeter (DMM) is used
to sample current consumption of the Intel PXA255 CPU. High sampling speeds are achieved
through a GPIB connection between the DMM and a host PC.

Pentium 4 systems [Isci and Martonosi 2003]. Performance sampling is done by
avgsample, a C program that creates two working threads. The first thread runs
the target program that we wish to measure. The second thread is the main sam-
pling thread. The sampling thread is in charge of clearing and activating hardware
performance counters before the target program thread runs. Once the target ap-
plication thread is running, the sampling thread waits until the application thread
exits and immediately reports results to the user. Counter overflow is automati-
cally detected by an interrupt service routine, which adjusts counter values beyond
32-bit accuracy when needed.

5. XTREM PERFORMANCE VALIDATION

Performance counters are very helpful in analyzing runtime performance of applica-
tions as well as for exposing different memory system and pipeline latencies of the
Intel XScale core. Their versatility and accuracy have proven invaluable in validat-
ing XTREM. To this end we compare performance counter results and equivalent
performance metrics reported by XTREM for several stressmark programs. Stress-
marks are highly predictable programs written to validate the pipeline structure of
our simulator. We wrote nine stressmarks as described below.
Dcache is a small kernel that works with a data set that fits entirely in the data

cache, thus minimizing data cache misses. Dcache write stresses data throughput
to main memory. The main loop writes consecutive integers into memory. The
purpose of this kernel is to stress the memory coalescing feature of the Intel XScale
core. Dcache trash works with a data set that extends beyond the capacity of the
data cache. This stressmark has been designed to have a very large number data
cache misses, ideally a cache miss for every loop iteration. Dcache writeline is
very similar to dcache write, except that dcache writeline writes one integer in
every memory address location corresponding to the beginning of one cache line so
that memory address coalescing is not possible. Add stresses the arithmetic unit
of the Intel XScale core. The add benchmark has a very high IPC (instructions
per cycle) since no data dependencies exist. The BTB stressmark has been designed

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

12 · G. Contreras et al.

to stress the Branch Target Buffer by implementing two mutually exclusive inner
branches that miss on every loop iteration. Mult dep and mult nodep are two ker-
nels that exercise and measure the latency of the multiplier when data dependencies
exist and when they are absent, respectively. icache stress is a micro-benchmark
with a high number of instruction cache misses. Matrix is a small benchmark that
multiplies an n by n array. It has been constructed to measure the overall quality
of our simulator.

Figure 5 shows our stressmark validation results by comparing the IPC derived
from hardware performance counter readings, IPC reported by XTREM and IPC
from an unmodified ARM-SimpleScalar simulator. For our work, the average IPC
difference for the nine stressmarks is less than 3%, while the average error between
hardware performance counters and ARM-SimpleScalar is more than 17%, being
the memory sub-system the main source of performance error.

A 3% average performance error in stressmark testing between XTREM and
performance counters is good, but in order to further quantify the accuracy of
XTREM we need to employ more realistic, complex benchmarks. For this end we
have selected five benchmarks from MiBench by Guthaus et al. [2001], an embed-
ded benchmark suite. The benchmarks are: cjpeg (jpeg compression application),
bitcount (bit counting algorithm), CRC (a 32-bit cyclic redundancy check), SHA
(secure hash algorithm), and Dijkstra (a shortest path algorithm). These bench-
marks were chosen based on their large percentage of CPU time and work done in
user space. We also want to test how well our simulator is able to track hardware
performance for Java applications. Jzlib [Jean-loup Gailly and Mark Adler 2004],
Crypto [Legion of the Bouncy Castle 2004], GIF [FM Software 2004] and REX [Za-
liva 2004] are the four open Java CLDC benchmarks selected for this task. These
four Java benchmarks are similar to the set of Java CLDC benchmarks created
by EEMBC [Embedded Microprocessor Benchmark Consortium 2003]. Jzlib is a
ZLIB implementation in pure Java, Crypto is a Java implementation of crypto-
graphic algorithms, GIF is a GIF-format picture decoder and REX is a Java imple-
mentation for regular expressions.

Figure 6 shows performance results for MiBench and Java CLDC benchmarks in
the form of an IPC comparison graph. The graph compares the IPC derived from
hardware performance counters (HPC), the IPC reported by XTREM, and the
IPC obtained from ARM-SimpleScalar (SSS). As seen from the figure, XTREM
provides reasonable performance accuracy for complex benchmarks, reporting a
maximum IPC difference for CRC of 14.2% with respect to hardware-measured IPC.
This relatively large error is caused by differences between our simulator and real
hardware when it comes to decomposing complex instructions (such as the LDMIA
and STMIA instructions) into uops. CJPEG has the lowest IPC error with less than
1% difference. Average IPC difference for all nine tested benchmarks is 6.5%. For
ARM-SimpleScalar, the largest error corresponds to SHA with more than 29% IPC
difference, the lowest error is 1% for CJPEG.

6. XTREM POWER VALIDATION

Validation of XTREM power models is a necessary step in the development of a
trustworthy power estimation tool. Good performance accuracy is of little impor-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

The XTREM Power and Performance Simulator for the Intel XScale Core · 13

0.0

0.2

0.4

0.6

0.8

1.0

dc
ac

he

dc
ac

he
_w

rit
e

dc
ac

he
_t

ra
sh

dc
ac

he
_w

rit
eli

ne ad
d

bt
b

m
ult

_n
od

ep

m
ult

_d
ep

ica
ch

e_
str

es
s

m
at

rix

Micro-Kernel

IP
C

HPC
XTREM
SSS

Fig. 5. IPC comparison for stressmarks as reported by XTREM, ARM-SimpleScalar (SSS) and
Hardware Performance Counters (HPC). XTREM simulates adequately many aspects of the Intel
XScale microarchitecture.

0.0

0.2

0.4

0.6

0.8

1.0

cjpeg bitcount crc sha dijkstra rex gif jzlib crypto

Benchmark

IP
C

HPC
XTREM
SSS

Fig. 6. Comparison between simulated and hardware-measured IPC performance for a set of
MiBench and open CLDC benchmarks.

tance if we cannot guarantee a tool that also provides power estimates within a
tolerable error.

The first step toward validation of our power models is to isolate power consump-
tion of individual functional units. Decomposing power usage into various utilized
functional units provides the most comprehensive way of validating XTREM power
models since model accuracy can be traced to a single functional unit, thus giv-
ing us the opportunity to pinpoint individual power models that do not follow the
expected power behavior. This, of course, may be difficult or even impossible to
accomplish for every functional unit since some units are always used independently
of the instruction being executed; functional units such as the instruction decoder,
the TLBs and the instruction cache are difficult to isolate under normal execution
conditions. On the other hand, some functional units can be orchestrated in very

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

14 · G. Contreras et al.

0

50

100

150

200

250

300

350

0 880 1760 2640 3520 4400 5280 6160

Time (sec)

P
o

w
er

 (
m

W
)

1 sec. idle power�

crc
bitcnt

jpegc

?
sha

dijkstra

?

0 4 8 12 16 20 24 28

(a)

0

50

100

150

200

250

300

350

0 880 1760 2640 3520 4400 5280 6160

Time (sec)

P
o

w
er

 (
m

W
)

crcbitcnt

jpegc

?
sha

dijkstra

?

0 4 8 12 16 20 24 28

(b)

Fig. 7. Measured (left) and simulated (right) power consumption for five MiBench benchmarks.
For this set of benchmark the maximum error is 11% (JPEG) and the minimum is 3.66% (Bitcount).
Benchmarks are separated by a 1 second delay seen as 80mW idle power.

predictable ways. These include the register file, ALU, MAC, Data Cache, Fill and
Write buffers.

As described in Section 5, our stressmarks have been designed to make specific
use of various functional units within the core. Serving once again as validating
agents, small stressmarks are used to dissect the processor’s power utilization into
functional unit power consumption. This methodology assumes that no power is
consumed by units that have been turned off or are not being used. This assumption
seems plausible since the Intel XScale core is a highly power-efficient core that makes
use of multiple levels of clock gating, allowing entire units to be disabled when not
in use as described by Clark et al. [2001].

Our power-isolation methodology does not guarantee the exact per-functional
unit power consumption of the entire core, but rather helps understand how power
is distributed across various functional units and how software affects overall power
consumption. The second step in power model validation included a second revision
of power models to reduce estimation errors discovered during the first validation
step.

A third and last step in power model validation involves simulating MiBench and
Java CLDC benchmarks. Instead of simply comparing “average estimated power”
and “average measure power” as a validation approach, we believe power behavior
in the time domain better describes how accurately XTREM tracks real-hardware
power behavior.

We start by describing Figure 7, which shows a power versus time plot for
five MiBench benchmarks. Figure 7a shows real power measurements, 7b shows
simulated power consumption. The benchmark ordering from left to right is:
JPEG Compress, Bitcount, CRC, SHA and Dijkstra. Benchmarks are separated
from each other by a one-second delay, visible on the graph in the form of 80mW idle
power consumption. The similarities between real and simulated power consump-
tion are encouraging: XTREM is able to capture not only power behavior within
a benchmark, but also the power relationship among the set of tested benchmarks.

Simulating CLDC Java benchmarks not only helps validate XTREM’s CLDC
power estimation capability, but also helps reveals many interesting characteristics

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

The XTREM Power and Performance Simulator for the Intel XScale Core · 15

0

50

100

150

200

250

300

0 230 460 690 920 1150 1380

Time (sec)

P
o

w
er

 (
m

W
)

0 1 2 3

6

GC Call

4 5 6

6

GC Call

(a)

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000

Time (sec)

P
o

w
er

 m
W

)

0 1 2 3

6

GC Call

4 5 6

���
GC Call

(b)

Fig. 8. Measured (left) and simulated (right) power consumption for REX. The start of CLDC
benchmarks is characterized by very varied power behavior which corresponds to JVM initializa-
tion.

0

50

100

150

200

250

300

350

0 115 230 345 460 575 690 805

Time (ms)

P
o

w
er

 (
m

W
)

0 500 1000 1500 2000 2500

6

GC Call

3000 3500

(a)

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500

Time (ms)

P
o

w
er

 (
m

W
)

(b)

6

0 500 1000 1500 2000 2500 3000 3500

GC Call

Fig. 9. Measured (left) and simulated (right) power behavior for GIF. A call to garbage collection
creates a brief power drop around 2600ms.

of Java applications. Figure 8a is a power versus time plot of REX Java benchmark
running on real hardware. From the graph we can observe that Java applications
are characterized by an initialization process where the JVM is allocating the heap
and initializing the runtime system. This JVM initialization phase is visible in
the figure in the form of a random-like distribution of points at the start of the
plot. Figure 8b displays simulated power versus time for REX. This figure was
constructed by reporting average power every 200,000 instructions—4x faster than
physical power sampling. Higher sampling rates allow XTREM to capture many
low-latency events not visible by the power sampling hardware. An example of this
is shown towards the end of Figure 8b in the form of a small power spike. This
power spike is a consequence of garbage collection.

Figure 9a and 9b show physical power sampling and simulated sampling results
for GIF, respectively. Both plots are described by a JVM initialization phase fol-
lowed by an almost flat power consumption trace with snowfall-like traces on the
bottom. This snowfall-like behavior is more visible in simulation traces as a conse-
quence of higher sampling rates. As with Figure 8b, Figure 9b shows the effects of

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

16 · G. Contreras et al.

0

50

100

150

200

250

300

350

cjpeg bitcount crc sha dijkstra rex gif jzlib crypto average

Benchmark

A
vg

. P
o

w
er

 (
m

W
)

Measured Avg. Power
Simulated Avg. Power

Fig. 10. Average power consumption for MiBench and open CLDC Java benchmarks. 12 percent
error bars are shown.

Measured Simulated

Benchmark Avg. mW Std. Dev. Avg. mW Std. Dev.

Jpegc 261.01 28.43 290.37 26.78
Bitcount 265.02 15.25 255.02 16.13

CRC 277.44 5.88 290.37 1.20
SHA 273.26 24.59 295.03 5.16

Dijkstra 269.06 11.85 251.06 17.80
Rex 236.41 39.90 234.33 32.41
GIF 259.49 42.30 292.33 38.13
Jzlib 261.34 19.79 257.05 16.40

Crypto 268.54 22.44 297.03 27.78

Table I. Average power and standard deviation comparison between hardware-measured power
traces and simulated power consumption traces.

calling the garbage collector, which creates a characteristic power spike two-thirds
into the benchmark. As a summary to our Java CLDC and C benchmark valida-
tion experiments, Figure 10 gives a graphical comparison between simulated average
power and hardware-measured average power consumption for five MiBench and
four Java CLDC benchmarks. Table I shows our results in tabular form.

7. ACTIVITY FACTORS AND POWER CONSUMPTION

Power consumption of functional units can be very dependent on input/output
data. This power consumption dependency on activity factors is expected since
dynamic power, a consequence of charging and discharging of capacitive nodes,
encompasses a large percentage of overall power consumption. Knowledge of power
dependency on activity factors is of great importance for small portable embedded
processors where there is a limited amount of energy available. System designers
can, for example, strategically place high access memory regions in such a way that
the activity factors for memory address pins, and consequently internal address bus,
is reduced, thus saving power and extending battery life. We once again made use

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

The XTREM Power and Performance Simulator for the Intel XScale Core · 17

0

50

100

150

200

250

300

0 460 920 1380 1840 2300

Time (sec)

P
o

w
er

 (
m

W
)

0 2 4 6 8 10

Fig. 11. Power dependence on input activity factors for the ADD operation.

of specific stressmarks to study power consumption’s dependence on input data.
Activity factor stressmarks expose activity factor dependency of various functional
units by performing the same operation on a predetermined input data set. Using
known input values allows the functional unit to work with a known data input
activity factor, which is defined as the variability of ones and zeros in the binary
representation of an input data vector when it transitions from data A to data B.
Among the various functional units for which this experiment was realized (MAC,
Data Cache, Shift Unit, and ALU), the ALU datapath unit showed the largest
activity factor influence on power consumption.

To the right of Figure 11 is a power versus time plot of the ALU-datapath activity
factor stressmark running on the Intel PXA255 microcontroller. The experiment, as
seen from the plot, is divided in two parts. During the first part of the experiment,
the A input varies in the vertical direction by increasing the number of ’1’ bits in the
datum while B changes in the horizontal direction in a similar way. For the second
part of the experiment the roles of A and B are interchanged. The lower-left corner
of the first half of the experiment corresponds to adding 0 + 0. The upper-right
corner corresponds to adding two registers with all ones (binary negative one). In
between each addition operation of the stressmark, input values are reset to null
values in order to increase one-to-zero transitions. It is interesting to observe how
interchanging the roles of the A and B inputs changes the power behavior of the
experiment.

Figure 11 demonstrates it is possible to create power swings as large as 50mW
on the Intel XScale core through a stressmark that exercises specific data activity
factors on the ALU datapath. Power swings of double this magnitude are possible
in a 400Mhz Intel XScale core.

8. CASE STUDY: JAVA CDC AND CLDC

In addition to power estimation, XTREM provides researchers with the ability to
dissect Java application power consumption into JVM and non-JVM power, a skill
not yet available to conventional power measuring techniques. With the capability
of discriminating between JVM and non-JVM power consumption at hand, soft-
ware designers and architects can better understand how to increase power and
performance efficiency of Java Runtime systems during early development stages.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

18 · G. Contreras et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Com
pr

es
s_

32
M

Com
pr

es
s_

16
M

Je
ss

_3
2M

Je
ss

_1
6M

DB_3
2M

DB_1
6M

Ja
va

c_
32

M

Ja
va

c_
16

M

Ja
ck

_3
2M

Ja
ck

_1
6M

Avg
32

M

Avg
16

M

CDC Benchmark

P
er

ce
n

t
E

n
er

g
y

Other
GC
JIT
Loader
Jitted

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

re
x_

8M

re
x_

4M

gif
_8

M

gif
_4

M

jzl
ib_

8M

jzl
ib_

4M

cr
yp

to
_8

M

cr
yp

to
_4

M

CLDC Benchmark

P
er

ce
n

t
E

n
er

g
y

Other
GC
JIT
Loader
Jitted

Fig. 12. Energy distribution among five JVM components for CDC (left) and CLDC (right) Java
applications. The suffix attached to the benchmark name specifies the maximum heap size used
by the JVM.

We utilize XTREM to understand how energy is distributed among the various
functional parts of the JVM environment. For this purpose we divide the virtual
machine into five main components: JITted code, Class Loader (Loader), JIT com-
piler (JIT), Garbage collector (GC), and other. This is similar to the approach
followed by Vijaykrishnan et al. [2001]. The energy usage of each component is
determined by the memory region from which the machine is fetching instructions.
In other words, if instruction i has been fetched from the memory region occu-
pied by garbage collector support functions, the power consumed by instruction
i is assigned to garbage collection. The precise placement of all JVM functions
and code in memory is known since our JVM has been statically compiled. We
also want to understand how energy distribution varies when the maximum per-
mitted heap size is varied. We expect changes in energy distribution since tighter
memory constraints require the garbage collector to be invoked more frequently.
Previous work in this field has been done by Vijaykrishnan et al. [2001], where the
energy consumption of different JVM components is examined from the memory
perspective—caches and main memory. Our case study focuses on providing energy
consumption from the perspective of an embedded processor, not only taking cache
power into effect, but also CPU functional unit energy consumption.

We employ our energy analysis technique on the previously described CLDC Java
applications plus five SPECJVM98 Java CDC benchmarks [Standard Performance
Evaluation Corporation 1998]. The CDC Java benchmarks are run until completion
using the −s100 flag (full data set).

Figure 12 shows our case study results. The left side of the figure shows energy
distribution for five CDC Java benchmarks and the right side shows results for
CLDC benchmarks. The suffix attached to the name of the benchmark indicates
the maximum heap size allowed. One of the most immediate observations from
this figure is the fact that the JITted component is one of the highest energy
consumers across all benchmarks. This is good news since the JITted component
represents the actual user Java program being executed by the JVM. For CDC
applications, the average energy consumption for the JITted component is 65%
and 58% with 32M and 16M maximum heap size, respectively. Next to the JITted

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

The XTREM Power and Performance Simulator for the Intel XScale Core · 19

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

JITted Cloader JITted GC other

wbuff
regfile
bpred
alu
dcache
icache
mbus
decoder
clock
mm

Fig. 13. Functional-unit energy breakdown of JVM components for javac with 16M maximum
heap size.

component, other is the second largest energy consumer for CDC benchmarks with
an average energy consumption of 16% for 32M heap size. The other component
covers JVM functions that are needed for the correct functionality of the JVM,
composed mainly of C library calls. The garbage collector is the third largest
energy consumer utilizing more than 11% of the total energy with a heap size of
32M, only overtaking other when the maximum heap size is reduced to 16M. javac
shows the largest variation in GC energy consumption. This is caused by the large
increase of GC calls: 9 calls for 32M heap to 58 calls with 16M heap.

CLDC applications are less memory-hungry and are less affected when halving
the maximum heap size (0.6% energy decrease for the JITted component). Over-
all, CLDC applications invest relatively more energy in the execution component
(JITted) than CDC applications. A visible exception is Jzlib. The high percent-
age of power dedicated to JIT in Jzlib is caused by support functions. Support
functions, such as integer remainder and integer divide functions, are called within
JITted code to perform a specific task, but the actual function execution occurs
within the JVM, thus increasing its average energy requirement. Figure 13 shows
how the energy consumption of the JVM components is distributed among vari-
ous processor functional units when running the javac CDC benchmark with 16M
heap size. The memory manager (mm) is one of the most power-hungry components,
utilizing an average of 32% of the total energy across the five JVM components. In
XTREM, the mm unit is activated when the core is stalled due to a main memory
data or instruction fetch. Next to the mm unit we find the clock structure as the
second highest energy contributor with an average of 17%. The instruction decoder
and the memory bus follow with an average energy consumption of 15% and 10%
respectively. Overall, the results presented here show that a significant percent-
age of time and energy (an average of 35% of the total consumed energy across
simulated Java CDC benchmarks) is devoted to the virtual machine.

We can group everything not covered by the JITted component as energy con-
sumed by the JVM. This grouping would tell us how much energy goes into the
actual execution of the Java application and how much energy is consumed by
the virtual machine and associated support functions. This is done in Figure 14.
Figure 14 shows JVM power consumption and JITted power behavior for the REX

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

20 · G. Contreras et al.

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000

Time (sec)

P
o

w
er

 (
m

W
)

0 1 2 3 4 5 6

(a)

@R

GC Call

�	

GC Call

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000

Time (sec)

P
o

w
er

 (
m

W
)

0 1 2 3 4 5 6

(b)

Fig. 14. Simulated power consumption of the JVM system (left) and JITted code (right) for REX

benchmark. The initialization stage of Java benchmarks is characterized by almost
pure JVM activity. This is demonstrated in the first 500ms of Figure 14b, where
non-JVM or “Java application” involvement is minimum during the 500ms time
frame. After JVM initialization, JVM power for REX drops to an average of about
75mW and Java application power rises to an average of about 160mW. Division
of JVM and non-JVM power introduces an extra dimension in the analysis of “in-
teresting” events. For example, Figure 14a makes it clear that the power spike seen
from Figure 8b originates within the JVM runtime system (the garbage collector
in this case).

The results obtained in our case study clearly indicate that the virtual machine
is responsible for a significant fraction of the energy used by Java applications.
In some cases, increasing the heap size helps decrease the energy consumed by the
virtual machine since the garbage collector is invoked less frequently. For embedded
devices, however, memory is a precious commodity and increasing the heap size may
not always be possible.

Energy consumption of the class loader and JIT compiler may be reduced by
pre-compiling and including system classes within the JVM bootloader. Doing so
would reduce the number of classes loaded at runtime. Furthermore, since classes
can be pre-compiled offline, the number of calls to the JIT compiler can also be
reduced and consequently, its energy usage. This type of strategy is used by high-
performance virtual machines such as the Jikes Virtual Machine by Alpern et al.
[2000]. The drawback to this approach, however, is an increase in the binary size of
the virtual machine due to included system classes. In a server-type virtual machine
such as Jikes this may not be a problem since disk space and memory resources
are abundant. For embedded devices, small binaries are preferred due to limited
non-volatile memory.

9. RELATED WORK

A previous introduction of the XTREM simulator was done in [Contreras et al.
2004]. One of the key differences between this work and previous work is a deeper
analysis of the capabilities of XTREM. This analysis is presented in Section 8
where we break down the energy consumption of the Java Virtual Machine among
its constituent service components.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

The XTREM Power and Performance Simulator for the Intel XScale Core · 21

Previous research in the area of power consumption for Java systems has been
done by Farkas et al. [2000]. For this work the authors use a hardware-based
approach in the study of power behavior for Java applications. They analyze the
power consumption of Itsy, a pocket computer developed by Compaq based on the
StrongARM SA-1100 processor. The study performs live measurements of power
consumption for various applications running on the Itsy pocket computer. They
also present initial data on Java features such as preloading Java classes, JIT vs
non-JIT compilation and multi-JVM support.

Many studies have focused on simulation techniques for power estimation. Wattch
by Brooks et al. [2000] and SimplePower by Vijaykrishnan [2000] are two infrastruc-
tures used to study energy and performance efficiency of microprocessors. Wattch
uses mathematical equations to model the effective capacitance of functional units.
This flexible tool has been used to estimate power consumption of high-performance
microprocessors such as the Pentium Pro, the MIPS R10K and the Alpha 21264.
SimplePower is another high-level tool used in the study of system-energy esti-
mation and compiler optimizations effects on the processor’s power consumption.
Power models for this work are based on analytical power models and energy tables
that capture data switching activity.

Research studies using hardware-based measuring techniques have also proven to
be very efficient in modeling complex architectures. Isci and Martonosi [2003] use
real-hardware power measurements along with functional unit utilization heuristics
derived from hardware performance counters to construct analytical power models
for a Pentium 4 processor. Contreras and Martonosi [2005] describe a linear power
model based on hardware performance counters to estimate the power consumption
of the PXA255 processor and associated external memory. While this approach can
yield fast power consumption estimates, its accuracy is bounded by the amount of
raw performance that hardware performance counters are able to expose: Appli-
cations with a large number of multiply instructions and/or diverse activity fac-
tors, for example, experience high estimation errors since performance counters are
not able to track these events. In contrast, XTREM is able to model the entire
pipeline of the core down to the functional unit level while taking activity factors
into account. Chang et al. [2000] perform cycle-accurate energy characterization
using the ARM7TDMI microprocessor. For this work, fast energy characterization
of hardware is possible using hardware measurement techniques involving charge-
transfer measurements. A multidimensional energy characterization is done on the
ARM7TDMI processor based on seven energy-sensitive microprocessor factors.

Accurate power modeling for the Intel XScale core requires a more specific hard-
ware description than the approach employed by previous simulation-based tools.
XTREM differs from previous work in various ways. First, XTREM is intended to
model a specific microarchitecture family. While many of the core’s configuration
parameters are still user-specified (cache sizes, BTB entries, TLB size), the pipeline
structure modeled by XTREM has been designed to closely match the microarchi-
tecture of the Intel XScale core, exposing very detail levels of functional unit usage.
This provides added performance accuracy over currently existing tools. Second,
XTREM has been validated against real hardware using physical power measure-
ments, hardware performance counters and stress kernels, which makes XTREM

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

22 · G. Contreras et al.

a reliable performance/power estimation tool for XScale-based systems. Last, in-
creasing popularity for Java-supported devices motivated us to design XTREM to
support both C and Java applications. Other tools just focus on C benchmarks
and do not support a unified power and performance Java runtime system research
environment.

10. FUTURE WORK

Future work for this study includes extending XTREM to support different voltage
and frequency settings to more accurately describe the capabilities of Intel XScale
technology cores. With this we hope to investigate ways of reducing energy con-
sumption of JVM components such as the class loader, the garbage collector and
the JIT compiler.

Furthermore we would like to include a run-time, phase-detection mechanism to
our simulator infrastructure. This mechanism would be based on simulated hard-
ware performance counters (HPCs) and would provide a way for detecting and
predicting characteristic program execution phases. Such phase-detection mecha-
nism, along with run-time power estimation, can potentially lead to sophisticated
and accurate dynamic voltage and frequency algorithms (DVFS) for processors with
support for DVFS and HPCs.

11. SUMMARY

This paper has introduced XTREM, a high-level functional power simulator tailored
for the Intel XScale core. XTREM has been validated using hardware performance
counters and real-hardware power measurements. We have presented simulated
power results for five MiBench benchmarks and four CLDC Java benchmarks, re-
porting an average performance error of 6.5% and an average power estimation
error of 4%. XTREM is capable of quantifying power requirements for the JVM
and non-JVM sections of Java applications, giving software engineers and extra
dimension in power analysis. This paper has described how XTREM can help
identify “power-hungry” functional units by providing a breakdown of power con-
sumption and how bit-switching activity within the Intel XScale core can produce
power swings as large as 50mW for a 200Mhz processor.

The research presented here has provided the tools to obtain a broad and com-
prehensive view of how modern embedded systems work. Our approach employs
a data acquisition methodology consisting of physical power measurements, hard-
ware performance counter statistics and simulation results. This study has focused
on Java, C-based embedded and stressmark applications targeted for Intel XScale
Technology-based systems. Our case study has focused on analyzing the power con-
sumption of the various software components in a Java runtime system, showing
that the virtual machine itself can consume up to 35% of the total utilized energy of
Java CDC applications. We feel XTREM offers a useful step forward for compiler
and embedded software designers as it promises to help explore a broader design
space targeted for low energy consumption and high performance.

REFERENCES

Alpern, B., Attanasio, C. R., et al. 2000. The Jalapeno Virual Machine. IBM System Jour-
nal 39, 1.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

The XTREM Power and Performance Simulator for the Intel XScale Core · 23

Brooks, D., Tiwari, V., and Martonosi, M. 2000. Wattch: A Framework for Architectural-

Level Power Analysis and Optimizations. In Proceedings of the 27th International Symposium
on Computer Architecture.

Chang, N., Kim, K., and Lee, H. G. 2000. Cycle-Accurate Energy Measurement and Charac-
terization With a Case Study of the ARM7TDMI. In IEEE Transactions on Very Large Scale
Integration (VLSI) Systems.

Clark, L., Hoffman, E., Miller, J., Biyani, M., Liao, L., Strazdus, S., Morrow, M., Ve-

larde, K., and Yarch, M. 2001. An Embedded 32-b Microprocessor Core for Low-Power and
High-Performance Applications. Solid-State Circuits, IEEE Journal of 36, 11 (November),

1599–1608.

Contreras, G. and Martonosi, M. 2005. Power Prediction for Intel XScale Processors Using
Performance Monitoring Unit Events. In Proceedings from the International Symposium on
Low-Power Electronics and Design.

Contreras, G., Martonosi, M., Peng, J., Ju, R., and Lueh, G.-Y. 2004. XTREM: A Power
Simulator for the Intel XScale Core. In Proceedings from the 2004 Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’02).

Embedded Microprocessor Benchmark Consortium. 2003. EEMBC Benchmarks for the Java
2 Micro Edition (J2ME) Platform. http://www.eembc.org.

Farkas, K. I., Flinn, J., Back, G., Grunwald, D., and Anderson, J.-A. M. 2000. Quantifying
the Energy Consumption of a Pocket Computer and a Java Virtual Machine. In Measurement
and Modeling of Computer Systems. 252–263.

FM Software. 2004. GIF Picture Decoder. http://www.fmsware.com/stuff/gif.html.

Guthaus, M. R. et al. 2001. MiBench: A free, Commercially Representative Embedded Bench-
mark Suite. IEEE 4th Annual Workshop on Workload Characterization,.

Intel Corporation 2000. Intel XScale Core: Developer’s Manual. Intel Corporation. Order No.
273473-001.

Intel Corporation 2003a. Intel DBPXA255 Development Platform for the Intel Personal Internet
Client Architecture. Intel Corporation. Order No. 278701-001.

Intel Corporation 2003b. Intel XScale Microarchitecture for the PXA255 Processor: User’s Man-
ual. Intel Corporation. Order No. 278796.

Isci, C. and Martonosi, M. 2003. Runtime Power Monitoring using High-End Processors:
Methodology and Empirical Data. In Proceedings from the 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO-36). 93–104.

Jean-loup Gailly and Mark Adler. 2004. Zlib Java Implementation.
http://www.jcraft.com/jzlib.

Krishnaswamy, A. and Gupta, R. 2002. Profile Guided Selection of ARM and Thumb In-
structions. In ACM SIGPLAN Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’02).

Legion of the Bouncy Castle. 2004. Bouncy Castle Crypto 1.18.
http://www.bouncycastle.org/.

Liao, Y. and Roberts, D. 2002. A High-Performance and Low-Power 32-bit Multiply-Accumulate
Unit with Single-Instruction-Multiple-Data (SIMD) Feature. Solid-State Circuits, IEEE Jour-
nal of 37, 7 (July), 926–931.

M. Levy. 2002. Exploring the ARM1026EJ-S Pipeline: Extensive Architectural Modeling High-
lights Frequency and IPC Tradeoffs. http://www.arm.com/miscPDFs/1752.pdf.

Standard Performance Evaluation Corporation. 1998. Spec JVM Client98.
http://www.specbench.org/jvm98/jvm98/doc/benchmarks/index.html.

Sun Microsystems 2000. J2ME Building Block For Mobile Devices: White Paper on
KVM and the Connected Limited Device Configuration (CLDC). Sun Microsystems.
http://java.sun.com/j2me/docs/index.html.

The SimpleScalar-ARM Power Modeling Project. 2004. PowerAnalyzer.
http://www.eecs.umich.edu/~panalyzer.

The SimpleScalar Toolset. 2001. SimpleScalar LLC. http://www.simplescalar.com.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

24 · G. Contreras et al.

Vijaykrishnan, N. 2000. Energy-Driven Integrated Hardware-Software Optimizations Using Sim-

plePower. In Proceedings of the 27th International Symposium on Computer Architecture.

Vijaykrishnan, N., M. Kandemir, S. K., Tomar, S., Sivasubramaniam, A., and Irwin, M. J.

2001. Energy Behavior of Java Applications from the Memory Perspective. The 1st USENIX
Java Virtual Machine Research and Technology Symposium (JVM’01).

Ye, W., Vijaykrishnan, N., Kandemir, M. T., and Irwin, M. J. 2000. The Design and Use of
SimplePower: A Cycle-Accurate Energy Estimation Tool. In Design Automation Conference.
340–345.

Zaliva, V. 2004. Java regular expressions. http://www.crocodile.org.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 2006.

